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 A B S T R A C T

In recent years, Deep Learning-based Network Intrusion Detection System (DL-NIDS) have demonstrated 
remarkable performance in detecting cyberattacks in network traffic. However, the lack of explainability for 
DL-NIDSs prevents end-users from trusting and understanding the detection results, thereby limiting their 
applications in practice. Although several approaches have been proposed to explain DL-NIDS, they run the 
risk of providing unfaithful explanations. In addition, existing methods merely output a set of important 
features as explanation, which is insufficient for end-users to thoroughly understand the attack. In this paper, 
we propose CANDICE, an explainable and intelligent framework for detecting and explaining intrusions in 
network traffic. Differing from existing works, CANDICE is highlighted by: (i) providing faithful explanation by 
disentangling the traffic representations and generating counterfactual explanations, and (ii) offering end-users 
a comprehensive view of the attack by generating an intrusion profile based on the explanation. We conduct 
experiments on four representative traffic datasets to evaluate the effectiveness of CANDICE. The results 
demonstrate that CANDICE surpasses existing methods in terms of explanation fidelity, sparsity, stability, and 
efficiency, while achieving high accuracy of above 96.10% in detecting intrusions.
1. Introduction

Network-based Intrusion Detection Systems (NIDS) form the front-
line defense in cybersecurity by monitoring and detecting intrusions 
in network traffic. At present, most of the popular NIDSs are learning-
based, which utilize Artificial Intelligence (AI) models to distinguish 
between benign and malicious traffic [1–3]. Thanks to the great ca-
pacity of Deep Neural Networks (DNNs) in capturing complex pat-
terns and subtle deviations [4], Deep Learning-based NIDSs (DL-NIDS) 
demonstrate remarkable performance in detecting sophisticated at-
tacks and have become the cutting-edge pillar of AI-based security 
applications [5–7].

Despite the superiority of DL-NIDSs, their inability to explain the 
detection results has severely hampered their application in practice [8,
9]. Most current DL-NIDS simply output a prediction label (e.g., mali-
cious or benign), without providing any additional information about 
the detected traffic. As a result, the end-users struggle to trust and 
understand the decision, as well as take further actions to deal with the 
alerts. For instance, when an anomaly alert is triggered, the Security 
Operation Centers (SOCs) are expected to take immediate counter-
measures against the attack [10], such as blocking traffic or isolating 
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network segments. In the absence of explanation, the SOCs have to 
manually inspect and verify the alert, which is both labor-intensive and 
impractical in large-scale network [11]. This can lead to a situation 
where the security analysts are overwhelmed with tons of intrusion 
alarms requiring investigation, resulting in delays in responding to 
actual threats.

Recent studies have proposed several approaches to explain DL-
based security applications [9,12–16]. However, they suffer from two 
main challenges. First, most existing methods explain model results by 
exploring the contribution of each feature to the decision. They rely 
on an over-ideal assumption that the model correctly extract knowl-
edge about real traffic patterns [12–14]. However, since the traffic 
features are highly correlated, DNN models have been revealed to 
learn a entangled representation [17] in which different traffic patterns 
are mixed together, making it difficult to clarify the contribution of 
features. We visualized the significant correlations between features 
to reveal this phenomenon. (see Section 5.1.1, Fig.  2). As a result, 
the entangled representation fail to capture the underlying factors of 
variation in the observed traffic data, leading to spurious explanations.
Second, Existing methods merely output a set of important features 
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as explanation, which is insufficient to provide users with a deeper 
understanding of the anomalies. For instance, beyond identifying the
number of connections as an important indicator of DDoS attack, security 
analysts are more concerned to know how often connection attempts 
within a time window will trigger an intrusion alert. Such insights 
allow them to appropriately adjust their defense strategy to prevent 
potential attacks. Unfortunately, existing methods fail to provide such 
an intuitive perspective for this purpose.

In this work, we address the above challenges by proposing CAN-
DICE, an explainable and intelligent framework for detecting and ex-
plaining intrusions in network traffic. CANDICE consists of two main 
components: the CANDICE-detector and the CANDICE-explainer. First, 
the CANDICE-detector extracts disentangled representations from net-
work traffic, in order to better clarify feature contributions and mitigate 
spurious explanations. To achieve this, we introduce a Variational 
Autoencoder (VAE)-based disentangled representation learning mecha-
nism into the CANDICE-detector’s learning process to train a calibrated 
detection model. Second, the CANDICE-explainer generates counterfac-
tual explanations to reveal both important features and their specific 
impacts on detection results. To achieve this, we design and optimize 
a multi-objective loss function to generate counterfactuals that satisfy 
security-specific constraints. In addition, we design a human-readable
intrusion profile as the output of CANDICE framework. The intrusion 
profile integrates both attack information and explanations, enabling 
security analysts to thoroughly understand the detected attack.

The main contributions of this work are as follows:

∙ Novel explainable intrusion detection framework. We propose 
CANDICE, an explainable and intelligent framework for detecting 
and explaining intrusions in network traffic. By integrating the 
detector and explainer components into a unified architecture, 
CANDICE bridges the semantic gap between detection results and 
explanations, enabling security analysts to better understand and 
trust the detection results.

∙ New explanation method and human-readable threat intel-
ligence. We design an optimized counterfactual-based explana-
tion method and user-friendly intrusion profile for learning-based 
NIDS. By disentangling traffic representations and generating 
counterfactuals, we provide faithful explanations for the detection 
results. By presenting intrusion profiles that integrate both attack 
information and explanation, we offer an intuitive and compre-
hensive view for anomaly understanding, allowing end-users to 
easily inspect the threats.

∙ Comprehensive evaluation. We conducted experiments on four 
representative traffic datasets to evaluate the effectiveness of 
CANDICE. The experimental results show that CANDICE outper-
forms existing methods in terms of fidelity, sparsity, stability, and 
efficiency of explanation, while achieving high accuracy of above 
96.10% in detecting intrusions.

The rest of this paper is organized as follows: Section 2 introduces 
the related works on learning-based NIDS and the eXplainable AI 
(XAI) approaches within the security domain. Section 3 introduce the 
notations and two key techniques used in this work, i.e., disentan-
gled representation learning and counterfactual explanation. Section 4 
describes the details of designing CANDICE. Section 5 presents the 
experimental results of evaluating CANDICE in terms of intrusion de-
tection and explanation. Section 7 provides the conclusion of this 
work.

2. Related work

In this section, we first briefly overview the AI-based network intru-
sion detection systems. Then we introduce state-of-the-art explanation 
methods for interpreting AI-based security applications.
2 
2.1. AI-based network intrusion detection system

Existing AI-based NIDS can be categorized into two major groups, 
i.e., the Machine Learning-based NIDS (ML-NIDS) and the Deep
Learning-based NIDS (DL-NIDS) [1]. The ML-based approaches rely 
on traditional machine learning algorithms such as Support Vector 
Machine (SVM)and Random Forest (RF) to identify attacks [18–20]. 
However, due to their limited capability in capturing complex traffic 
patterns with shallow ML models, they are inadequate for detecting 
sophisticated attacks. In contrast, DL-based approaches utilize deep 
neural networks to automatically extract traffic patterns and demon-
strate remarkable performance in network intrusion detection [6,7,21–
24]. The key to the success of DL-NIDS is the traffic representations 
learned by the DNN model. Among these, Auto-Encoder (AE) and its 
variants have been widely used to construct effective NIDS due to its 
strong capability in traffic representation learning [6,7,22]. Despite 
the benefits of DL-NIDS, they lack the ability to explain to users 
what they have detected and why they made the decision. Departing 
from existing NIDS methods, our CANDICE framework addresses this 
limitation by proposing a novel explainable intrusion detection frame-
work. In addition to detecting attacks, it generates explanations for the 
detection results, as well as outputs a human-readable intrusion profile 
for end-users to better understand the model decision.

2.2. XAI methods for cybersecurity

XAI techniques can be categorized into different groups depend-
ing on their explanation scope and objective. For example, ante-hoc 
explanation methods builds self-interpretable models based on intrin-
sically transparent learning algorithms (e.g., Naive Bayes and Decision 
Tree [25]), whereas post-hoc methods design additive explainers for 
pre-trained models [26,27]. In addition, local explanation focus on 
explaining individual decisions/outputs made by the model [26,28,
29], while global explanation aims to understand the overall model 
behavior [30–32]. In this work, we focus on the most prevalent form 
of explaining NIDSs [9,16], i.e., post-hoc local explanation methods, 
which can be divided into four categories:

Approximation-based methods. These approaches utilize an inter-
pretable surrogate agent to locally approximate the decision boundary 
of a black-box DL-NIDS, then retrieve explanations from the agent 
model [26]. LEMNA [12] first proposes to use a non-linear mixture 
regression model to approximate RNN-based security applications [33,
34] and leverages fused Lasso [35] to cope with the feature dependency 
in RNN. xNIDS [13] explains DL-NIDS by approximating and sam-
pling around history inputs, and capturing feature dependency using 
sparse group lasso. However, since approximation-based methods can-
not guarantee to accurately cross the decision boundary of the model, 
they run the risk of providing unfaithful explanations for security 
applications.

Perturbation-based methods. These approaches explain model 
decisions by perturbing the corresponding input samples and observ-
ing model sensitivity to the perturbations [29,36]. They identify the 
features that most influence the model’s output as the explanation. 
CADE [14] detects and explains concept drift samples in DL-based 
security applications by perturbing the input and observing the distance 
changes between the sample and its nearest class. However, CADE 
focuses on explaining concept drift in the security domain rather than 
intrusion detection, which fails to satisfy specific constraints when 
explaining the detection results of DL-NIDS, such as the sparsity and 
stability of explanation.

Gradient-based methods. These approaches leverage the gradi-
ent information from DNN model to measure the sensitivity of fea-
tures [37–39]. As they rely on access to model gradients, they are 
categorized as white-box methods, as opposed to approximation-based 
and perturbation-based methods. DeepAID [15] is specially designed 
for explaining DL-based anomaly detection systems, which is based on 



S. Li et al.

b
t
a

e
o
t
v
t
a
D
D
n
M
l
c
f

N
i
a
s
p
f
e
f
t
b
i
t

3

u
u
r

3

t
N
𝑓
(
w

Future Generation Computer Systems 175 (2026) 108059 
Table 1
Overall comparison of representative explanation methods.
 Explainers Design aspects Properties

 Strategiesa Support Black-box FA/Example-based Fidelityb Sparsityb Stabilityb Efficiencyb 
 LEMNA [12] Approx. ✓ FA  
 xNIDS [13] Approx. ✓ FA  
 SHAP [27] SHAP-based ✓ FA  
 DeepAID [15] Grad. 7 Example  
 CADE [14] Perturb. 7 Example  
 Ours Perturb. ✓ Example  
(✓= support,7= not support, = true, = partially true, = false).
a This indicates the category of explanation methods introduced in Section 2.2, i.e., the Approximation-based, Perturbation-based, Gradient-
based, and SHAP-based methods.
b This indicates the four criteria for evaluating explanation methods, as measured through the experiments in Section 5.4.
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ack-propagation to retrieve explanations. Unfortunately, the access 
o the model’s internal details required by white-box methods is not 
lways feasible in reality.
SHAP-based methods. This category refers to approaches that 

mploy SHapley Additive exPlanations (SHAP) [27] to attribute NIDS 
utputs to important input features. As a representative Feature At-
ribution (FA)-based explanation method, SHAP utilizes the Shapley 
alue [40] from cooperative game theory to fairly quantify each fea-
ure’s contribution to model decisions. Based on different ways to 
pproximate the Shapley value, SHAP includes three main variants: 
eepSHAP and TreeSHAP, which are specifically used for explaining 
NN-based and tree-based security applications [41–43], and Ker-
elSHAP, a model-agnostic approach that can be applied to diverse 
L/DL models [44–47]. Despite the widespread adoption in explaining 
earning-based security applications, SHAP-based methods are criti-
ized for their high computational cost, especially in high-dimensional 
eature space [8].
Table  1 summarizes the explanation methods mentioned above. 

ote that the SHAP in Table  1 and Section 5 refers to KernelSHAP. We 
nclude KernelSHAP in the comparison baselines, considering its model-
gnostic property that can be used to explain different types of AI-based 
ecurity applications. Our CANDICE-explainer falls into the category of 
erturbation-based explanation method, in which we change the input 
eatures to generate counterfactual explanations. However, CANDICE-
xplainer differs from existing works in two aspects: (1) we are the 
irst work that calibrates the model’s internal behavior by disentangling 
raffic representations to facilitate model explainability; (2) we provide 
lack-box explanation by generating traffic counterfactuals that explic-
tly cross the local decision boundary of the model, thereby ensuring 
he faithfulness of explanation.

. Preliminaries

In this section, we first outline the key notations and definitions 
sed throughout this paper. Then we introduce two main techniques 
sed in our CANDICE framework, namely VAE-based Disentangled Rep-
esentation Learning and Counterfactual Explanation.

.1. Notations

Let 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ R𝑛 be a traffic sample in network 
raffic dataset , where {𝑥𝑖}𝑛𝑖=1 represents the traffic features. The DL-
IDS 𝑓 (⋅) takes 𝑥 as input and outputs the prediction label 𝑦𝑝𝑟𝑒𝑑 =
(𝑥). We denote the latent representation extracted from 𝑥 by 𝑧 =
𝑧1, 𝑧2,… , 𝑧𝑚) ∈ R𝑚. The counterfactual traffic sample is defined as 𝑥𝑐𝑓 , 
hich has a different prediction label 𝑦 ≠ 𝑦 .
𝑐𝑓 𝑝𝑟𝑒𝑑 t

3 
.2. VAE-based disentangled representation learning

Variational Auto-Encoder (VAE) [48] is a type of deep generative 
odel that combines the idea of Auto-Encoder and variational infer-
nce. VAE consists of an encoder neural network 𝑞𝜙(𝑧|𝑥), which maps 
he input data 𝑥 into a low-dimensional latent space, and a decoder 
eural network 𝑝𝜃(𝑥|𝑧), which reconstructs data 𝑥 from latent variable 
. The optimization objective of VAE is to maximize the Evidence Lower 
ound (ELBO): 

(𝜃, 𝜙; 𝑥, 𝑧) = E𝑞𝜙(𝑧|𝑥)
[

log 𝑝𝜃(𝑥|𝑧)
]

−𝐷𝐾𝐿
(

𝑞𝜙(𝑧|𝑥) ∥ 𝑝𝜃(𝑧)
)

, (1)

here the first term E𝑞𝜙(𝑧|𝑥)
[

log 𝑝𝜃(𝑥|𝑧)
] represents the conditional log 

ikelihood in charge of reconstruction quality. The second term is the 
ullback–Leibler (KL) divergence, which encourages the approximate 
osterior distribution 𝑞𝜙(𝑧|𝑥) to be close to the prior 𝑝𝜃(𝑧). The detailed 
erivation of VAE can be found in the original paper [48].
In VAE, the prior distribution 𝑝𝜃(𝑧) is generally chosen as a standard 

aussian distribution  (0, 1), which allows the KL term to impose in-
ependent constraints on the learned representations and thereby leads 
o the disentanglement [49]. However, the vanilla VAE has proven 
o be insufficient dealing with complex dataset [50]. To achieve bet-
er disentanglement performance, researchers have proposed various 
egularizers combined with the original VAE loss function, resulting 
n the family of VAE-based disentanglement methods [49–53]. In this 
ork, we utilize 𝛽-TCVAE to achieve the disentanglement of traffic 
epresentation. The details are described in Section 4.2.

.3. Counterfactual explanation

Wachter et al. [54] first proposed the concept of Counterfactual 
xplanations (CE) for explaining black-box AI models. They formulate 
E generation as an optimization problem, which aims to find the 
inimal changes of inputs that can reverse the model’s decision. Eq.  (2) 
llustrates the optimization objective for computing the counterfactual 
xample 𝑥𝑐𝑓  for an input 𝑥: 

argmin
𝑥𝑐𝑓

max
𝜆

𝜆(𝑓 (𝑥𝑐𝑓 ) − 𝑦𝑐𝑓 )2 + 𝑑(𝑥, 𝑥𝑐𝑓 ). (2)

The first term ensures that the model’s prediction 𝑓 (𝑥𝑐𝑓 ) to be 
lose to the desired label 𝑦𝑐𝑓 , where 𝑦𝑐𝑓 ≠ 𝑓 (𝑥). The second term 
easures the distance between 𝑥𝑐𝑓  and 𝑥, which is minimized to 
nsure the generated counterfactual remains as close as possible to 
he original input. Later studies attempt to generate counterfactuals 
ith desirable properties by imposing restrictions on the objective 
unction [55–57]. In this work, our goal is to generate counterfactuals 
or network traffic that satisfy constraints within security domain to 
xplain DL-NIDS, i.e., validity, feasibility, and sparsity. The design of 
he objective function is described in Section 4.3.
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Fig. 1. Overview of the CANDICE framework.
4. The CANDICE framework

4.1. Overview

Fig.  1 depicts the framework of CANDICE, which consists of two 
key components: the CANDICE-detector and the CANDICE-explainer. 
The CANDICE-detector consists of a calibrated feature extractor and 
a classifier, which extracts disentangled representations from input 
traffic and detects intrusions. The detection results are further sent 
to the CANDICE-explainer for explanation. The CANDICE-explainer 
generates counterfactual traffic by optimizing a multi-objective loss 
function especially designed for explaining security applications. The 
explanations are derived by comparing the differences between orig-
inal traffic and the counterfactuals. At the end, CANDICE outputs an
Intrusion Profile containing both the attack information and explanation, 
enabling end-users to gain a deeper understanding of the attack.

4.2. CANDICE-detector

As illustrated in Fig.  1, the CANDICE-detector operates in three 
phases: the Disentangled Traffic Representation (DTR) Learning phase, 
the Classifier Training phase, and the Intrusion Detection phase.

4.2.1. DTR learning phase
As discussed in Section 1, the entangled traffic representation 

learned by the NIDS model hinders the clarification of feature con-
tributions and leads to spurious explanation. To address this problem, 
we integrate a Disentangled Representation Learning (DRL) mechanism 
into CANDICE-detector’s learning process. The DRL mechanism aims 
to identify and isolate the underlying factors of variation in network 
traffic data, mapping them into a structured latent space where each 
dimension corresponds to a distinct aspect of traffic behavior (e.g., tem-
poral or spatial traffic patterns). By disentangling traffic features into 
independent factors, CANDICE-detector can better identify the root 
causes of intrusions, thereby facilitating more accurate detection and 
faithful explanation.

We utilize 𝛽-TCVAE [49] to achieve traffic representation disentan-
glement. 𝛽-TCVAE follows the same encoder–decoder architecture as 
VAE [48], while additionally introduces a hyperparameter 𝛽 to control 
the degree of disentanglement. As illustrated in Fig.  1, the encoder 
𝑞𝜙(𝑧|𝑥) first encodes the input traffic data 𝑥 into a low-dimensional 
disentangled latent space, where each dimension of the latent variable 
𝑧 captures a distinct factor of variation of 𝑥. Then, the decoder 𝑝𝜃(𝑥|𝑧)
reconstructs 𝑥′ from 𝑧. 𝛽-TCVAE achieves disentanglement by decom-
posing the KL divergence into three terms and separately penalizing 
them, i.e., the Mutual Information (MI) term, the Total Correlation (TC) 
4 
term, and the dimension-wise KL divergence term. Eq.  (3) shows the 
objective function of 𝛽-TCVAE:

(𝜃, 𝜙; 𝛼, 𝛽, 𝛾; 𝑥, 𝑧) = E𝑞𝜙(𝑧|𝑥)
[

log 𝑝𝜃(𝑥|𝑧)
]

− 𝛼𝐼𝑞(𝑧; 𝑥)

− 𝛽𝐷𝐾𝐿

(

𝑞𝜙(𝑧) ∥
∏

𝑗
𝑞𝜙(𝑧𝑗 )

)

− 𝛾
∑

𝑗
𝐷𝐾𝐿

(

𝑞𝜙(𝑧𝑗 ) ∥ 𝑝𝜃(𝑧𝑗 )
)

. (3)

As illustrated in Eq.  (3), the MI term measures the mutual informa-
tion between latent representation 𝑧 and data 𝑥, which controls how 
much information of 𝑥 is captured by 𝑧. By penalizing the MI term with 
𝛼, the model is encouraged to learn more compact and disentangled 
representations. The TC term measures the dependence between the 
dimensions of latent variable 𝑧, which penalizing 𝛽 encourages the 
model to find statistically independent factors in the data distribution, 
thus leading to a more disentangled representation. Finally, the third 
term weighted by 𝛾 is used to ensure that each latent dimension 
individually adheres to the prior distribution.

4.2.2. Classifier training phase
In this phase, the disentangled traffic representations are utilized 

to train the traffic classifier. We develop three types of classifiers for 
the CANDICE-detector, respectively based on Support Vector Machine 
(SVM), Random Forest (RF), and Multi-Layer Perceptron (MLP). We 
use the RBF kernel for CANDICE-SVM and set the number of trees to 
100 for CANDICE-RF. The MLP classifier is implemented as a two-layer 
architecture, with each layer containing 8 nodes.

4.2.3. Intrusion detection phase
After the pre-training is complete, the encoder of 𝛽-TCVAE is 

adopted as the feature extractor of CANDICE-detector, followed by 
the trained classifier. During the intrusion detection phase, CANDICE-
detector continuously monitors the incoming network traffic, extracts 
disentangled traffic representations, and identifies attacks within the 
traffic. By calibrating the representation learning process, CANDICE-
detector is able to detect intrusions in a more interpretable latent space, 
thereby improving the explainability of the entire system.

4.3. CANDICE-explainer

Once the CANDICE-detector detects an attack, the detection result 
and corresponding traffic sample are sent to the CANDICE-explainer 
to generate Counterfactual Explanations (CFs). The CANDICE-explainer 
operates in two phase: the CF Generation phase and the CF Explanation 
phase.
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4.3.1. CF generation phase
Given the detection result and traffic sample to-be-explained, we 

first define the Counterfactual Traffic as follows:

Definition 1.  (Counterfactual Traffic). Let 𝑥 ∈ R𝑛 be a traffic sample in 
dataset  and 𝑦𝑝𝑟𝑒𝑑 = 𝑓 (𝑥) be the label predicted by DL-NIDS model 𝑓 (⋅). 
The counterfactual traffic 𝑥𝑐𝑓  is a modified version of 𝑥 with target label 
𝑦𝑐𝑓 , where 𝑦𝑐𝑓 ≠ 𝑓 (𝑥).

For example, if the original traffic 𝑥 is identified as malicious by the 
CANDICE-detector, the goal of CANDICE-explainer is to generate CF 
traffic 𝑥𝑐𝑓  with a prediction label of benign. We design a multi-objective 
loss function to generate CF traffic that satisfy three constraints within 
the security domain, i.e., validity, feasibility, and sparsity.

Validity. This property ensures that 𝑥𝑐𝑓  has a prediction label 𝑦𝑐𝑓 , 
which is opposed to the label 𝑦𝑝𝑟𝑒𝑑 of input 𝑥. It enforces the CF traffic 
explicitly moves across the local decision boundary of underlying NIDS 
model from the malicious side to the benign side, thus providing faithful 
explanation. This is particularly crucial for security applications, as 
unfaithful explanations would result in misunderstanding to the de-
tected intrusion and inappropriate response. To address this problem, 
we use the Binary Cross-Entropy loss to enforce 𝑥𝑐𝑓  obtains the target 
prediction 𝑦𝑐𝑓 . The validity loss, denoted as Val, is defined as follows: 

Val = 𝑦𝑐𝑓 ⋅ log(𝑦𝑝𝑟𝑒𝑑 ) + (1 − 𝑦𝑐𝑓 ) ⋅ log(1 − 𝑦𝑝𝑟𝑒𝑑 ). (4)

Feasibility. This property requires that 𝑥𝑐𝑓  should be a plausible in-
stance that adheres to the characteristics of real-world traffic and could 
be observed in actual network environments. It helps to maintain the 
semantic meaning of CF traffic, thus facilitating realistic and actionable 
explanation. This is particularly important in security domain, where 
explanations might be utilized to design countermeasures against the 
attack, and impractical explanations could have a negative impact on 
developing effective and efficient defense. We take two steps to ensure 
the feasibility of CF traffic. First, we incorporate domain knowledge 
of real-world traffic into the CF generation process by leveraging the 
historical traffic data. Specifically, we divide the traffic features into 
mutable features (e.g., flow bytes) and immutable features (e.g., pro-
tocol type), and change only the mutable features when generating 
counterfactual traffic. In addition, we define the permitted min–max 
ranges for each features to limit their variation within a reasonable 
range. This prevents generating implausible counterfactuals, such as 
the feature of packet size lower than zero. Second, we introduce a
proximity loss denoted as Prox to encourage the CF traffic 𝑥𝑐𝑓  to be close 
to the original traffic 𝑥. We employ the Mahalanobis Distance (MD) 
to measure the proximity, given its ability to handle the correlations 
among traffic features and in-distribution deviation. Here, 𝐶 ∈ R𝐷×𝐷

represents the inverse of the covariance matrix of the traffic dataset: 

Prox =
√

(𝑥 − 𝑥𝑐𝑓 )𝑇𝐶−1(𝑥 − 𝑥𝑐𝑓 ). (5)

Sparsity. This property requires that the original traffic 𝑥 should 
modify as few features as possible to yield the CF traffic 𝑥𝑐𝑓 . It helps to 
pinpoint the most important features that lead to the decision, thus con-
tributes to concise and non-trivial explanation. Sparse explanations are 
especially critical for security applications, as dense changes in traffic 
features would obscure the underlying rationale behind the detection, 
leading to confusion in understanding decisions and overwhelming the 
SOCs in inspecting explanations. To achieve sparsity, we introduce a
sparsity loss in CF generation process based on the 𝓁1 Norm, which is 
denoted as Spars: 

Spars = ‖𝑥 − 𝑥𝑐𝑓‖1. (6)

Overall, the multi-objective loss function for generating counterfac-
tual traffic is illustrated in Eq.  (7), where 𝜆1 and 𝜆2 are the hyperpa-
rameters controlling the proximity and sparsity properties: 
 = Val + 𝜆1 ⋅ Prox + 𝜆2 ⋅ Spars. (7)
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4.3.2. CF explanation phase
After generating CF traffic, CANDICE-explainer derives CF explana-

tions by: (1) comparing the differences between original traffic and its 
counterfactuals; (2) ranking the 𝑡𝑜𝑝 − 𝑘 traffic features as the explana-
tion. The 𝑡𝑜𝑝−𝑘 features are ranked based on their importance to model 
decision-making. For example, the approximation-based approaches 
LEMNA [12] and xNIDS [13] assigned importance scores to input traffic 
features by examining the coefficients of the surrogate model. However, 
since counterfactuals are primarily focused on modifying features to 
change the predictions, they are unable to directly calculate the im-
portance scores of features. Inspired by [58], we solve this problem 
by generating multiple counterfactuals for a single traffic example and 
calculating the change frequency of each counterfactual feature as its 
importance score. The intuition is that a feature that changes more 
frequently when generating counterfactual traffic examples is likely to 
be more important. Specifically, we generate 𝑑 counterfactuals for a 
𝑛-dimensional traffic example using our CF traffic generation method. 
Then, we construct a change matrix 𝑀 , where 𝑀𝑖,𝑗 indicates whether 
the 𝑗th traffic feature 𝑥𝑗 in the 𝑖th counterfactual example 𝑥𝑐𝑓 ,𝑖 has 
changed: 

𝑀𝑖𝑗 =

{

1 if 𝑥𝑗 ≠ 𝑥𝑐𝑓 ,𝑖,𝑗
0 if 𝑥𝑗 = 𝑥𝑐𝑓 ,𝑖,𝑗 .

(8)

The feature importance of 𝑥𝑗 is then calculated by: 

𝐹𝐼𝑗 =
1
𝑑

𝑑
∑

𝑖=1
𝑀𝑖𝑗 . (9)

A higher value of change frequency indicates that the corresponding 
feature frequently occurs in different counterfactuals, suggesting that 
the model strongly relies on that feature for prediction. In our experi-
ments in Section 5, we set 𝑑 = 5 and rank the 𝑡𝑜𝑝 − 10 counterfactual 
features to obtain the explanation.

CANDICE-explainer finally outputs an Intrusion Profile that provides 
detailed description of the detected attack. It consists of two main parts:
Attack Information and Explanation. The attack information field is a 
tuple consisting of five elements:

∙ Entity : The identifier of the attacker and the victim, including IP 
address, MAC address, ports, protocols, etc.

∙ Attack Type: The category of attack identified by the CANDICE-
detector, such as DoS and Probing.

∙ Attack Description: The coarse-grained description of the attack 
methods and targets.

∙ Detection Time: The timestamp when the attack is detected by 
CANDICE-detector.

∙ Detection Confidence: The CANDICE-detector’s confidence score in 
identifying the attack.

In addition, the explanation field contains two elements:

∙ Key Features: The 𝑡𝑜𝑝 − 𝑘 traffic features and their difference 
derived from counterfactual explanation, which indicate the key 
evidence of detection results.

∙ Anomaly Understanding : The fine-grained description of attack be-
havior based on counterfactual analysis, integrating information 
provided by the 𝑡𝑜𝑝 − 𝑘 counterfactual features.

5. Experiments

In this section, we first outline the experimental setup and present 
two usage examples to demonstrate how CANDICE detects and explains 
intrusions in network traffic. Then we illustrate the experimental results 
for evaluating: (1) the intrusion detection performance of CANDICE-
detector, and (2) the explanation performance of CANDICE-explainer.
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Fig. 2. Correlation heatmaps of traffic features of two attacks. (a) DoS attack from 
CIC-IDS2017-improved dataset. (b) Mirai attack from CIC-IoT2023 dataset.

5.1. Experimental setup

5.1.1. Datasets
We conduct the experiments on four representative traffic datasets 

used for network intrusion detection. As shown in Table  2, these 
datasets involve diverse network environments and attack types, al-
lowing for a comprehensive evaluation of CANDICE. The details of the 
datasets are as follows:

∙ CIC-IoT2023 [59]: This dataset is collected from real IoT de-
vices and networks, with traffic features extracted using the CI-
CFlowMeter tool developed by the Canadian Institute for Cyberse-
curity. We select four attacks in our experiments: DDoS-SlowLoris, 
Mirai-udpplain, Recon-Host Discovery, and DNS-Spoofing, with 
each type comprising 15000 samples represented by 46 traffic 
features.

∙ CIC-IDS2017-improved [60]: This dataset is a refined version of 
the CIC-IDS2017 [61] dataset, which is collected over 5 days of 
real-world network traffic. We select 1% of benign traffic and 
10% of malicious traffic from Portscan and DoS-Hulk attacks, with 
each sample consisting of 72 traffic features.

∙ CIC-DoHBrw-2020 [62]: This dataset focuses on the emerging 
DoH tunneling threats introduced by the DNS over HTTPS proto-
col, such as Command-and-Control (C2) communication and data 
exfiltration. Each traffic sample is labeled as benign or malicious, 
consisting of 28 traffic features extracted by the DoHlyzer tool.

∙ NSL-KDD [63]: This is a typical dataset that has been widely 
used for network intrusion detection. We use the DoS and Probing 
attacks for the experiments, with each traffic sample containing 
41 traffic features.

To obtain deeper insights into the data used in our experiments, we 
perform Exploratory Data Analysis (EDA) on the above datasets. Fig. 
2 shows the correlation heatmaps of traffic features for two attacks, 
i.e., DoS attack from CIC-IDS2017-improved dataset and Mirai attack 
from CIC-IoT2023 dataset. We find that the traffic features of the 
two attacks are highly correlated, indicating the existence of traffic 
pattern entanglement as introduced in Section 1. This observation 
further supports our motivation, as well as the rationality of the chosen 
dataset for experiments. Each dataset is split into training and testing 
sets at a ratio of 80%:20%. The training set is further split into different 
training and validation subsets via 5-fold cross-validation, as illustrated 
in Section 5.1.2. The testing set is held-out during training, in order to 
ensure unbiased evaluation of model performance. Note that the traffic 
features in the datasets need to be further normalized and encoded. 
To avoid data leakage, we only apply One-Hot Encoding to categorical 
features and StandardScaler to continuous features in the training data 
to build the data preprocessor.
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5.1.2. CANDICE implementation
For the CANDICE-detector, we implement a symmetric encoder–

decoder using MLP neural network with hidden layers of dimensions 
128-64-32-16-8. The dimensions of input and output layers are adjusted 
based on the numbers of features and classes of each dataset. Each 
hidden layer uses the ReLU activation function, and the Adam opti-
mizer is employed with a learning rate of 0.0001 during training. The 
model is trained for a maximum of 100 epochs with a batch size of 
256. As mentioned in Section 4.2, three types of CANDICE-detectors 
are deployed in the experiments, referred to respectively as CANDICE-
SVM, CANDICE-RF, and CANDICE-MLP. We use the RBF kernel for 
CANDICE-SVM and set the number of trees to 100 for CANDICE-RF. 
The MLP classifier is implemented as a two-layer architecture, with 
each layer containing 8 nodes. To ensure robust model training, we 
performed 5-fold cross-validation with an early-stopping mechanism to 
prevent overfitting. For the CANDICE-explainer, we utilize the Adam 
optimizer to optimize counterfactual generation over 500 iterations. 
Five counterfactuals are generated for each to-be-explained traffic in-
stance to assess the importance scores of features. As soon as a valid 
counterfactual is generated, an early stopping mechanism is applied to 
finish the optimization process.

For hyperparameter tuning, we utilize Bayesian Optimization [64] 
to find the optimal hyperparameters of CANDICE. There are two groups 
of hyperparameters that are configurable in CANDICE framework. For 
the CANDICE-detector, we set the dimension of disentangled traffic 
representation to 8 and 𝛽 = 2 in Eq.  (3). For the CANDICE-explainer, 
we set 𝜆1 = 𝜆2 = 0.5 for the proximity loss and sparsity loss in Eq.  (7).

5.1.3. Baselines and metrics
For evaluating the detection performance of CANDICE-detectors, 

we construct a standard Vanilla AutoEncoder (Vanilla-AE) [65] as the 
baseline. The difference between Vanilla-AE and CANDICE-detector is 
that Vanilla-AE does not perform disentangled representation learning, 
which is used to evaluate the effectiveness of our method. The Vanilla-
AE was configured to have the same architecture as CANDICE-MLP 
and trained on the same datasets listed in Table  2. Four commonly 
used metrics in intrusion detection are evaluated in this experiment, 
including Accuracy, Recall, F1-score, and False Positive Rate (FPR).

For evaluating the explanation performance of CANDICE-explainer, 
we use the explanation methods listed in Table  1 as the baselines for 
comparison. The details of these methods are described in Section 2. We 
implement them following the configurations in original works [12–
15]. The fidelity, sparsity, stability, and efficiency of explanation are 
evaluated under the three CANDICE-detectors and Vanilla-AE. The 
definitions and calculation methods for these metrics are described in 
Section 5.4.

5.2. Examples: detecting and explaining network intrusions with CANDICE

We present two examples to illustrate the usage of CANDICE in 
detecting and explaining network attacks. The first example involves a 
DoH tunneling attack from the CIC-DoHBrw-2020 dataset [62], while 
the second one is a DoS-TCP-flood attack in IoT environment [59].

The traffic are first fed into the CANDICE-detector, which outputs 
the predicted attack type and the confidence score of the detection. 
We use CANDICE-MLP as the underlying detector for both examples. 
Then, the CANDICE-explainer is activated to explain the detection 
results. It outputs traffic features that contribute most to the decision 
as explanation, as well as the difference in feature values between 
the original traffic and counterfactual traffic. The description of the 
features are illustrated in Table  3. Here, we showcase the 𝑡𝑜𝑝 − 3
explanatory features for simplicity, where ↑ indicates that the feature 
value of the original traffic is larger than the counterfactual traffic, 
and ↓ the opposite. Finally, CANDICE integrates attack information and 
explanation into a human-readable intrusion profile. Note that all host 
information (e.g., IP addresses) is virtualized and not related to any 
actual network or device.
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Table 2
Datasets used in the experiments.
 Datasets Attack types Traces Features 
 CIC-IoT2023 [59] DDoS-SlowLoris, Mirai-udpplain, Recon-Host Discovery, 75,000 46  
 DNS-Spoofing, Benign  
 CIC-IDS2017-improved [60] DoS-Hulk, PortScan, Benign 47,622 72  
 CIC-DoHBrw-2020 [62] Benign-DoH, Malicious-DoH 39,000 28  
 NSL-KDD [63] DoS, Probing, Benign 42,762 41  
Table 3
Feature description of the two examples.
 Attack Feature Description  
 
DoH Tunneling

Duration Time between first and last packet received in the flow 
 FlowBytesSent Number of flow bytes sent  
 PacketLength Variance Variance of Packet Length  
 
DoS-TCP-flood

Flow_duration Time between first and last packet received in the flow 
 Header_length Length of packet header in bits  
 AVG Average packet length in the flow  
5.2.1. Example 1
Fig.  3(a) shows the intrusion profile of a DoH tunneling attack exam-

ple. The CANDICE-detector successfully identifies the attack with a con-
fidence score of 0.87. The 𝑡𝑜𝑝−3 key explanatory features pinpointed by 
CANDICE-explainer are Duration, FlowBytesSent and PacketLengthVari-
ance. The sharp increase in Feature 1 indicates that the detected traffic 
lasts abnormally longer compared to normal DNS lookups, suggesting 
that the connection is possibly being exploited as a covert channel. Fea-
ture 2 further confirms the presence of anomalous data transmission, 
whereby bytes sent by the host is significantly larger than standard DNS 
queries. Feature 3 implies a large variance of packet lengths within 
a traffic flow, which is also anomalous because legitimate domains 
generally have similar lengths and result in smaller variance.

5.2.2. Example 2
Fig.  3(b) shows the intrusion profile of a DoS-TCP-flood attack 

example in IoT environment, which is successfully detected by the 
CANDICE-detector with a confidence score of 0.90. The 𝑡𝑜𝑝 − 3 key 
explanatory features identified by CANDICE-explainer are Flow_dura-
tion, Header_length, and AVG. As opposite to Example 1, the decrease in 
Feature 1 of the DoS-TCP-flood sample indicates a significantly shorter 
flow duration compared to normal connections. This traffic pattern 
aligns with typical DoS attack behavior, where the attacker sends 
short-lived spoofed requests at a high frequency instead of maintain-
ing a relatively long-standing connection. Furthermore, we examined 
the original dataset and observed that DoS-TCP-flood samples exhibit 
smaller packet headers and highly consistent within-flow packet sizes 
compared to benign traffic, which supports our explanations of Features 
2 and Feature 3. This pattern can be attributed to DoS-TCP-flood attack 
uses minimal-sized spoofed packets to establish TCP connections, in 
contrast to legitimate traffic that carries actual payload data and thus 
exhibits significant variations in packet lengths.

These two examples demonstrate that the proposed CANDICE
framework can accurately detect intrusions and provide faithful ex-
planations. By analyzing the fine-grained explanation of the detected 
attack in intrusion profile, the SOCs can more effectively understand 
the attack behavior and develop countermeasures, e.g., configuring 
filtering rules based on the counterfactual features.

5.3. Evaluation of CANDICE-detector

5.3.1. Intrusion detection performance
The comparison results of the three CANDICE-detectors and Vanilla-

AE are shown in Fig.  4. Compared to Vanilla-AE, the detectors demon-
strate superior intrusion detection performance across all four datasets. 
Specifically, CANDICE-SVM achieves the highest detection accuracy of 
98.95% on the CIC-IoT2023 dataset, showing an increase of 3.29% 
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Table 4
Comparison results of generalization performance on CIC-IDS2017-improved dataset.
 Detectors Accuracy Recall F1-score FPR  
 CANDICE-SVM 94.55 ± 0.53 93.73 ± 0.81 94.27 ± 0.73 3.64 ± 0.71 
 CANDICE-RF 92.27 ± 1.02 92.13 ± 0.92 92.21 ± 0.87 3.47 ± 0.51 
 CANDICE-MLP 94.67 ± 0.47 93.87 ± 0.56 94.56 ± 0.54 3.16 ± 0.40 
 Vanilla-AE 91.64 ± 1.08 90.57 ± 1.43 91.43 ± 1.12 3.83 ± 0.81 

over Vanilla-AE. The results on CIC-IDS2017-improved dataset further 
demonstrate the superiority of CANDICE, which outperforms Vanilla-
AE with up to 5.68%, 3.60%, and 5.64% improvements in accuracy, 
recall, and F1-score, respectively. As for the CIC-DoHBrw-2020 dataset, 
although Vanilla-AE is slightly superior with the lowest FPR of 2.31%, it 
underperforms our CANDICE-detectors on the other three metrics. For 
the NSL-KDD dataset, all four detectors demonstrate comparable detec-
tion performance, while CANDICE-RF stands out with the lowest FPR of 
1.13%. The experimental results indicate that our CANDICE-detectors 
can effectively identify network intrusions with a high accuracy and 
low false positive rate. To verify that the observed improvements are 
statistically meaningful, we further performed paired t-test [66] on the 
5-fold cross-validation results of each dataset. All tests comparing the 
CANDICE-detectors against the baseline Vanilla-AE yielded statistically 
significant results (𝑝 < 0.05), confirming the superiority of our method. 
We attribute this superiority to the gains of traffic representation 
disentanglement, which extracts intrinsic and interpretable behavioral 
patterns from complex traffic inputs, enabling more accurate intrusion 
detection.

5.3.2. Generalization performance
Beyond detecting known attacks, we evaluate CANDICE-detector’s 

ability to generalize to unseen attacks. We conduct experiments on the 
CIC-IDS2017-improved dataset using a leave-one-class-out strategy to 
simulate a real-world zero-day attack scenario. Specifically, we itera-
tively pick one attack type as the previously unseen attack by discarding 
the corresponding samples in the training set and identifying them in 
the testing set. Then, we train the detectors on the remaining training 
data and observe whether they can identify the unknown traffic as 
malicious. We repeat this process for each attack type and report 
the mean and standard deviation in Table  4. The results demonstrate 
that the CANDICE-detectors consistently outperform Vanilla-AE across 
all metrics. Specifically, CANDICE-MLP achieves the best generaliza-
tion performance among all detectors. It shows the highest accuracy 
(94.67% ± 0.47) and recall (93.87% ± 0.56), with improvements of up 
to 3.03% and 3.30% compared to Vanilla-AE, respectively. CANDICE-
MLP also achieves the best F1-score (94.56% ± 0.54), indicating its 
superiority in effectively detecting unknown attacks while maintaining 
low false positives. The results further validate the effectiveness of the 
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Fig. 3. Examples of CANDICE usage. (a) Intrusion profile of DoH Tunneling attack. (b) Intrusion profile of DoS-TCP-flood attack.
Fig. 4. Comparison results of intrusion detection performance on four traffic datasets. 
(a) CIC-IoT2023 dataset. (b) CIC-IDS2017-improved dataset. (c) CIC-DoHBrw-2020 
dataset. (d) NSL-KDD dataset.

DTR learning in CANDICE design, as it excels at capturing the essential 
behavioral difference between benign and malicious traffic. This core 
ability allows the CANDICE-detector to recognize novel deviations 
from normal traffic patterns when an unseen attack emerges, thereby 
enabling its superior generalization capability.

5.4. Evaluation of CANDICE-explainer

5.4.1. Explanation fidelity
This criterion evaluates whether the explainer accurately captures 

the relevant features of a prediction. We adopt the Descriptive Accuracy 
(DA) [8] to assess the fidelity of explanations. Given a traffic sample 
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𝑥 and its prediction label 𝑦𝑝𝑟𝑒𝑑 generated by DL-NIDS 𝑓 (⋅), we first 
remove the 𝑡𝑜𝑝 − 𝑘 explanatory features pinpointed by the explanation 
methods. We then compute the score of prediction 𝑦𝑝𝑟𝑒𝑑 without the 
𝑡𝑜𝑝 − 𝑘 features: 

DA𝑘 (𝑥, 𝑓 ) = 𝑓
(

𝑥 ∣ 𝑟𝑒𝑚𝑜𝑣𝑒(𝑥1,… , 𝑥𝑘)
)

. (10)

If the selected features are actually relevant to the prediction 𝑦𝑝𝑟𝑒𝑑 , 
the accuracy should decrease drastically after performing
𝑟𝑒𝑚𝑜𝑣𝑒(𝑥1,… , 𝑥𝑘), since the model loses critical information for making 
a correct prediction. We set the value of modified features to zero and 
calculate the Average Descriptive Accuracy (ADA) [8] for all samples 
in the dataset.

As illustrated in Fig.  5, our CANDICE-explainer has the steepest 
drop in ADA among all security systems compared to other explanation 
methods. Specifically, the ADA of CANDICE-MLP decreases to 56% with 
only two features modified. The results demonstrate that CANDICE-
explainer can effectively identifies features that are highly relevant to 
the predictions of DL-NIDS. We attribute the high-fidelity of CANDICE-
explainer to two reasons. First, the validity constraint applied to Eq. 
(7) requires that the generated counterfactual traffic 𝑥𝑐𝑓  explicitly 
has a different prediction label to 𝑥, i.e., 𝑦𝑐𝑓 ≠ 𝑦𝑝𝑟𝑒𝑑 . This forces 
CANDICE-explainer to find the features that truly affect the decision 
boundary to change the prediction. Second, the sparsity constraint 
requires CANDICE-explainer modifies as few features as possible, mak-
ing the selected features both important and concise to satisfy the 
constraints. As a result, CANDICE-explainer finds the smallest subset of 
features that are critical to the prediction, thereby ensuring the fidelity 
of explanation.

5.4.2. Explanation sparsity
This criterion evaluates whether the explainer generates sparse 

explanations with a limited number of features being changed, in order 
to reduce the workload of manual inspection and to provide concise 
explanations. We use the Mass Around Zero (MAZ) [8] to evaluate 
the sparsity of explanation. Specifically, we first scale the importance 
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Fig. 5. Fidelity evaluation of explanation methods. (a) CANDICE-SVM. (b) CANDICE-RF. (c) CANDICE-MLP. (d) Vanilla-AE.
Fig. 6. Sparsity evaluation of explanation methods. (a) CANDICE-SVM. (b) CANDICE-RF. (c) CANDICE-MLP. (d) Vanilla-AE.
scores of counterfactual features to the range [0, 1] and compute their 
normalized histogram ℎ. The MAZ is then calculated as follows: 

MAZ(𝑟) = ∫

1

0
ℎ(𝑥)dx for 𝑟 ∈ [0, 1]. (11)

The sparse explanation is supposed to have a steep slope near 
zero in MAZ, as most of the features are not marked as relevant. The 
comparison results in Fig.  6 show that CANDICE-explainer outperforms 
baseline methods with the steepest slopes across all settings, demon-
strating its superior performance in generating sparse explanations. 
Among all the explainers, LEMNA [12] shows the poorest ability in 
providing sparse explanation. This limitation stems from its underlying 
assumption that all features contribute similarly to the decision, leading 
to most of them being marked as relevant. In contrast, CANDICE-
explainer prevents dense explanation by adding sparsity constraint to 
the counterfactual traffic generation process. In addition, the constraint 
of only modifying mutable features to generate feasible counterfactual 
traffic also promotes the sparsity.

5.4.3. Explanation stability
This criterion evaluates whether the explainer provides consistent 

explanations for the same detection result over multiple runs. We assess 
the stability of explanation by calculating the average Intersection Size 
(IS) [8] of explanatory features: 

IS(𝑖, 𝑗) =
|𝑇𝑖 ∩ 𝑇𝑗 |

𝑘
, (12)

where 𝑇𝑖 and 𝑇𝑗 are the 𝑡𝑜𝑝 − 𝑘 explanatory feature sets for the 𝑖th 
and 𝑗th run. For a stable explanation method, the intersection size is 
supposed to be close to 1, which indicates that the 𝑡𝑜𝑝 − 𝑘 features are 
identical over multiple runs. In the experiment, we set 𝑘 = 10 and run 
the explanation methods for five times.

As shown in Table  5, DeepAID [15] achieves an intersection size of 
1.0 in all settings, indicating perfect stability of explanation. DeepAID 
benefits from its white-box property, i.e., using backpropagation to 
explain the model’s decision, which ensures the consistency over dif-
ferent runs. On the other hand, the approximation-based methods 
(LEMNA [12] and xNIDS [13]), perturbation-based methods
(CADE [14] and CANDICE-explainer), and SHAP [27] show sub-optimal 
performance due to the randomness of their sampling/perturbation 
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Table 5
Stability evaluation of explanation methods.
 Explanation methods CANDICE-SVM CANDICE-RF CANDICE-MLP Vanilla-AE 
 LEMNA [12] 0.509 0.481 0.437 0.488  
 CADE [14] 0.537 0.540 0.547 0.393  
 DeepAID [15] 1 1 1 1  
 xNIDS [13] 0.680 0.677 0.685 0.630  
 SHAP [27] 0.625 0.597 0.572 0.603  
 CANDICE-explainer 0.701 0.683 0.729 0.635  

Fig. 7. Efficiency evaluation of explanation methods on two datasets. (a) CIC-IDS2017-
improved dataset. (b) CIC-IoT2023 dataset.

process. However, our CANDICE-explainer still outperforms all other 
explainers, while overcoming the limitation of DeepAID which requires 
full access to model details. It provides stable explanations on all 
DL-NIDS systems, especially on CANDICE-MLP with a stability score 
of 0.729. We attribute the superior stability to the fact that, when 
generating counterfactual traffic under the three constraints, CANDICE-
explainer is forced to constantly seek the most critical changes that lead 
to the reverse prediction. This objective-guided selection of explanatory 
features reduces the variation introduced by the randomness.
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5.4.4. Explanation efficiency
This criterion evaluates whether the explainer is efficient in generat-

ing explanations with limited run-time overhead. When intrusion alerts 
arise, the security experts need to quickly understand the alerts to take 
immediate countermeasures to respond. Hence, the explanations should 
be available within a reasonable time, without obstructing the work-
flow of inspection. We assess the explanation efficiency by measuring 
the run-time required for each explainer to explain 2500 traffic sam-
ples. For LEMNA [12], xNIDS [13], and CADE [14], the time required 
for necessary procedures to generate explanations (e.g., training the 
surrogate model) is included. We use CANDICE-MLP as the underlying 
detector, repeating the experiment for five times with random sample 
selection and recording the average run-time overhead. The results on 
CIC-IDS2017-improved and CIC-IoT2023 datasets are shown in Fig.  7. 
LEMNA and CADE show sub-optimal efficiency due to the additional 
time overhead introduced by building additional learning models. The 
white-box method DeepAID [15] shows the best efficiency, as it uti-
lizes gradient information and back-propagation to derive explanations, 
which is not easily available in practice. Regarding the black-box meth-
ods, CANDICE-explainer is 10x faster than SHAP [27] and LEMNA [12], 
two of the most popular explanation methods in the security domain. 
Of all the baselines, SHAP [27] shows the worst performance in effi-
ciency because it requires extensive sampling of feature coalitions to 
approximate the Shapley values, leading to high computational costs. 
In contrast, CANDICE benefits from its goal-oriented optimization to 
guide the generation of explanations, combined with an early-stopping 
mechanism and limited search space to further speed up the process.

6. Discussion

The core objective of this work is to enhance the interpretability 
of AI-based NIDS. The experimental results in Section 5 demonstrate 
the effectiveness of the proposed CANDICE framework, in terms of 
explanation fidelity, sparsity, stability, and efficiency. In this section, 
we discuss the trade-offs between different explanation types (feature 
attribution vs. counterfactuals) and the reasons behind our choice of 
counterfactual explanations to explain NIDS, as well as the limitations 
and future work.
Why counterfactual explanations for security applications? As outlined 
in Table  1, local post-hoc explanation methods can be broadly cate-
gorized into Feature Attribution-based and example-based approaches. 
FA-based methods (LEMNA, xNIDS and SHAP) focus on identifying 
the contribution of individual input feature to model prediction, while 
example-based methods (DeepAID, CADE and CANDICE) explain model 
decisions by finding reference examples and comparing the differ-
ences between the references and the query instance. Counterfactual 
explanation, as we explored in this work, are the most typical example-
based explanations in the field of Explainable AI. We discuss the 
trade-offs between these two paradigms in terms of fidelity, com-
putational overhead, and human understanding. (1) fidelity : As the 
most important criterion for evaluating the explanation quality, we 
show in Section 5.4.1 that CANDICE outperform FA-based methods 
(LEMNA, xNIDS and SHAP) regarding fidelity. CANDICE provides high-
fidelity explanations via two mechanisms in its design. First, it mitigates 
spurious explanation by learning disentangled traffic patterns that are 
more interpretable. Second, it generates counterfactuals that explic-
itly cross the model’s decision boundary to ensure the explanation 
is necessary [58], mitigating the risk of unfaithfulness introduced by 
approximation-based FA methods such as LEMNA. (2) computational 
overhead: While CANDICE requires to solve a optimization problem 
to generate counterfactuals, as shown in Section 5.4.4, it still out-
performs FA-based methods like SHAP with an reasonable run-time. 
In addition, CANDICE can further improve efficiency through amor-
tized generation of counterfactuals [67]. (3) human understanding : FA-
based methods provide explanations by outputting a list of importance 
10 
scores of features. However, regarding security domain, the analysts 
are more concerned with the degree of deviation in the features that 
trigger an anomaly. Counterfactuals naturally provide such an intuitive 
understanding by demonstrating the minimal feature changes that re-
verse the model decision. Furthermore, we provide an intrusion profile 
along with the explanation in CANDICE, which helps the end-users to 
thoroughly understanding the attack.
Limitations and future work. Our work demonstrates the potential of 
counterfactual explanations in improving the interpretability of AI-
based NIDS, yet several limitations remain and warrant future in-
vestigation. First, CANDICE currently focuses on generating tailored 
counterfactuals for individual detection results and instances requiring 
explanation. Although providing high-quality explanations, the per-
instance optimization may hinder its scalability in high-throughput 
NIDS deployments. For future work, we plan to explore amortized 
generation of counterfactual explanations [67], e.g., training a gener-
ative model to produce counterfactuals for multiple input datapoints 
at once [68]. Second, while CANDICE’s explanations offer intuitive 
guidance for designing defense strategies (e.g., by suggesting which 
features to modify and how), the development of low-cost, practical 
countermeasures remains an area for further exploration. One possible 
direction is to incorporate causal intervention [69] to identify the true 
cause-and-effect relationships in network traffic, which helps derive 
more practical defense rules. Third, CANDICE is now designed to detect 
and explain anomalies in network traffic. In the future work, we plan 
to extend our explainable intrusion detection framework to broader 
cybersecurity domains, such as binary code analysis [34] and API-level 
anomaly detection [70].

7. Conclusion

In this paper, we propose CANDICE, an explainable and intelligent 
framework for detecting and explaining intrusions in network traffic. 
CANDICE provides high-quality explanations for the detection results 
of NIDS by disentangling the traffic representations and generating 
counterfactual explanations. The evaluation results show that CANDICE 
outperforms existing explanation methods in terms of fidelity, spar-
sity, stability, and efficiency, while achieving high accuracy of above 
96.10% in detecting intrusions. In addition, we showcase how CAN-
DICE helps end-users better understand the detected attacks through 
a human-readable intrusion profile, which can further be utilized for 
developing practical and actionable defense mechanisms.
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