
Towards Intelligent Defense against Application-Layer DDoS
with Reinforcement Learning

Yebo Feng
University of Oregon

Eugene, USA
yebof@cs.uoregon.edu

ABSTRACT
Application-layer distributed denial-of-service (L7 DDoS) attacks,
by exploiting application-layer requests to overwhelm functions
or components of victim servers, has become a major rising threat
to today’s Internet. However, because the traffic from an L7 DDoS
attack appears totally legitimate in transport and network layers,
it is difficult to detect and defend against an L7 DDoS attack with
traditional DDoS solutions.

In this paper, we propose a new, reinforcement-learning-based
approach to detecting and mitigating L7 DDoS attacks. By contin-
uously monitoring and analyzing the system load of the victim
server, the dynamic behaviors of clients, and the network load of
the victim server, our approach can choose one of the most suit-
able mitigation actions, such as blocking DDoS upstream, blocking
DDoS locally, or postponing L7 requests, thus achieving the best
mitigation efficacy of the L7 DDoS attack. Moreover, with the help
of a new multi-objective reward function, when a L7 DDoS attack
is overwhelming the reinforcement learning agent can selectively
sacrifice legitimate requests to keep the victim server functioning,
and when otherwise the agent affects little legitimate requests.

Our evaluation results show that our approach can protect a
victim server from L7 DDoS attacks effectively by detecting 98.73%
of the L7 DDoS traffic flows at the peak system load, with most of
them mitigated.

KEYWORDS
application-layer DDoS, distributed denial of service (DDoS), rein-
forcement learning, anomaly detection

1 INTRODUCTION
Application-layer distributed denial of service attacks [21], or layer
7 (L7) DDoS attacks, represent a type of malicious behaviors that
attack the application layer in the network model. These L7 DDoS
attacks exploit application-layer messages (e.g., web requests) to
swamp specific application functions or components of a victim
server (e.g., a web server) to disable or degrade their services, im-
pacting legitimate users’ experience.

L7 DDoS attacks are on the rise and becoming conspicuous
threats on today’s Internet. Kaspersky Lab’s DDoS report for Q1
2019 [12] indicates that L7 DDoS attacks are growing both qualita-
tively and quantitatively. One of the best-known L7 DDoS attacks
happened in March 2015 when massive HTTP requests poured
towards GitHub [2], causing much reduced availability and higher
latency to GitHub’s service. This attack worked by injecting nefari-
ous JavaScript code pieces into numerous web pages to redirect a
high volume of users’ HTTP traffic to GitHub. More recently, on

July 24, 2019, Imperva reported the most recent notable L7 DDoS
attack [27]. The attack was the longest and largest that Imperva has
ever seen, lasting 13 days and reaching a peak volume of 292,000
requests per second.

Compared with traditional DDoS attacks, L7 DDoS attacks are
more complicated to launch; however, they are more efficient in
inundating a victim server and more challenging to detect. The
three characteristics below are the main reasons for making such
attacks particularly dangerous:

(1) Traditional DDoS attacks target and cause anomalies at the
network or transport layer (e.g., flooding a network link),
while L7 DDoS attacks target primarily specific application
functions or components of a victim server. L7 DDoS attacks
primarily cause anomalies at the application layer and does
not always lead to anomalies at the lower layers. Popular
traffic monitoring tools [9] and DDoS traffic classification
approaches [8], which typically onlywork at the layers below
the application layer, can be clueless in defense against L7
DDoS attacks.

(2) Tradition DDoS attacks, while attacking lower layers, do not
care to ensure the application-layer legitimacy of the DDoS
traffic. Conversely, L7 DDoS attacks flood a victim applica-
tion with purposely fabricated application-layer messages
that look legitimate, which they intend the victim applica-
tion will process and respond in the same way as legitimate
application-layer messages.

(3) In contrast to traditional DDoS attacks that often inundate a
network link or exhaust resources for network or transport
layer functions, L7 DDoS attacks can first pinpoint specific
vulnerabilities of a victim application, such as a bottleneck
involved in disk I/O , CPU operation, or memory usage, and
then hit the application with application-layer messages that
target the vulnerabilities.

Unfortunately, the detection and defense of L7 DDoS attacks are
still not well-studied [5, 21]. Worse, attackers continuously evolve
their toolkits and develope more sophisticated L7 DDoS attack
techniques. Thus, it is compelling to accurately identify L7 DDoS
attacks and generate effective mitigation tactics against them.

The key to addressing L7 DDoS attacks is to distinguish L7 DDoS
traffic from the legitimate application-layer traffic. This task is dif-
ficult, however, given that a L7 DDoS attacker can purposely fabri-
cate application-layer messages that look legitimate, as discussed
above. A L7 DDoS message can even be identical to a legitimate
application-layer message.

Interestingly, the legitimacy of application-layer messages is
heavily dependent on its environment or context. The same application-
layer message may be legitimate in one environemnt, but totally

DRP Report - Yebo Feng

malicious in another. Or similarly, depending on how a client has
been interacting with a server in the past, a newly received re-
quest from the client may be legitimate in one case, but illegitimate
in another. In another words, it is a Markov decision process to
determine whether an application-layer message is legitimate or
not.

We thus seek to discover what methodologies would be the
most effective in distinguishing L7 DDoS traffic from the legitimate
application-layer traffic by considering environmental and contex-
tual factors, instead of only inspecting the messages themselves.
This paper proposes the first reinforcement-learning-based method
that can incoporate environmental and contextual factors to distin-
guish L7 DDoS traffic from the legitimate application-layer traffic.
It monitors and analyzes a variety of environmental and contextual
factors including those related to the system and network load of
the victim server (e.g., disk I/O , CPU operation, memory usage,
or link utilization) and the dynamic application-layer behaviors of
clients (e.g., request type, size, frequency, and content).

Furthermore, this method streamlines the L7 DDoS defense by
integrating the operations of attack detection, message classifica-
tion, and attack mitigation. Rather than producing labels of each
application-layer message for a separate L7 DDoS mitigation mod-
ule to handle themessage, for each applicationmessage, thismethod
directly outputs the action to take under different circumstances.
Actions can include blocking the message upstream, blocking it
locally, or postponing its processing, in order to mitigate L7 DDoS
attacks.

More importantly, this method receives feedback from the ac-
tions taken, allowing it to fine-tune what actions are the best for a
given situation. With the design of a new multi-objective reward
function, this method can determine the most suitable actions to
take in a way that (1) minimizes the amount of discarded legitimate
messages to provide the service as much as possible to clients when
the victim load is low and (2) maximizes the amount of filtered
L7 DDoS messages to prevent the server from collapse when the
victim load is high.

The evaluations show that this approach has outstanding efficacy
when mitigating L7 DDoS attacks and satisfying performance when
running on the server node. With a 0.9553 accuracy and a 0.9873
true positive rate at the peak of L7 DDoS attacks, this approach
can identify the majority of DDoS traffic and significantly increase
the capacity of the victim server. Also, the implementation of this
method is not intricate. With less than 30,000 training episodes,
this method can adapt to an utterly unacquainted victim server
environment.

The rest of this paper is organized as follows. After describing
the related work in Section 2, we introduce the threat and defense
models in Section 3. We then detail this approach in Section 4.
We evaluate this approach in Section 5 and discuss open issues
and future work in Section 6. The conclusions of the paper is in
Section 7.

2 RELATEDWORK
Previous methodologies differs from our proposed approach in that
(1) our approach is an integration of attack detection, message
classification, and attack mitigation. While previous approaches

treat attack detection & classification and attack mitigation as iso-
lated components; (2) previous L7 DDoS detection & classification
approaches explicitly label the identities of application messages,
while the proposed approach implicitly detect L7 DDoS attacks and
classify the messages; (3) previous L7 DDoS mitigation methods are
either in-network or victim-side approaches, while the proposed
approach can choose adaptive mitigation methods in different situ-
ations; (4) most of the previous approaches set a defense strategy
and stick on it throughout their deployments, while the proposed
method can adopt different defense strategies according to the
victim server’s conditions.

We detail related work below, including the detection & classifi-
cation of L7 DDoS and attack mitigation.

2.1 Detection & Classification Approaches
As for detection & classification of L7 DDoS attacks, due to the
unique attack model, it is infeasible to identify L7 DDoS attacks
only through traffic flows. Thus, most existing L7 DDoS attack
detection & classification approaches rely on [payload information
and historical behaviors of clients] [21] to find the trace of L7 DDoS.
However, due to the high complexity of L7 DDoS attack and the
[low detection efficiency], many of the current methodologies are
[difficult to deploy] and [limited to only certain types of attack
patterns]. This paper lists some representative detection methods
as follow, which are categorized into three types: statistical method,
learning-based method, and probability method.

• Statistical Method: overview of such caregory. there are
some statistical detection methods based on the activity
rates, request costs, and system metrics. For example, DDoS
Shield [23] uses some threshold values to model the legiti-
mate requests and limit the malicious application behaviors;
[38] detects HTTP GET flood by analyzing the page access
behaviors.
• Learning-basedApproach: overview of such caregory. [25]
detects L7 DDoS attacks by including partial information of
HTTP request headers in a three-layer feed-forward neural
network; [17] utilizes random tree algorithm to construct
the classification model based on preprocessed datasets; [37]
applies Stacked AutoEncoder to generate features from web
logs, then builds a logistic regression classifier to detect
L7 DDoS attacks; [20] proposed a clustering-based strat-
egy called Anomaly-based Real Time Prevention (ARTP) of
under-rated L7 DDoS attacks, which is able to conduct early
detection to even unknown attacks.
• Markov ... Method: overview of such caregory. The L7
DDoS attack is the consequence of a series of behaviors
and each prior activity of the clients can contribute to the
estimation of attack probability. [34–36, 39] track the related
behavior of the users and use hidden semi-Markov model
and random walk graph to classify the attack.

2.2 Mitigation Approaches
In general, there are two directions for us to mitigate L7 DDoS
attacks [21]. One is to mitigate on the victim-side. For example,
blocking automated application requests by utilizing user puzzles

Towards Intelligent Defense against Application-Layer DDoS with Reinforcement Learning

......

Database
Servers

Web/Application
Servers

Load Balancer

Content Delivery
Networks

Routers, Links, and Other
Network Infrastructures

Po
te

nt
ia

l B
ot

tle
ne

ck
s

Routers Content
Delivery
Networks

Load
Balancer

Web
Servers

Database
Server

Attacker

Architecture of the Victim System

Heavy
Queries

Figure 1: An example of the victim model. The attacker is
performing lethal attacks towards the database server of the
victim system.

(e.g., [28, 31, 40]), which has a desirable effect on some of the human-
user-targeted applications but is helpless for systems that allow au-
tomatic operations. Another direction is to mitigate in the network.
Once individuals determine the attack sources, it is straightforward
to leverage some traffic filtering or throttling systems like the fire-
wall to wipe out the identified attacks [21]. However, this approach
is highly dependent on the accuracy of the detection approaches.

3 THREAT AND DEFENSE MODELS
An L7-DDoS victim server can be a single-node application server,
or contain many components as illustrated in Figure 1. It may
include a content distribution network (CDN) to provide end-users
with high availability and fast content delivery, where the CDN
uses reverse proxy servers to request missing content from the
original application server. It may include a load balancer when
the application server is composed of more than one machine. It
may also include database servers at the backend to maintain data
and answer queries. Any such component may be vulnerable to an
L7-DDoS attack.

3.1 Threat Model
With usually a complicated infrastructure, a victim may have vari-
ous vulnerabilities that a L7-DDoS attack can exploit. For example,
the bandwidth of its CDN could become the bottleneck upon a peak
of requests, the application server itself may be exhausted if the
processing load is very high, or the database servers may be under
pressure when an extremely large number of disk I/O operations
are triggered.

Without losing generality, we assume the L7-DDoS follows a
threat model as illustrated in Figure 1. L7-DDoS attackers can form
a massive botnet to exploit the vulnerability of the victim, with
the source IP addresses of the bots distributed over different au-
tonomous systems (ASes). Upon the command of the botmaster,
every bot can send specific application-layer requests to the victim
server. Also, we assume that the attackers can systematically mea-
sure the victim server’s operation conditions in order to figure out
the vulnerable spot, thus adjusting their attack tactics accordingly.

After investigating the operational models of current L7-DDoS
attacks, we categorize L7 DDoS attacks into three types: request
flooding attack, leveraged attack, and lethal attack.

3.1.1 Request Flooding Attack. In this attack, the attacker over-
whelms the system by sending application-layer requests at a high
rate from different IP addresses. The operational mechanism of this
attack can be either naïve or sophisticated. First, the attacker nodes
can be located in certain IP blocks or distribute all over the Internet
with different ASes to make it challenging for identifying the attack
sources. Secondly, the botmaster can control the bots to generate
requests in monotonous or diverse ways. Attacking with diverse
requests brings a significantly higher threat against the victim be-
cause detecting such activities is intractable, but launching such an
attack requires more coordination and resources.

3.1.2 Leveraged Attack. This attack leverages the flaws of the vic-
tim system to amplify the threat. Thus it can take down the appli-
cation server with minimal bandwidth and very few requests. For
example, low and slow attacks, target thread-based web servers
with the aim of tying up every thread with slow requests, thereby
preventing benign users from accessing the service [6]. It leverages
the vulnerability of HTTP protocol that keeps the connection open
during the transmissions of HTTP requests. The attacker controls
bots to utilize tools like R.U.D.Y. [16] or Slowloris [24] to slowly
send out the requests to the victim. This procedure keeps many
connections to the target server open and holds them open as long
as possible, tying up the thread. Other types of leveraged attacks
may leverage heavy SQL queries, unbalanced API calls, or flawed
message queues to overwhelm the victim with a small amount of
application-layer requests.

3.1.3 Lethal Attack. in this threat, the attacker first scans the vic-
tim system to pinpoint the current performance bottlenecks or
vulnerabilities (e.g., I/O, memory space, or database server), which
are also called lethiferous spot. Then, the botmaster formulates the
optimal attack tactics based on the measurement result. During
the attack session, all the bots will follow the formulated tactics to
send application requests related to the lethiferous spot for over-
whelming the victim. Furthermore, the botmaster may adjust attack
tactics dynamically based on the condition variations of the victim
server to make the attack even more effectual. In general, this in-
telligent attack is highly threatening to all types of victim systems
and difficult to detect due to its dynamics.

3.2 Defense Model
The defense approaches that a victim can adopt to defend against
traditional DDoS attacks are mainly network-based. One can defend
against traditional DDoS attacks by dropping the traffic of malicious
sources in upstream routers [22], filtering the packets in a scrubbing
center [1], or rerouting the traffic out of the obstructed links [29].
However, for L7 DDoS attacks, the defense strategies can be more
flexible:

• For malicious requests that will add considerable pressures
to the link bandwidth, we can utilize network-based defense
methods to throttle their traffic before reaching the victim
server.

DRP Report - Yebo Feng

• For malicious requests that only abuse computing resources
on the server-side but will not lead to link congestion, we
can conduct application-based defense approaches on the
server-side. The defense approaches include but not limited
to: ignoring the application requests, postponing the requests
until the system workload is in an acceptable condition, and
CAPTCHA [32].

Although the victims have bountiful selections of defense meth-
ods, it is intricate to optimize and coordinate different defense
strategies according to the conditions of victim server, identities
of the application requests, and network environment. This auto-
mated decision-making methodology is one of the key problems
this paper attempts to address.

4 SYSTEM DESIGN
4.1 Overview
L7 DDoS attacks cannot be easily identified through flow-level
data since the attack requests will disguise their traffic flows as
legitimate. Moreover, performing an L7 DDoS attack is a stateful
process, such as the process of establishing a TCP connection and
sending out the HTTP requests. This feature makes the stateless
traffic data limited in the inference of attacks. Thus, we need to
inspect clients’ behavioral information and take more factors into
consideration for attack detection, such as conditions of the victim
server, network traffic situation, and request histories of the clients
to set up dynamic adaptive detection strategies. In order to achieve
that, we use reinforcement learning (RL) [11] to construct the attack
classification model and formulate appropriate tactics to protect
the victim. Reinforcement learning is a burgeoning area of machine
learning concerned with how software agents ought to take actions
in an environment tomaximize some notions of cumulative rewards.
Once the RL agent has made a decision, it will get a reward value
to sense whether the current move is suitable or not. Then, it will
revise the policy to adopt the feedback dynamically.

Compared with other detection and defense approaches, rein-
forcement learning has the following advantages that make it more
competent to deal with L7 DDoS attacks:

• In L7 DDoS attacks, the traffic flows generated by legitimate
and illegitimate clients can be identical, so we cannot merely
use supervised methods to pinpoint the malicious clients.
Conversely, reinforcement learning can train the agent based
on the rewards instead of labels, which is more suitable to
analyze equivocal behavioral data.
• The client’s historical activities are also significant factors for
L7 DDoS detection. Reinforcement learning is a Markov deci-
sion process [10], which will take past states into inferences
for the current decision making.
• Instead of primitively classifying received requests as either
benign or malicious, we want to use this approach to formu-
late appropriate defense tactics based on real-time environ-
mental conditions. Reinforcement learning is particularly ef-
ficient in obtaining information from the agent-environment
interactions and generate suitable strategies accordingly.

Table 1: Key Notations

Symbol Description
s A state vector that represents an overall state

(s = s ′ ∪ s ′′).
s ′ A state vector that represents incoming application

requests.
s ′′ A state vector that represents the environmental

features.
a An action that the agent chooses to take, and ai

represents the ith action.
r A reward value that the environment returns to the

agent, and ri represents the ith reward value.
γ The current system occupation rate.
α The policy transition threshold value.
η The reward multiples for adjustments of the reward

function.
д The hazard index, determines how eager the agent

want the attack to be mitigated.
β The learning rate for agent training.
ζ The discount factor for agent training.

The rest of this section elaborates on the design details of our
approach, some of the vital notations we use in this paper are listed
in table 1.

4.2 Operational Model
A typical reinforcement learning system has five elements: agent,
environment, reward, state, and action. The environment is typically
stated in the form of a Markov decision process (MDP) [15] and the
MDP transition function gives a new state for each incoming appli-
cation request, processed in sequence. The agent gets the state from
the environment (in our case, server and network situations are
the environments), then sends the next action to the environment.
The environment will conduct the action and give feedback to the
agent about the suitability of the action by sending a reward value.
However, the correctness of the classification results is unknown in
some cases, and due to the delay of the external defense system, the
agent cannot obtain feedback on the current decision in real-time.
So we designed another reward modeling component to infer the
possible reward.

Figure 2 is the detailed system architecture of our approach. In
the training phase, the reward modeling component also inputs the
ground truth information to generate precise reward values. The
actions generated by the agent have two categories: the internal
defense rules, which only need to be deployed on the server-side
(e.g., ignore specific requests), and the external defense rules, which
needs an external defense system to deploy them on some network
infrastructures for filtering specific traffic.

4.3 States
Each state is represented by a state vector s , which has twelve di-
mensions. Each dimension of the state s is a value that represents
a feature. In this L7 DDoS detection system, we expect s to com-
prehensively represent both the environmental situations and the

Towards Intelligent Defense against Application-Layer DDoS with Reinforcement Learning

Defense Agent

State s

s'

s'' ...
 ..

. .
..

...
 ..

.

...

... ...

... ...
 ..

. .
..

...
 ..

.

Action a

Deep Neural Network

Environment

Server

Reward Modeling

Other Network
Infrastructures

(e.g., routers, switches)

Reward r

Observed State s

Figure 2: System Architecture

current application request’s features. Thus, we further divide s
into two parts, making s = s ′ ∪ s ′′. Here, request state s ′ is repre-
sentative of the incoming request and environmental state s ′′ is
representative of the environmental situations, including the victim
server’s workload information and the network link’s occupation.

4.3.1 Request state. s ′ is an eight-dimensional vector that extracts
eight features from the current incoming application request. It is
designed to reflect the historical activities, resource consumption,
and behavioral characteristics of the incoming request. The eight
features are shown below:
• Traffic size from the IP block: the server will predefine
some IP blocks for the clients’ source IP addresses. This
feature is a numeric value that indicates the total traffic size
from the incoming request’s IP block within time t .
• Average behavior interval: this feature is a numeric value
which indicates the average request interval from the same
source address within time t .
• Interval deviation: this value is the deviation of all the
request intervals of this source address within time t .
• Request size: this feature is a numeric value which indicates
the size of the current incoming request message. If a request
is sent by multiple packets, the request size should be the
sum of all the related packets’ payloads.
• Number of requests within time t : this value is the num-
ber of the requests made by this source address within time
t .
• Number of similar requests within time t : for each re-
ceived request, the server will calculate the number of similar
requests within time t promptly. This value plays a crucial
role in identifying naive attacks, request flooding attacks,
and bottleneck attacks. However, one issue worthy of our
concern is that calculating this value is expensive, as we
need to buffer a considerable amount of requests in the mem-
ory and perform complicated string matchings. Thus, we
leverage Locality Sensitive Hashing (LSH) [7] to optimize the
calculating process. It firstly calculates a hashing value out
of the request message and stores it in the memory for time t .
We can then figure out the number of similar requests within
time t by counting the number of hashing values that fall
within a difference threshold ∆. Different from traditional
hashing functions that will generate random values out of

Figure 3: Examples for the general hashing and Locality Sen-
sitive Hashing.

similar inputs, LSH can output close or identical values from
similar input strings. Figure 3 shows an LSH example, where
the horizontal positions of the four dots represent the differ-
ence in their contents. Thus, LSH is appropriate and efficient
in data classification and duplicate checking. This method
requires training before conducting queries, so we first col-
lect standard request message strings that can represent all
the application requests that the server can handle, then
preprocess the message strings to make them simplified but
still informative enough to outline the requests’ intentions,
behavioral patterns, and the clients’ platforms. For example,
the message below is a typical HTTP GET request:

1 GET /index.html HTTP/1.1
2 Host: localhost
3 User-Agent: Mozilla/4.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.1.4)
4 Accept: text/html,application/xml;q=0.9,*/*;q=0.8
5 Accept-Language: en-us,en;q=0.5
6 Accept-Encoding: gzip,deflate
7 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
8 Keep-Alive: 300
9 Connection: keep-alive
10 Cookie: PHPSESSID=n465xmdh435may4ib0skrjq360
11 Cache-Control: no-cache

The preprocessing procedure removes all the attributes’ names
and common information (strings with red color), which
eliminates redundancies in the strings. We then sort the rest
of the information in a fixed order, and joint them by deleting
all the spaces and line breaks.

1 /index.htmlMozilla/4.0(Windows;U;WindowsNT6.0;en-US;rv:1.9.1.4)text/html,application/
xml;q=0.9,*/*;q=0.8en-us,en;q=0.5gzip,deflateISO-8859-1,utf-8;q=0.7,*;q=0.7300keep-
alivePHPSESSID=n465xmdh435may4ib0skrjq360no-cache

The original message string turns out to be the string above
after the preprocessing procedure, and we use such data to
train the LSH function for queries. Whenever there is an
input query string, LSH will take the preprocessed string to
go through the whole space to find the closest training data,
and then generate an output hashing value accordingly.
• Request consumption: the sever estimates the consump-
tions of all the requests that it can handle in advance and
give a score to the current request base on the precalculated
consumption score table.
• Ratio of incoming traffic size to outgoing traffic size:
the server estimates the outgoing traffic size if it responses
this request, then calculate the ratio.

4.3.2 Environmental state. s ′′ is a four-dimensional vector that
extracts four features from the server and network’s current con-
ditions. This vector is supposed to be a good representative of
the environmental metrics so that the agent can correctly infer
how dangerous the server’s condition is and what is the system
bottleneck currently. The four features are shown below:

DRP Report - Yebo Feng

• CPU utilization: this value is the occupancy rate of CPU.
• Memory utilization: this value is the occupancy rate of
the memory.
• Link utilization: this value is the occupancy rate of the
link bandwidth.
• Expected link utilization: we assume that the server has
statistical data about the expected link utilization rates in
different periods of the week. This value is the expected link
utilization rate in an ordinary situation.

4.4 Actions
As discussed in Section 3.2, individuals can utilize network-based
and application-based approaches to defend against L7 DDoS at-
tacks. We further derived six types of particular action a (shown as
below) that an agent can take in the defense process. Each of the
action a targets some specific circumstances.
• Action ai : enabling the server to receive and respond the
current application request ordinarily.
• Action aii : enabling the server to receive the current request
ordinarily but postpone the processing procedure for several
seconds.
• Action aiii : ignoring the current application request.
• Action aiv : ignoring all the application requests that have
request contents similar to the curent request.
• Action av : blocking all the traffic from the IP address of the
current application request in the upstream router.
• Action avi : blocking all the traffic from the IP block of the
current application request in the upstream router.

For legitimate requests, the agent can take action ai if the victim
system still has redundancy. However, the agent will take action
aii to deal with legitimate requests if the victim system is heavily
loaded.

For suspicious requests, the agent can either take action ai when
the system load is low or take action aii when the system load is
high.

For malicious requests, the agent will determine the action to
take based on the severity of the attack and the status of the victim
system. If the system is on idle time and the malicious request
cannot cause some real harm against the server, the agent will
conduct action aiii to handle the illegitimate request. However, the
agent will still remain open to future requests of the attacker node
for reducing the false positive rate and saving the rule space in
the upstream router. If some attacker nodes keep sending requests
with malicious intentions and causing considerable damages to
the victim server, the agent can notify the upstream routers to
conduct action av . In some situations, the agent may find that the
current request is part of an organized L7 DDoS attack that targets
particular component of the system, it is sensible to take action aiv .
Action aiv has direct effects on multiple future requests, which can
efficiently prevent the victim server from crushing. Finally, an agent
can conduct action avi to the malicious requests if the victim server
is being consumingly attacked. Although avi may significantly
increase the false positive rate, it can offer most effective protection
to the victim server in urgent circumstances.

By conducting advisable actions on incoming requests repeat-
edly, the victim system can obtain a trustworthy defense against

L7 DDoS attacks and provide routine service to legitimate clients
simultaneously.

4.5 Reward Function

0.8 0.9 1.0
Value of

-2.0

-1.5

-1.0

-0.5

Re
wa

rd
 V

al
ue

g=2
g=3
g=4
g=5

(a) For false positive
samples

0.8 0.9 1.0
Value of

1.0

2.0

3.0

4.0

Re
wa

rd
 V

al
ue

g=2
g=3
g=4
g=5

(b) For true positive
samples

0.8 0.9 1.0
Value of

-4.0

-3.0

-2.0

-1.0

Re
wa

rd
 V

al
ue

g=2
g=3
g=4
g=5

(c) For false negative
samples

Figure 4: Single-targeted Reward Functions for γ ≥ α and
α = 0.75

Based on the current state s and reward r , the agent will generate
two kinds of actions. One type of action is single-targeted, which
only decides the current request to be correctly processed or not.
Another type of action is multiple-targeted, which decides a group
of requests to be correctly processed or not. The overall objectives
of the reward function design are mentoring the agent to set up the
detection and defense policy to fulfill the following requirements:
• When system consumption is low,minimize the false positive
rate to ensure all the legitimate requests can be properly
processed.
• When system consumption is high, maximize the true posi-
tive rate to block all possible attacks in order to prevent the
system from crushing.
• The agent is encouraged to conductmultiple-targeted actions
rather than single-targeted actions so that the agent can
discover rules in the attacks instead of inefficiently labeling
single request, and the defense of L7 DDoS attack can be
more prompt.
• Save the defense budget after the requirements above are
satisfied.

In order to address the goals above, we construct a piecewise
function R(s) as the reward function to mentor the agent conduct
suitable actions on correct requests. In this paper, if the agent con-
ducts action aiii , aiv , av , and avi on the legitimate requests, we
consider these requests as false positive samples, and vice versa.
We also define γ the system occupation rate (we treat the system
occupation rate as CPU load in the evaluation of this paper), the
number of false positive samples is | f p |, the number of true positive
samples is |tp |, the number of false negative samples is | f n |, and
the number of true negative samples is |tn |. We define a policy
transition threshold value α to decide when the agent should adjust
the defense policy to minimize the false positive rate or to maximize
the true positive rate. In this paper, we set α as 0.75.

When γ < α , we set the reward function R(s) for single-targeted
actions as follow:

R(s) =

−2 False positive sample

1 True positive sample
−1 False neдative sample

0 True neдative sample

Towards Intelligent Defense against Application-Layer DDoS with Reinforcement Learning

This reward function gives the agent more penalties when false
positive generated, which aims to constraint the agent to ensure all
the possible legitimate requests can be properly processed when
the system load is in a safe zone.

In the scenario that the agent is makingmultiple-targeted actions,
and γ < α , we set the reward function as R(s) follow:

R(s) = η(−2| f p | + |tp | − | f n |)

Where η is the reward multiples. We can set η as a value more one
so that the agent would get extra rewards or penalties when making
multiple-targeted actions. The larger η is, the more the agent is
encouraged by the reward functions to take multiple-targeted ac-
tions for conducting the defense policy effectively. This mechanism
is necessary for the RL agent because monitoring a large amount
of incoming requests is an expensive operation and could become
the a system vulnerability itself. The agent can fix this issue by
frequently generating multiple-targeted actions.

When γ ≥ α , the victim system is heavily loaded, which means
the highest priority of agent is to mitigate as many L7 DDoS attacks
as possible to guarantee the proper functioning of the server. In
this scenario, we set the reward function R(s) for single-targeted
actions as follow:

R(s) =

− 2
(
γ
α)

д False positive sample

(
γ
α)

д True positive sample
−(

γ
α)

д False neдative sample
0 True neдative sample

Where д is the hazard index, an input parameter that determines
how eager the victim wants the attack to be mitigated. The larger
д is, the more tactics shifts the agent will have according to the
environment, but д should always be larger or equal to 1. Figure ??
shows the curves of the reward function in this scenario with differ-
ent д values (we set α = 0.75 in the curves), we can intuitively see
the variation of the reward functions based on the change of γ . The
agent will get less and less penalties from false positive samples
with the increasing of γ . Conversely, both the rewards from true
positive samples and the penalties from false negative samples will
rise significantly. This reward function design will constraint the
agent to identify and block as many malicious application requests
as possible, with the cost of sacrificing a little bit false positive rate.

In the scenario that the agent is makingmultiple-targeted actions,
and γ ≥ α , we set the reward function as R(s) follow:

R(s) = η(−
2
(
γ
α)

д
| f p | + (

γ

α
)д |tp | − −(

γ

α
)д | f n |)

R(s) is in direct proportion to the summation of reward values
that returned by all the affected requests. Still, we use the reward
multiples parameter η to encourage the agent to take multiple-
targeted actions rather than single-targeted actions.

4.6 Training
The training of the deep reinforcement learning agent follows Q-
value iteration [33]. For every state s , the agent will generate an
action a, which creates a state-action pair. The reward function
will also return a reward value r based on the state-action pair,
therefore, we define a function Q that calculates the quality of a

state-action combination:

Q : s × a → r

At time i , assume that the agent is located in s ′′i and receives a
request state s ′i , then it selects an action ai , observes a reward ri ,
enters a new environmental state s ′′i+1, andQ is updated. The core of
the algorithm is a simple value iteration update, using the weighted
average of the old value and the new information:

Qnew (si ,ai) ← (1 − β) ·Q(si ,ai) + β · (ri + ζ ·max
a

Q(si+1,a))

where β is the learning rate, and ζ is the discount factor.
However, there is an intractable problem in this approach. The

state s we use in this schema is a twelve-dimensional vector, which
could generate too large value space for the system to cover in both
simulation and training phases. In order to handle this issue, we
use a deep neural network [14] to serve as a likelihood function to
estimate the Q(s,a).

Just as the topology diagram in figure 2 shows, we leverage
a five-layer neural network to approximate the policy function.
There are one input layer, three hidden layers, and one output
layer in the neural network, where the input layer has 12 nodes to
import the twelve-dimensional vector s , and the output layer has six
nodes to generate the recommendation rates for six possible actions
respectively. The first and third hidden layers have 14 nodes, while
the second hidden layer has 15 nodes. There is one crucial design
detail in the neural network that the first layer and second layer
are not fully connected. Instead, we separate the nodes for s ′ from
s ′′ to make sure the neural network can treat the two sub-state
vectors differently.

In order to logically represent this neural network and conduct
training, we express this as a formula that we can perform opti-
mizations on. Just as the training of ordinary neural networks, we
define a loss function in the training phase. The loss is just a value
that indicates how far our action is from the actual target:

loss = (r + ϵ max
á

Q̂(s, á) −Q(s,a))

where ϵ is the decay rate, and r + ϵ maxá Q̂(s, á) is the actual target.
Then we just continuously train this to minimize the loss.

There is one thing to be noticed is that state s = s ′ ∪ s ′′, and the
agent will continuously get environmental state s ′′. But it will only
get request state s ′ when there is an incoming application request.
So, the agent will only be activated when it receives s ′′ in both
training and detection phases.

5 EVALUATIONS
5.1 Implementation and Simulations
We utilized Open vSwitch [19] and Mininet [13] to construct the
simulation environment. Figure 5 shows the basic topology of the
simulated network environment. There are n IP blocks in this net-
work; each of them has 5 legitimate clients and 5 malicious clients.

We simulated a victim system by constructing a web server that
handles HTTP requests and SMTP requests. The server runs on a
virtual machine with 6GB RAM and a 4-core 2.0 Ghz CPU. It also
maintains a HTTP-based API that can read its hard disk and return
selected images, which is the designed performance bottleneck for
attackers to exploit.

DRP Report - Yebo Feng

L7 DDoS Attack

Legitimate TrafficLegitimate Client

Victim Server

Attacker

Router

Defense Agent

IP Block 3

......
IP Block 2

......

IP Block n

............

......
IP Block

1

Figure 5: Topology of Simulated Network Environment

For the simulation of L7 DDoS attacks, we utilized some well-
recognized simulation software from public repositories to generate
attack traffic that follow the threat models in Section 3.1. We used
the Application Layer DDoS Simulator [30] to simulate request-
flooding attacks by generating HTTP flood and SMTP flood. For
leveraged attacks, we used Slowloris [24] to simulate the most typ-
ical leveraged attack, low and slow attack. In the end, we used
modified HULK program [26] to generate lethal attacks, which cre-
ates malicious requests that target the above designed performance
bottleneck in the victim server.

For the simulation of legitimate application requests, we devel-
oped several home-grown scripts to randomly send diverse requests
to the victim server with relatively long interval time.We also tuned
hyper-parameters of the scripts in a way that the legitimate requests
would not cause significant performance degradation of the victim
servers.

We constructed the reinforcement-learning-based L7 DDoS at-
tack defense system with OpenAI Gym [3] and Keras [4]. Among
these tools, Gym is used for environment formulation, agent con-
struction, and test benchmarks. We used Keras particularly for
building the deep neural network and model training.

Based on our empirical studies (of which we skip the details
for space considerations), we set some of the parameters in this
approach as follows:
• For the number of IP blocks n in the evaluation, we set it to
be 10.
• For the policy transition threshold value α , we set it to be
0.75.
• The learning rate β for agent training is 0.25 in this imple-
mentation.
• For the hazard index д, we set it to be 3.

5.2 Ability of Detecting Attacks
Although the proposed method does not generate the precise labels
of incoming requests, we can still evaluate its ability of identifying

0.0 0.2 0.4 0.6 0.8 1.0
System Load

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

Accuracy
True Positive Rate
False Positive Rate

Figure 6: Performance Metrics of different system loads

L7 DDoS attacks by inferring the output action a. In Section 4.4, we
designed six types of action a to handle the application requests.
In order for straightforward evaluation results, we count requests
that generate action ai and aii as legitimate requests. Conversely,
we count requests that generate action aiii , aiv , av , and avi as
malicious requests. All the evaluation metrics in this section are
based on this regulation.

5.2.1 Detection Accuracy. After the defense agent was well-trained,
we simulated benign requests and launched the L7 DDoS attacks
to the victim simultaneously for evaluating the agent’s accuracy
of identifying L7 DDoS attacks. During the test, we firstly ensured
the volume of legitimate requests was always under the victim
server’s capacity so that the server would not crash due to legiti-
mate activities. Afterwards, we adjusted the volume of application
requests to test the performance of this approach with different
system loads. Here, we consider the system load as the occupancy
rate of the system bottleneck. For example, if the memory space is
the bottleneck of the victim system, then we treat the occupancy
rate of memory as the system load. There was one problem, we
found that it was challenging to simulate the scenarios that the
system has extremely low loads because both the victim server and
the reinforcement learning agent were operating in one single node,
making the virtual machine have nearly 30% system load initially.
In order to get fix this problem and fetch the evaluation results
from low-system-load scenarios, we input the defense agent with
fake system utilization information during the beginning part of
the evaluation to cover the scenarios that the system load is lower
than 35%.

Figure 6 shows the trends of accuracies, false positive rates,
and true positive rates during different system loads (we consider
malicious requests as positive samples in this paper), where the
y-axis represents the system workload, and the x-axis represents
the rate value.

When the system load is at meager rates, we can get nearly 1.0
accuracy for the following two reasons: 1. Based on the heuristics of
the reward functions, the agent will minimize the false positive rate
at this point; 2. There are few requests with malicious intentions
at this time point, and the majority of the requests are benign.

Towards Intelligent Defense against Application-Layer DDoS with Reinforcement Learning

HTTP flood SMTP flood Low and
slow attack

Lethal
Attack

Overall Score
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Proposed approach
FastNetMon
ARTP

(a) Accuracy

HTTP flood SMTP flood Low and
slow attack

Lethal
Attack

Overall Score
0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Proposed approach
FastNetMon
ARTP

(b) Precision

HTTP flood SMTP flood Low and
slow attack

Lethal
Attack

Overall Score
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Proposed approach
FastNetMon
ARTP

(c) Recall

HTTP flood SMTP flood Low and
slow attack

Lethal
Attack

Overall Score
0.0

0.1

0.2

0.3

0.4

0.5

Fa
lse

 P
os

iti
ve

 R
at

e Proposed approach
FastNetMon
ARTP

(d) False Positive Rate

Figure 7: Results of Comparison Evaluation

However, when both the systemworkload and the volume of attacks
are increasing, the accuracy has some apparent drops. Because
although the attack volume increased, the defense agent still uses
the defense strange that aiming at minimizing the false positive,
guiding the agent to sacrifice the true positive rate for letting the
victim server adequately processes most of the legitimate requests.
Thus, the false positive rate remains approximately zero within this
zone. On the contrary, the trend for true positive rate is somehow
tanglesome in low-system-load scenarios, because the volume of

malicious requests is still low, making it hard to reach statistical
significance. Nonetheless, we can still obviously see the defense
agent takes true positive rate with indifference at these moments.

The transition comes in when the system workload is at 0.75.
From this point, the defense agent assumes that the server system
is in hazardous conditions, so it has to recognize as many attacks as
it can to protect the victim server. As the system load goes higher,
the value of (γα)

д in the reward functions becomes larger, and the
false positive rate becomes less and less critical. Hence, we can
distinctly see that the defense agent starts maximizing the true
positive rate immediately, sacrificing a little bit false positive rate,
but still increases the overall accuracy. At the end, when the system
load stabilizes at 100%, the accuracy, true positive rate, and false
positive rate are 0.9553, 0.9873, and 0.1756 respectively.

In brief, this evaluation result proofs that the reinforcement
learning agent can intelligently formulate applicable tactics to de-
fense the L7 DDoS attacks, and the detection accuracy of the tactics
is satisfactory.

5.2.2 Comparison Evaluation. We also compared our approach
with two other L7 DDoS attack detection approaches. One of them
is FastNetMon [18], a widely-used commercial DDoS detection
software that applies statistical detection methods. Although this
software is not targeted on L7 DDoS attacks, it offers good perfor-
mance on general DDoS detection. Another detection model we
used in this evaluation is ARTP [20], as stated in Section 2.1, it is a
machine-learning-based detection approach particularly designed
for L7 DDoS attacks.

We simulated the traffic of HTTP flood, SMTP flood, low and slow
attacks, and lethal attacks with the methods described in Section 5.1.
The intensities of these simulated attacks were around two times
of the victim server’s capacity. Then, we replayed the traffic and
applied these methods to generate the performance metrics of the
detection results.

Figure 7a shows the accuracies of these approaches. The pro-
posed approach achieves the best accuracy scores for detecting
HTTP flood, low and slow attack, and lethal attack. ARTP only
slightly exceeds our approach in detecting SMTP flood. As for Fast-
NetMon, it achieves reasonable accuracy scores on detecting request
flooding attacks but gets low performance on identifying leveraged
and lethal attacks. Because FastNetMon is not an L7-specific DDoS
detection software and it cannot dig more information other than
traffic rates. Although our proposed approach does not have perfect
scores in precision and false positive rate (as shown in Figure 7b and
Figure 7d), it still accomplishes the initial design objective, which is
to sacrifice a little bit false positive rate to block as many malicious
requests as possible during the peaks of attacks. As we can see
from Figure 7c, the proposed method achieves decent recall scores,
which means it successfully identifies the majority of the malicious
requests. On the contrary, FastNetMon gets very low false positive
rates, but it fails to identify a large proportion of low and slow
attacks and lethal attacks, making it unusable during the peaks of
attacks. The ARTP model has poor performance on detecting lethal
attacks as well, because it cannot adjust the detection strategies
dynamically based on the system occupancy.

DRP Report - Yebo Feng

0.0
0.2
0.4
0.6
0.8
1.0

Sy
st

em
 L

oa
d

Without Protection
With Protection

0 50 100 150 200 250 300 350 400 450 500 550
Number of Requests Per Second

0.0
0.2
0.4
0.6
0.8
1.0

Pr
op

or
tio

n
of

 D
en

ie
d

Be
ni

gn
 R

eq
ue

st
s Without Protection

With Protection

Figure 8: Efficacy of Attack Mitigation

5.3 Mitigation Efficacy
We evaluate this approach’s efficacy of L7 DDoS attack mitigation
in this subsection. Figure 8 shows the efficacy results, where the
x-axis represents the number of applications requests made to the
victim server per second, including both the legitimate requests and
illegitimate requests. The y-axis of the upper sub-plot represents
the system load, while the y-axis of the lower sub-plot represents
the proportion of denied benign requests.

In order to generate this figure, we first simulated both benign
and malicious requests towards the victim server. Just as in sec-
tion 5.2, the volume of benign requests was always under the victim
server’s capacity, in this case, peaked at 100 requests per second.
Then, we increased the volume of requests to record the system
loads and the proportions of denied benign requests. Finally, we
replayed the same requests towards the same victim server but
with the protection of the defense agent, recording the same type
of data along the process.

Initially, the resource consumption of the server without protec-
tion is lower than the server with the agent’s protect, because the
deployment of the defense agent costs a certain amount of comput-
ing resource, especially for maintaining the LSH function, request
monitoring, and the operation of the deep neural network. How-
ever, this consumption will payback shortly with the increasing
number of receiving requests. We can see that the proportion of
denied benign requests increases observably for the server without
protection. If we assume that a server is considered to be proper
functioning when the deny rate of legitimate requests is lower
than 20%, then the capability of the server without protection is
approximately 140 requests per second. After reaching 250 requests
per second, the server without protection is almost useless, with
the majority of requests getting denied. While for the server with
the defense agent’s protection, the deny rate of legitimate requests
goes higher than 20% only after the number of requests per second
hitting 440, which is 3.15 times the capability of the unprotected
server.

Therefore, this approach can significantly enhance the service
capability of the server and make the victim resilient during some
severe L7 DDoS attacks.

0 5000 10000 15000 20000 25000 30000 35000
Episodes of Training

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Tested with Validation Dataset
Tested with Simulated Dataset

Figure 9: Convergence Trend while Training

5.4 Agent Training
In the training phase, we trained the defense agent in the platform
for 80 hours with nearly 35,000 episodes. We recorded the L7 DDoS
attack detection accuracies during different stages to evaluate the
time consumption for agent training. Figure 9 shows the conver-
gence trend while model training, where the x-axis represents the
number of episodes, and the y-axis represent the accuracy value.
We obtained the accuracy values by utilizing two types of testing
datasets. One is a preset validation dataset, which provides straight-
forward test criteria, but the contents of the dataset always remain
the same. Another dataset is the real-time simulation of both at-
tack traffic and legitimate traffic, which offers practical evaluation
results and enables us to inspect whether the training model is
getting overfitting.

As we can see in the figure, the training process goes relatively
slow and precarious during the first 20,000 episodes. Then it evolves
quickly from around 65% accuracy to more than 90% accuracy in
the next 7,500 episodes, making the defense agent into decent pro-
tection for the victim server. Eventually, the accuracy of the agent
stabilizes near 96% after 30,000 episodes of training. This evaluation
also proofs that it is feasible to retrain the defense agent within
half a week to fit a whole new environment in a real deployment.

5.5 Service Delay
Since the defense agent will continuously inspect all the incoming
application requests during the server operation, the service delay
could be an underlying concern that impacts the user experience.
Therefore, wemeasured the lengths of delays under different system
workloads and presented the results in a boxplot (as shown in
figure 10).

Here, we define the length of delay as the time duration from
sending out a request to receiving the whole reply. It is usual for an
HTTP server to have around 0.5 seconds’ delay when responding to
clients’ requests. As we can see in the Figure 10, the average delay
time for the server remains under 0.5 seconds when the system
workload is less or equal to 90%. Although the delay without any
defense approaches implemented is around 0.25 seconds, the pres-
ence of the defense agent is still unremarkable to the clients during

Towards Intelligent Defense against Application-Layer DDoS with Reinforcement Learning

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
System Workload

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Se
rv

ice
 D

el
ay

 (s
)

Figure 10: Box Plot for Service Delay

most of the time. Even when the system workload reaches 100%
and the attackers are trying to overwhelm the victim server, the
service delay can still lay within an acceptable range (0.4 seconds to
1.25 seconds). While the system without any protections is already
in an unusable condition under this circumstance.

6 LIMITATIONS AND OPEN ISSUES
In most cases, this reinforcement-learning-based approach can ac-
curately identify L7 DDoS attacks and generate defense tactics
simultaneously. However, it has some limitations:

(1) Application-layer DDoS attack is highly dependent on the
victim system and the network environment, so are the at-
tack detection and defense solutions. Thus, this approach
may require us to retrain the agent to accommodate the
current victim system when the environment is changed
dramatically.

(2) This method is a learning-based approach, although the train-
ing data of this approach can be enhanced to cover more at-
tack models, thus improving the capability of this approach,
nonetheless, if the training does not include information
from zero-day attacks, this method probably will not be able
to deal with them.

This approach also faces several open issues as possible future
working items:

(1) Currently, we mainly use HTTP flood, SMTP flood, low and
slow attack, and API-based lethal attack to train the agent.
However, there are still many other types of L7 DDoS attacks
existing such as XML-based attack. It would be a meaningful
improvement to simulate more types of attacks in the train-
ing phase to make the reinforcement learning agent more
robust.

(2) The performance bottleneck of this approach is in the victim
server, because the victim server takes charge of both the
message decoding and environmental information transmis-
sion. We can further increase the efficiency of the RL agent
by using more advanced data structures or algorithms.

(3) As a learning-based approach, this method could be vul-
nerable to adversarial attacks. It is significative to develop

some systematic methodologies to evaluate and improve the
robustness of this method.

7 CONCLUSIONS
L7 DDoS attacks are becoming far more sophisticated and threat-
ening than before. Compared with traditional DDoS attacks, L7
DDoS are effective in overwhelming victim servers but difficult for
conventional DDoS approaches to detect and mitigate. This paper
proposes a reinforcement-learning-based approach, thus able to
self-evolve according to the interactions with the environment. It
continuously monitors and analyzes a variety of metrics related
to the server’s load, the dynamic behaviors of clients, and the net-
work load of the victim, to detect and mitigate L7 DDoS attacks,
including choosing the most appropriate mitigation tactic. More-
over, different from typical DDoS detection approaches that label
the traffic as either legitimate or malicious, this approach employs
a new multi-objective reward function that minimizes false positive
rate to avoid collateral damage when the victim system load is low
and maximizes the true positive rate to prevent the server from
collapse when the victim system load is high enough. Evaluation
shows that this approach protects a victim server from L7 DDoS
attacks effectively; it can detect 98.73% of the L7 DDoS traffic flows
at the peak system load, mitigating most of them.

REFERENCES
[1] Sharad Agarwal, Travis Dawson, and Christos Tryfonas. 2003. DDoS mitigation

via regional cleaning centers. Technical Report. Sprint ATL Research Report
RR04-ATL-013177.

[2] Sebastian Anthony. March 30, 2015. GitHub battles “largest DDoS” in site’s
history, targeted at anti-censorship tools. https://arstechnica.com/.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[4] François Chollet et al. 2015. Keras.
[5] Cloudflare. [n.d.]. Application Layer DDoS Attack (Resources on Cyber-Security

and How the Internet Works From Cloudflare). https://https://www.cloudflare.
com/learning/ddos/application-layer-ddos-attack/.

[6] Cloudflare. [n.d.]. What Is A LowAnd SlowAttack? (Resources on Cyber-Security
and How the Internet Works From Cloudflare). https://www.cloudflare.com/
learning/ddos/ddos-low-and-slow-attack/.

[7] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. ACM, 253–262.

[8] Christos Douligeris and Aikaterini Mitrokotsa. 2004. DDoS attacks and defense
mechanisms: classification and state-of-the-art. Computer Networks 44, 5 (2004),
643–666.

[9] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna
Sperotto, and Aiko Pras. 2014. Flow monitoring explained: From packet capture
to data analysis with netflow and ipfix. IEEE Communications Surveys & Tutorials
16, 4 (2014), 2037–2064.

[10] Ronald A Howard. 1960. Dynamic programming and markov processes. (1960).
[11] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-

forcement learning: A survey. Journal of artificial intelligence research 4 (1996),
237–285.

[12] Vitaly Kupreev, Ekaterina Badovskaya, and Alexander Gutnikov. May 21, 2019.
DDoS attacks in Q1 2019. https://securelist.com/.

[13] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software-defined Networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks (Hotnets-IX). ACM, New York,
NY, USA, Article 19, 6 pages. https://doi.org/10.1145/1868447.1868466

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[15] George E Monahan. 1982. State of the art—a survey of partially observable
Markov decision processes: theory, models, and algorithms. Management Science
28, 1 (1982), 1–16.

[16] Maryam M Najafabadi, Taghi M Khoshgoftaar, Amri Napolitano, and Charles
Wheelus. 2016. Rudy attack: Detection at the network level and its important
features. In The twenty-ninth international flairs conference.

https://arstechnica.com/
https://https://www.cloudflare.com/learning/ddos/application-layer-ddos-attack/
https://https://www.cloudflare.com/learning/ddos/application-layer-ddos-attack/
https://www.cloudflare.com/learning/ddos/ddos-low-and-slow-attack/
https://www.cloudflare.com/learning/ddos/ddos-low-and-slow-attack/
https://securelist.com/
https://doi.org/10.1145/1868447.1868466

DRP Report - Yebo Feng

[17] Jema David Ndibwile, A Govardhan, Kazuya Okada, and Youki Kadobayashi. 2015.
Web Server protection against application layer DDoS attacks using machine
learning and traffic authentication. In 2015 IEEE 39th Annual Computer Software
and Applications Conference, Vol. 3. IEEE, 261–267.

[18] P Odintsov. [n.d.]. FastNetMon - very fast DDoS analyzer with sflow/netflow/mir-
ror support. Dostupné z: https://github. com/pavel-odintsov/fastnetmon/ ([n. d.]).

[19] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. 2015. The
design and implementation of open vswitch. In 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15). 117–130.

[20] K Munivara Prasad, A Rama Mohan Reddy, and K Venugopal Rao. 2016. Anomaly
based Real Time Prevention of under rated App-DDOS attacks on web: An
experiential metrics based machine learning approach. Indian Journal of Science
and Technology (2016).

[21] Amit Praseed and P Santhi Thilagam. 2018. DDoS attacks at the application layer:
Challenges and research perspectives for safeguarding Web applications. IEEE
Communications Surveys & Tutorials 21, 1 (2018), 661–685.

[22] Sivaramakrishnan Ramanathan, Jelena Mirkovic, Minlan Yu, and Ying Zhang.
2018. SENSS Against Volumetric DDoS Attacks. In Proceedings of the 34th Annual
Computer Security Applications Conference. ACM, 266–277.

[23] Supranamaya Ranjan, Ram Swaminathan,Mustafa Uysal, and EdwardWKnightly.
2006. DDoS-Resilient Scheduling to Counter Application Layer Attacks Under
Imperfect Detection.. In INFOCOM. Citeseer.

[24] RSnake, John Kinsella, Hugo Gonzalez, and Robert E Lee. 2009. Slowloris HTTP
DoS. https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris.

[25] Stefan Seufert and Darragh O’Brien. 2007. Machine learning for automatic
defence against distributed denial of service attacks. In 2007 IEEE International
Conference on Communications. IEEE, 1217–1222.

[26] Barry Shteiman. 2017. Hulk DoS tool. https://github.com/grafov/hulk.
[27] Vitaly Simonovich. July 24, 2019. Imperva Blocks Our Largest DDoS L7/Brute

Force Attack Ever (Peaking at 292,000 RPS). https://www.imperva.com/blog/.
[28] Sujatha Sivabalan and PJ Radcliffe. 2013. A novel framework to detect and block

DDoS attack at the application layer. In IEEE 2013 Tencon-Spring. IEEE, 578–582.
[29] Jared M Smith and Max Schuchard. 2018. Routing around congestion: Defeating

DDoS attacks and adverse network conditions via reactive BGP routing. In 2018

IEEE Symposium on Security and Privacy (SP). IEEE, 599–617.
[30] STORMSECURITY. [n.d.]. Application Layer DDoS Simulator. https://

stormsecurity.wordpress.com/2009/03/03/application-layer-ddos-simulator.
[31] Suriadi Suriadi, Douglas Stebila, Andrew Clark, and Hua Liu. 2011. Defending

web services against denial of service attacks using client puzzles. In 2011 IEEE
International Conference on Web Services. IEEE, 25–32.

[32] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. 2003.
CAPTCHA: Using hard AI problems for security. In International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 294–311.

[33] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[34] Y. Xie and S. Yu. 2009. Monitoring the Application-Layer DDoS Attacks for
Popular Websites. IEEE/ACM Transactions on Networking 17, 1 (Feb 2009), 15–25.
https://doi.org/10.1109/TNET.2008.925628

[35] Yi Xie and Shun-Zheng Yu. 2006. A novel model for detecting application
layer DDoS attacks. In First International Multi-Symposiums on Computer and
Computational Sciences (IMSCCS’06), Vol. 2. IEEE, 56–63.

[36] Chuan Xu, Guofeng Zhao, Gaogang Xie, and Shui Yu. 2014. Detection on applica-
tion layer DDoS using random walk model. In 2014 IEEE International Conference
on Communications (ICC). IEEE, 707–712.

[37] Satyajit Yadav and Selvakumar Subramanian. 2016. Detection of Application
Layer DDoS attack by feature learning using Stacked AutoEncoder. In 2016
International Conference on Computational Techniques in Information and Com-
munication Technologies (ICCTICT). IEEE, 361–366.

[38] T. Yatagai, T. Isohara, and I. Sasase. 2007. Detection of HTTP-GET flood Attack
Based on Analysis of Page Access Behavior. In 2007 IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing. 232–235. https://doi.org/
10.1109/PACRIM.2007.4313218

[39] Shun-Zheng Yu and Yi Xie. 2009. A large-scale hidden semi-Markov model
for anomaly detection on user browsing behaviors. IEEE/ACM transactions on
networking 17, 1 (2009), 54–65.

[40] Heng Zhang, Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj Suri. 2016.
Sentry: A novel approach for mitigating application layer DDoS threats. In 2016
IEEE Trustcom/BigDataSE/ISPA. IEEE, 465–472.

https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris
https://github.com/grafov/hulk
https://www.imperva.com/blog/
https://stormsecurity.wordpress.com/2009/03/03/application-layer-ddos-simulator
https://stormsecurity.wordpress.com/2009/03/03/application-layer-ddos-simulator
https://doi.org/10.1109/TNET.2008.925628
https://doi.org/10.1109/PACRIM.2007.4313218
https://doi.org/10.1109/PACRIM.2007.4313218

	Abstract
	1 Introduction
	2 Related work
	2.1 Detection & Classification Approaches
	2.2 Mitigation Approaches

	3 Threat and Defense Models
	3.1 Threat Model
	3.2 Defense Model

	4 System Design
	4.1 Overview
	4.2 Operational Model
	4.3 States
	4.4 Actions
	4.5 Reward Function
	4.6 Training

	5 Evaluations
	5.1 Implementation and Simulations
	5.2 Ability of Detecting Attacks
	5.3 Mitigation Efficacy
	5.4 Agent Training
	5.5 Service Delay

	6 Limitations and Open Issues
	7 Conclusions
	References

