
Future Generation Computer Systems 175 (2026) 108059

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

CANDICE: An explainable and intelligent framework for network intrusion

detection
Shuhua Li a , Ruiying Du a ,∗, Jing Chen a, Kun He a , Cong Wu b , Yebo Feng b
a Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan
University, Wuhan, 430072, China
b College of Computing and Data Science, Nanyang Technological University, 639798, Singapore

A R T I C L E I N F O

Keywords:
Network intrusion detection system
Network traffic analysis
Deep learning
Explainable AI (XAI)
Counterfactual explanation
Disentangled representation learning

 A B S T R A C T

In recent years, Deep Learning-based Network Intrusion Detection System (DL-NIDS) have demonstrated
remarkable performance in detecting cyberattacks in network traffic. However, the lack of explainability for
DL-NIDSs prevents end-users from trusting and understanding the detection results, thereby limiting their
applications in practice. Although several approaches have been proposed to explain DL-NIDS, they run the
risk of providing unfaithful explanations. In addition, existing methods merely output a set of important
features as explanation, which is insufficient for end-users to thoroughly understand the attack. In this paper,
we propose CANDICE, an explainable and intelligent framework for detecting and explaining intrusions in
network traffic. Differing from existing works, CANDICE is highlighted by: (i) providing faithful explanation by
disentangling the traffic representations and generating counterfactual explanations, and (ii) offering end-users
a comprehensive view of the attack by generating an intrusion profile based on the explanation. We conduct
experiments on four representative traffic datasets to evaluate the effectiveness of CANDICE. The results
demonstrate that CANDICE surpasses existing methods in terms of explanation fidelity, sparsity, stability, and
efficiency, while achieving high accuracy of above 96.10% in detecting intrusions.
1. Introduction

Network-based Intrusion Detection Systems (NIDS) form the front-
line defense in cybersecurity by monitoring and detecting intrusions
in network traffic. At present, most of the popular NIDSs are learning-
based, which utilize Artificial Intelligence (AI) models to distinguish
between benign and malicious traffic [1–3]. Thanks to the great ca-
pacity of Deep Neural Networks (DNNs) in capturing complex pat-
terns and subtle deviations [4], Deep Learning-based NIDSs (DL-NIDS)
demonstrate remarkable performance in detecting sophisticated at-
tacks and have become the cutting-edge pillar of AI-based security
applications [5–7].

Despite the superiority of DL-NIDSs, their inability to explain the
detection results has severely hampered their application in practice [8,
9]. Most current DL-NIDS simply output a prediction label (e.g., mali-
cious or benign), without providing any additional information about
the detected traffic. As a result, the end-users struggle to trust and
understand the decision, as well as take further actions to deal with the
alerts. For instance, when an anomaly alert is triggered, the Security
Operation Centers (SOCs) are expected to take immediate counter-
measures against the attack [10], such as blocking traffic or isolating

∗ Corresponding author.
E-mail address: duraying@whu.edu.cn (R. Du).

network segments. In the absence of explanation, the SOCs have to
manually inspect and verify the alert, which is both labor-intensive and
impractical in large-scale network [11]. This can lead to a situation
where the security analysts are overwhelmed with tons of intrusion
alarms requiring investigation, resulting in delays in responding to
actual threats.

Recent studies have proposed several approaches to explain DL-
based security applications [9,12–16]. However, they suffer from two
main challenges. First, most existing methods explain model results by
exploring the contribution of each feature to the decision. They rely
on an over-ideal assumption that the model correctly extract knowl-
edge about real traffic patterns [12–14]. However, since the traffic
features are highly correlated, DNN models have been revealed to
learn a entangled representation [17] in which different traffic patterns
are mixed together, making it difficult to clarify the contribution of
features. We visualized the significant correlations between features
to reveal this phenomenon. (see Section 5.1.1, Fig. 2). As a result,
the entangled representation fail to capture the underlying factors of
variation in the observed traffic data, leading to spurious explanations.
Second, Existing methods merely output a set of important features
https://doi.org/10.1016/j.future.2025.108059
Received 24 February 2025; Received in revised form 12 June 2025; Accepted 27 J
vailable online 6 August 2025
167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and
uly 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0009-0007-6865-0332
https://orcid.org/0000-0002-3634-3385
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0009-0007-5920-0778
mailto:duraying@whu.edu.cn
https://doi.org/10.1016/j.future.2025.108059
https://doi.org/10.1016/j.future.2025.108059

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
as explanation, which is insufficient to provide users with a deeper
understanding of the anomalies. For instance, beyond identifying the
number of connections as an important indicator of DDoS attack, security
analysts are more concerned to know how often connection attempts
within a time window will trigger an intrusion alert. Such insights
allow them to appropriately adjust their defense strategy to prevent
potential attacks. Unfortunately, existing methods fail to provide such
an intuitive perspective for this purpose.

In this work, we address the above challenges by proposing CAN-
DICE, an explainable and intelligent framework for detecting and ex-
plaining intrusions in network traffic. CANDICE consists of two main
components: the CANDICE-detector and the CANDICE-explainer. First,
the CANDICE-detector extracts disentangled representations from net-
work traffic, in order to better clarify feature contributions and mitigate
spurious explanations. To achieve this, we introduce a Variational
Autoencoder (VAE)-based disentangled representation learning mecha-
nism into the CANDICE-detector’s learning process to train a calibrated
detection model. Second, the CANDICE-explainer generates counterfac-
tual explanations to reveal both important features and their specific
impacts on detection results. To achieve this, we design and optimize
a multi-objective loss function to generate counterfactuals that satisfy
security-specific constraints. In addition, we design a human-readable
intrusion profile as the output of CANDICE framework. The intrusion
profile integrates both attack information and explanations, enabling
security analysts to thoroughly understand the detected attack.

The main contributions of this work are as follows:

∙ Novel explainable intrusion detection framework. We propose
CANDICE, an explainable and intelligent framework for detecting
and explaining intrusions in network traffic. By integrating the
detector and explainer components into a unified architecture,
CANDICE bridges the semantic gap between detection results and
explanations, enabling security analysts to better understand and
trust the detection results.

∙ New explanation method and human-readable threat intel-
ligence. We design an optimized counterfactual-based explana-
tion method and user-friendly intrusion profile for learning-based
NIDS. By disentangling traffic representations and generating
counterfactuals, we provide faithful explanations for the detection
results. By presenting intrusion profiles that integrate both attack
information and explanation, we offer an intuitive and compre-
hensive view for anomaly understanding, allowing end-users to
easily inspect the threats.

∙ Comprehensive evaluation. We conducted experiments on four
representative traffic datasets to evaluate the effectiveness of
CANDICE. The experimental results show that CANDICE outper-
forms existing methods in terms of fidelity, sparsity, stability, and
efficiency of explanation, while achieving high accuracy of above
96.10% in detecting intrusions.

The rest of this paper is organized as follows: Section 2 introduces
the related works on learning-based NIDS and the eXplainable AI
(XAI) approaches within the security domain. Section 3 introduce the
notations and two key techniques used in this work, i.e., disentan-
gled representation learning and counterfactual explanation. Section 4
describes the details of designing CANDICE. Section 5 presents the
experimental results of evaluating CANDICE in terms of intrusion de-
tection and explanation. Section 7 provides the conclusion of this
work.

2. Related work

In this section, we first briefly overview the AI-based network intru-
sion detection systems. Then we introduce state-of-the-art explanation
methods for interpreting AI-based security applications.
2
2.1. AI-based network intrusion detection system

Existing AI-based NIDS can be categorized into two major groups,
i.e., the Machine Learning-based NIDS (ML-NIDS) and the Deep
Learning-based NIDS (DL-NIDS) [1]. The ML-based approaches rely
on traditional machine learning algorithms such as Support Vector
Machine (SVM)and Random Forest (RF) to identify attacks [18–20].
However, due to their limited capability in capturing complex traffic
patterns with shallow ML models, they are inadequate for detecting
sophisticated attacks. In contrast, DL-based approaches utilize deep
neural networks to automatically extract traffic patterns and demon-
strate remarkable performance in network intrusion detection [6,7,21–
24]. The key to the success of DL-NIDS is the traffic representations
learned by the DNN model. Among these, Auto-Encoder (AE) and its
variants have been widely used to construct effective NIDS due to its
strong capability in traffic representation learning [6,7,22]. Despite
the benefits of DL-NIDS, they lack the ability to explain to users
what they have detected and why they made the decision. Departing
from existing NIDS methods, our CANDICE framework addresses this
limitation by proposing a novel explainable intrusion detection frame-
work. In addition to detecting attacks, it generates explanations for the
detection results, as well as outputs a human-readable intrusion profile
for end-users to better understand the model decision.

2.2. XAI methods for cybersecurity

XAI techniques can be categorized into different groups depend-
ing on their explanation scope and objective. For example, ante-hoc
explanation methods builds self-interpretable models based on intrin-
sically transparent learning algorithms (e.g., Naive Bayes and Decision
Tree [25]), whereas post-hoc methods design additive explainers for
pre-trained models [26,27]. In addition, local explanation focus on
explaining individual decisions/outputs made by the model [26,28,
29], while global explanation aims to understand the overall model
behavior [30–32]. In this work, we focus on the most prevalent form
of explaining NIDSs [9,16], i.e., post-hoc local explanation methods,
which can be divided into four categories:

Approximation-based methods. These approaches utilize an inter-
pretable surrogate agent to locally approximate the decision boundary
of a black-box DL-NIDS, then retrieve explanations from the agent
model [26]. LEMNA [12] first proposes to use a non-linear mixture
regression model to approximate RNN-based security applications [33,
34] and leverages fused Lasso [35] to cope with the feature dependency
in RNN. xNIDS [13] explains DL-NIDS by approximating and sam-
pling around history inputs, and capturing feature dependency using
sparse group lasso. However, since approximation-based methods can-
not guarantee to accurately cross the decision boundary of the model,
they run the risk of providing unfaithful explanations for security
applications.

Perturbation-based methods. These approaches explain model
decisions by perturbing the corresponding input samples and observ-
ing model sensitivity to the perturbations [29,36]. They identify the
features that most influence the model’s output as the explanation.
CADE [14] detects and explains concept drift samples in DL-based
security applications by perturbing the input and observing the distance
changes between the sample and its nearest class. However, CADE
focuses on explaining concept drift in the security domain rather than
intrusion detection, which fails to satisfy specific constraints when
explaining the detection results of DL-NIDS, such as the sparsity and
stability of explanation.

Gradient-based methods. These approaches leverage the gradi-
ent information from DNN model to measure the sensitivity of fea-
tures [37–39]. As they rely on access to model gradients, they are
categorized as white-box methods, as opposed to approximation-based
and perturbation-based methods. DeepAID [15] is specially designed
for explaining DL-based anomaly detection systems, which is based on

S. Li et al.

b
t
a

e
o
t
v
t
a
D
D
n
M
l
c
f

N
i
a
s
p
f
e
f
t
b
i
t

3

u
u
r

3

t
N
𝑓
(
w

Future Generation Computer Systems 175 (2026) 108059
Table 1
Overall comparison of representative explanation methods.
 Explainers Design aspects Properties

 Strategiesa Support Black-box FA/Example-based Fidelityb Sparsityb Stabilityb Efficiencyb
 LEMNA [12] Approx. ✓ FA
 xNIDS [13] Approx. ✓ FA
 SHAP [27] SHAP-based ✓ FA
 DeepAID [15] Grad. 7 Example
 CADE [14] Perturb. 7 Example
 Ours Perturb. ✓ Example
(✓= support,7= not support, = true, = partially true, = false).
a This indicates the category of explanation methods introduced in Section 2.2, i.e., the Approximation-based, Perturbation-based, Gradient-
based, and SHAP-based methods.
b This indicates the four criteria for evaluating explanation methods, as measured through the experiments in Section 5.4.
3

m
e
t
n
𝑧
B



w
l
K
p
d

G
d
t
t
t
r
i
w
r

3

E
C
m
i
e

c
m
e
t
w
f
f
e

ack-propagation to retrieve explanations. Unfortunately, the access
o the model’s internal details required by white-box methods is not
lways feasible in reality.
SHAP-based methods. This category refers to approaches that

mploy SHapley Additive exPlanations (SHAP) [27] to attribute NIDS
utputs to important input features. As a representative Feature At-
ribution (FA)-based explanation method, SHAP utilizes the Shapley
alue [40] from cooperative game theory to fairly quantify each fea-
ure’s contribution to model decisions. Based on different ways to
pproximate the Shapley value, SHAP includes three main variants:
eepSHAP and TreeSHAP, which are specifically used for explaining
NN-based and tree-based security applications [41–43], and Ker-
elSHAP, a model-agnostic approach that can be applied to diverse
L/DL models [44–47]. Despite the widespread adoption in explaining
earning-based security applications, SHAP-based methods are criti-
ized for their high computational cost, especially in high-dimensional
eature space [8].
Table 1 summarizes the explanation methods mentioned above.

ote that the SHAP in Table 1 and Section 5 refers to KernelSHAP. We
nclude KernelSHAP in the comparison baselines, considering its model-
gnostic property that can be used to explain different types of AI-based
ecurity applications. Our CANDICE-explainer falls into the category of
erturbation-based explanation method, in which we change the input
eatures to generate counterfactual explanations. However, CANDICE-
xplainer differs from existing works in two aspects: (1) we are the
irst work that calibrates the model’s internal behavior by disentangling
raffic representations to facilitate model explainability; (2) we provide
lack-box explanation by generating traffic counterfactuals that explic-
tly cross the local decision boundary of the model, thereby ensuring
he faithfulness of explanation.

. Preliminaries

In this section, we first outline the key notations and definitions
sed throughout this paper. Then we introduce two main techniques
sed in our CANDICE framework, namely VAE-based Disentangled Rep-
esentation Learning and Counterfactual Explanation.

.1. Notations

Let 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ R𝑛 be a traffic sample in network
raffic dataset , where {𝑥𝑖}𝑛𝑖=1 represents the traffic features. The DL-
IDS 𝑓 (⋅) takes 𝑥 as input and outputs the prediction label 𝑦𝑝𝑟𝑒𝑑 =
(𝑥). We denote the latent representation extracted from 𝑥 by 𝑧 =
𝑧1, 𝑧2,… , 𝑧𝑚) ∈ R𝑚. The counterfactual traffic sample is defined as 𝑥𝑐𝑓 ,
hich has a different prediction label 𝑦 ≠ 𝑦 .
𝑐𝑓 𝑝𝑟𝑒𝑑 t

3
.2. VAE-based disentangled representation learning

Variational Auto-Encoder (VAE) [48] is a type of deep generative
odel that combines the idea of Auto-Encoder and variational infer-
nce. VAE consists of an encoder neural network 𝑞𝜙(𝑧|𝑥), which maps
he input data 𝑥 into a low-dimensional latent space, and a decoder
eural network 𝑝𝜃(𝑥|𝑧), which reconstructs data 𝑥 from latent variable
. The optimization objective of VAE is to maximize the Evidence Lower
ound (ELBO):

(𝜃, 𝜙; 𝑥, 𝑧) = E𝑞𝜙(𝑧|𝑥)
[

log 𝑝𝜃(𝑥|𝑧)
]

−𝐷𝐾𝐿
(

𝑞𝜙(𝑧|𝑥) ∥ 𝑝𝜃(𝑧)
)

, (1)

here the first term E𝑞𝜙(𝑧|𝑥)
[

log 𝑝𝜃(𝑥|𝑧)
] represents the conditional log

ikelihood in charge of reconstruction quality. The second term is the
ullback–Leibler (KL) divergence, which encourages the approximate
osterior distribution 𝑞𝜙(𝑧|𝑥) to be close to the prior 𝑝𝜃(𝑧). The detailed
erivation of VAE can be found in the original paper [48].
In VAE, the prior distribution 𝑝𝜃(𝑧) is generally chosen as a standard

aussian distribution  (0, 1), which allows the KL term to impose in-
ependent constraints on the learned representations and thereby leads
o the disentanglement [49]. However, the vanilla VAE has proven
o be insufficient dealing with complex dataset [50]. To achieve bet-
er disentanglement performance, researchers have proposed various
egularizers combined with the original VAE loss function, resulting
n the family of VAE-based disentanglement methods [49–53]. In this
ork, we utilize 𝛽-TCVAE to achieve the disentanglement of traffic
epresentation. The details are described in Section 4.2.

.3. Counterfactual explanation

Wachter et al. [54] first proposed the concept of Counterfactual
xplanations (CE) for explaining black-box AI models. They formulate
E generation as an optimization problem, which aims to find the
inimal changes of inputs that can reverse the model’s decision. Eq. (2)
llustrates the optimization objective for computing the counterfactual
xample 𝑥𝑐𝑓 for an input 𝑥:

argmin
𝑥𝑐𝑓

max
𝜆

𝜆(𝑓 (𝑥𝑐𝑓) − 𝑦𝑐𝑓)2 + 𝑑(𝑥, 𝑥𝑐𝑓). (2)

The first term ensures that the model’s prediction 𝑓 (𝑥𝑐𝑓) to be
lose to the desired label 𝑦𝑐𝑓 , where 𝑦𝑐𝑓 ≠ 𝑓 (𝑥). The second term
easures the distance between 𝑥𝑐𝑓 and 𝑥, which is minimized to
nsure the generated counterfactual remains as close as possible to
he original input. Later studies attempt to generate counterfactuals
ith desirable properties by imposing restrictions on the objective
unction [55–57]. In this work, our goal is to generate counterfactuals
or network traffic that satisfy constraints within security domain to
xplain DL-NIDS, i.e., validity, feasibility, and sparsity. The design of
he objective function is described in Section 4.3.

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
Fig. 1. Overview of the CANDICE framework.
4. The CANDICE framework

4.1. Overview

Fig. 1 depicts the framework of CANDICE, which consists of two
key components: the CANDICE-detector and the CANDICE-explainer.
The CANDICE-detector consists of a calibrated feature extractor and
a classifier, which extracts disentangled representations from input
traffic and detects intrusions. The detection results are further sent
to the CANDICE-explainer for explanation. The CANDICE-explainer
generates counterfactual traffic by optimizing a multi-objective loss
function especially designed for explaining security applications. The
explanations are derived by comparing the differences between orig-
inal traffic and the counterfactuals. At the end, CANDICE outputs an
Intrusion Profile containing both the attack information and explanation,
enabling end-users to gain a deeper understanding of the attack.

4.2. CANDICE-detector

As illustrated in Fig. 1, the CANDICE-detector operates in three
phases: the Disentangled Traffic Representation (DTR) Learning phase,
the Classifier Training phase, and the Intrusion Detection phase.

4.2.1. DTR learning phase
As discussed in Section 1, the entangled traffic representation

learned by the NIDS model hinders the clarification of feature con-
tributions and leads to spurious explanation. To address this problem,
we integrate a Disentangled Representation Learning (DRL) mechanism
into CANDICE-detector’s learning process. The DRL mechanism aims
to identify and isolate the underlying factors of variation in network
traffic data, mapping them into a structured latent space where each
dimension corresponds to a distinct aspect of traffic behavior (e.g., tem-
poral or spatial traffic patterns). By disentangling traffic features into
independent factors, CANDICE-detector can better identify the root
causes of intrusions, thereby facilitating more accurate detection and
faithful explanation.

We utilize 𝛽-TCVAE [49] to achieve traffic representation disentan-
glement. 𝛽-TCVAE follows the same encoder–decoder architecture as
VAE [48], while additionally introduces a hyperparameter 𝛽 to control
the degree of disentanglement. As illustrated in Fig. 1, the encoder
𝑞𝜙(𝑧|𝑥) first encodes the input traffic data 𝑥 into a low-dimensional
disentangled latent space, where each dimension of the latent variable
𝑧 captures a distinct factor of variation of 𝑥. Then, the decoder 𝑝𝜃(𝑥|𝑧)
reconstructs 𝑥′ from 𝑧. 𝛽-TCVAE achieves disentanglement by decom-
posing the KL divergence into three terms and separately penalizing
them, i.e., the Mutual Information (MI) term, the Total Correlation (TC)
4
term, and the dimension-wise KL divergence term. Eq. (3) shows the
objective function of 𝛽-TCVAE:

(𝜃, 𝜙; 𝛼, 𝛽, 𝛾; 𝑥, 𝑧) = E𝑞𝜙(𝑧|𝑥)
[

log 𝑝𝜃(𝑥|𝑧)
]

− 𝛼𝐼𝑞(𝑧; 𝑥)

− 𝛽𝐷𝐾𝐿

(

𝑞𝜙(𝑧) ∥
∏

𝑗
𝑞𝜙(𝑧𝑗)

)

− 𝛾
∑

𝑗
𝐷𝐾𝐿

(

𝑞𝜙(𝑧𝑗) ∥ 𝑝𝜃(𝑧𝑗)
)

. (3)

As illustrated in Eq. (3), the MI term measures the mutual informa-
tion between latent representation 𝑧 and data 𝑥, which controls how
much information of 𝑥 is captured by 𝑧. By penalizing the MI term with
𝛼, the model is encouraged to learn more compact and disentangled
representations. The TC term measures the dependence between the
dimensions of latent variable 𝑧, which penalizing 𝛽 encourages the
model to find statistically independent factors in the data distribution,
thus leading to a more disentangled representation. Finally, the third
term weighted by 𝛾 is used to ensure that each latent dimension
individually adheres to the prior distribution.

4.2.2. Classifier training phase
In this phase, the disentangled traffic representations are utilized

to train the traffic classifier. We develop three types of classifiers for
the CANDICE-detector, respectively based on Support Vector Machine
(SVM), Random Forest (RF), and Multi-Layer Perceptron (MLP). We
use the RBF kernel for CANDICE-SVM and set the number of trees to
100 for CANDICE-RF. The MLP classifier is implemented as a two-layer
architecture, with each layer containing 8 nodes.

4.2.3. Intrusion detection phase
After the pre-training is complete, the encoder of 𝛽-TCVAE is

adopted as the feature extractor of CANDICE-detector, followed by
the trained classifier. During the intrusion detection phase, CANDICE-
detector continuously monitors the incoming network traffic, extracts
disentangled traffic representations, and identifies attacks within the
traffic. By calibrating the representation learning process, CANDICE-
detector is able to detect intrusions in a more interpretable latent space,
thereby improving the explainability of the entire system.

4.3. CANDICE-explainer

Once the CANDICE-detector detects an attack, the detection result
and corresponding traffic sample are sent to the CANDICE-explainer
to generate Counterfactual Explanations (CFs). The CANDICE-explainer
operates in two phase: the CF Generation phase and the CF Explanation
phase.

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
4.3.1. CF generation phase
Given the detection result and traffic sample to-be-explained, we

first define the Counterfactual Traffic as follows:

Definition 1. (Counterfactual Traffic). Let 𝑥 ∈ R𝑛 be a traffic sample in
dataset  and 𝑦𝑝𝑟𝑒𝑑 = 𝑓 (𝑥) be the label predicted by DL-NIDS model 𝑓 (⋅).
The counterfactual traffic 𝑥𝑐𝑓 is a modified version of 𝑥 with target label
𝑦𝑐𝑓 , where 𝑦𝑐𝑓 ≠ 𝑓 (𝑥).

For example, if the original traffic 𝑥 is identified as malicious by the
CANDICE-detector, the goal of CANDICE-explainer is to generate CF
traffic 𝑥𝑐𝑓 with a prediction label of benign. We design a multi-objective
loss function to generate CF traffic that satisfy three constraints within
the security domain, i.e., validity, feasibility, and sparsity.

Validity. This property ensures that 𝑥𝑐𝑓 has a prediction label 𝑦𝑐𝑓 ,
which is opposed to the label 𝑦𝑝𝑟𝑒𝑑 of input 𝑥. It enforces the CF traffic
explicitly moves across the local decision boundary of underlying NIDS
model from the malicious side to the benign side, thus providing faithful
explanation. This is particularly crucial for security applications, as
unfaithful explanations would result in misunderstanding to the de-
tected intrusion and inappropriate response. To address this problem,
we use the Binary Cross-Entropy loss to enforce 𝑥𝑐𝑓 obtains the target
prediction 𝑦𝑐𝑓 . The validity loss, denoted as Val, is defined as follows:

Val = 𝑦𝑐𝑓 ⋅ log(𝑦𝑝𝑟𝑒𝑑) + (1 − 𝑦𝑐𝑓) ⋅ log(1 − 𝑦𝑝𝑟𝑒𝑑). (4)

Feasibility. This property requires that 𝑥𝑐𝑓 should be a plausible in-
stance that adheres to the characteristics of real-world traffic and could
be observed in actual network environments. It helps to maintain the
semantic meaning of CF traffic, thus facilitating realistic and actionable
explanation. This is particularly important in security domain, where
explanations might be utilized to design countermeasures against the
attack, and impractical explanations could have a negative impact on
developing effective and efficient defense. We take two steps to ensure
the feasibility of CF traffic. First, we incorporate domain knowledge
of real-world traffic into the CF generation process by leveraging the
historical traffic data. Specifically, we divide the traffic features into
mutable features (e.g., flow bytes) and immutable features (e.g., pro-
tocol type), and change only the mutable features when generating
counterfactual traffic. In addition, we define the permitted min–max
ranges for each features to limit their variation within a reasonable
range. This prevents generating implausible counterfactuals, such as
the feature of packet size lower than zero. Second, we introduce a
proximity loss denoted as Prox to encourage the CF traffic 𝑥𝑐𝑓 to be close
to the original traffic 𝑥. We employ the Mahalanobis Distance (MD)
to measure the proximity, given its ability to handle the correlations
among traffic features and in-distribution deviation. Here, 𝐶 ∈ R𝐷×𝐷

represents the inverse of the covariance matrix of the traffic dataset:

Prox =
√

(𝑥 − 𝑥𝑐𝑓)𝑇𝐶−1(𝑥 − 𝑥𝑐𝑓). (5)

Sparsity. This property requires that the original traffic 𝑥 should
modify as few features as possible to yield the CF traffic 𝑥𝑐𝑓 . It helps to
pinpoint the most important features that lead to the decision, thus con-
tributes to concise and non-trivial explanation. Sparse explanations are
especially critical for security applications, as dense changes in traffic
features would obscure the underlying rationale behind the detection,
leading to confusion in understanding decisions and overwhelming the
SOCs in inspecting explanations. To achieve sparsity, we introduce a
sparsity loss in CF generation process based on the 𝓁1 Norm, which is
denoted as Spars:

Spars = ‖𝑥 − 𝑥𝑐𝑓‖1. (6)

Overall, the multi-objective loss function for generating counterfac-
tual traffic is illustrated in Eq. (7), where 𝜆1 and 𝜆2 are the hyperpa-
rameters controlling the proximity and sparsity properties:
 = Val + 𝜆1 ⋅ Prox + 𝜆2 ⋅ Spars. (7)
5
4.3.2. CF explanation phase
After generating CF traffic, CANDICE-explainer derives CF explana-

tions by: (1) comparing the differences between original traffic and its
counterfactuals; (2) ranking the 𝑡𝑜𝑝 − 𝑘 traffic features as the explana-
tion. The 𝑡𝑜𝑝−𝑘 features are ranked based on their importance to model
decision-making. For example, the approximation-based approaches
LEMNA [12] and xNIDS [13] assigned importance scores to input traffic
features by examining the coefficients of the surrogate model. However,
since counterfactuals are primarily focused on modifying features to
change the predictions, they are unable to directly calculate the im-
portance scores of features. Inspired by [58], we solve this problem
by generating multiple counterfactuals for a single traffic example and
calculating the change frequency of each counterfactual feature as its
importance score. The intuition is that a feature that changes more
frequently when generating counterfactual traffic examples is likely to
be more important. Specifically, we generate 𝑑 counterfactuals for a
𝑛-dimensional traffic example using our CF traffic generation method.
Then, we construct a change matrix 𝑀 , where 𝑀𝑖,𝑗 indicates whether
the 𝑗th traffic feature 𝑥𝑗 in the 𝑖th counterfactual example 𝑥𝑐𝑓 ,𝑖 has
changed:

𝑀𝑖𝑗 =

{

1 if 𝑥𝑗 ≠ 𝑥𝑐𝑓 ,𝑖,𝑗
0 if 𝑥𝑗 = 𝑥𝑐𝑓 ,𝑖,𝑗 .

(8)

The feature importance of 𝑥𝑗 is then calculated by:

𝐹𝐼𝑗 =
1
𝑑

𝑑
∑

𝑖=1
𝑀𝑖𝑗 . (9)

A higher value of change frequency indicates that the corresponding
feature frequently occurs in different counterfactuals, suggesting that
the model strongly relies on that feature for prediction. In our experi-
ments in Section 5, we set 𝑑 = 5 and rank the 𝑡𝑜𝑝 − 10 counterfactual
features to obtain the explanation.

CANDICE-explainer finally outputs an Intrusion Profile that provides
detailed description of the detected attack. It consists of two main parts:
Attack Information and Explanation. The attack information field is a
tuple consisting of five elements:

∙ Entity : The identifier of the attacker and the victim, including IP
address, MAC address, ports, protocols, etc.

∙ Attack Type: The category of attack identified by the CANDICE-
detector, such as DoS and Probing.

∙ Attack Description: The coarse-grained description of the attack
methods and targets.

∙ Detection Time: The timestamp when the attack is detected by
CANDICE-detector.

∙ Detection Confidence: The CANDICE-detector’s confidence score in
identifying the attack.

In addition, the explanation field contains two elements:

∙ Key Features: The 𝑡𝑜𝑝 − 𝑘 traffic features and their difference
derived from counterfactual explanation, which indicate the key
evidence of detection results.

∙ Anomaly Understanding : The fine-grained description of attack be-
havior based on counterfactual analysis, integrating information
provided by the 𝑡𝑜𝑝 − 𝑘 counterfactual features.

5. Experiments

In this section, we first outline the experimental setup and present
two usage examples to demonstrate how CANDICE detects and explains
intrusions in network traffic. Then we illustrate the experimental results
for evaluating: (1) the intrusion detection performance of CANDICE-
detector, and (2) the explanation performance of CANDICE-explainer.

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
Fig. 2. Correlation heatmaps of traffic features of two attacks. (a) DoS attack from
CIC-IDS2017-improved dataset. (b) Mirai attack from CIC-IoT2023 dataset.

5.1. Experimental setup

5.1.1. Datasets
We conduct the experiments on four representative traffic datasets

used for network intrusion detection. As shown in Table 2, these
datasets involve diverse network environments and attack types, al-
lowing for a comprehensive evaluation of CANDICE. The details of the
datasets are as follows:

∙ CIC-IoT2023 [59]: This dataset is collected from real IoT de-
vices and networks, with traffic features extracted using the CI-
CFlowMeter tool developed by the Canadian Institute for Cyberse-
curity. We select four attacks in our experiments: DDoS-SlowLoris,
Mirai-udpplain, Recon-Host Discovery, and DNS-Spoofing, with
each type comprising 15000 samples represented by 46 traffic
features.

∙ CIC-IDS2017-improved [60]: This dataset is a refined version of
the CIC-IDS2017 [61] dataset, which is collected over 5 days of
real-world network traffic. We select 1% of benign traffic and
10% of malicious traffic from Portscan and DoS-Hulk attacks, with
each sample consisting of 72 traffic features.

∙ CIC-DoHBrw-2020 [62]: This dataset focuses on the emerging
DoH tunneling threats introduced by the DNS over HTTPS proto-
col, such as Command-and-Control (C2) communication and data
exfiltration. Each traffic sample is labeled as benign or malicious,
consisting of 28 traffic features extracted by the DoHlyzer tool.

∙ NSL-KDD [63]: This is a typical dataset that has been widely
used for network intrusion detection. We use the DoS and Probing
attacks for the experiments, with each traffic sample containing
41 traffic features.

To obtain deeper insights into the data used in our experiments, we
perform Exploratory Data Analysis (EDA) on the above datasets. Fig.
2 shows the correlation heatmaps of traffic features for two attacks,
i.e., DoS attack from CIC-IDS2017-improved dataset and Mirai attack
from CIC-IoT2023 dataset. We find that the traffic features of the
two attacks are highly correlated, indicating the existence of traffic
pattern entanglement as introduced in Section 1. This observation
further supports our motivation, as well as the rationality of the chosen
dataset for experiments. Each dataset is split into training and testing
sets at a ratio of 80%:20%. The training set is further split into different
training and validation subsets via 5-fold cross-validation, as illustrated
in Section 5.1.2. The testing set is held-out during training, in order to
ensure unbiased evaluation of model performance. Note that the traffic
features in the datasets need to be further normalized and encoded.
To avoid data leakage, we only apply One-Hot Encoding to categorical
features and StandardScaler to continuous features in the training data
to build the data preprocessor.
6
5.1.2. CANDICE implementation
For the CANDICE-detector, we implement a symmetric encoder–

decoder using MLP neural network with hidden layers of dimensions
128-64-32-16-8. The dimensions of input and output layers are adjusted
based on the numbers of features and classes of each dataset. Each
hidden layer uses the ReLU activation function, and the Adam opti-
mizer is employed with a learning rate of 0.0001 during training. The
model is trained for a maximum of 100 epochs with a batch size of
256. As mentioned in Section 4.2, three types of CANDICE-detectors
are deployed in the experiments, referred to respectively as CANDICE-
SVM, CANDICE-RF, and CANDICE-MLP. We use the RBF kernel for
CANDICE-SVM and set the number of trees to 100 for CANDICE-RF.
The MLP classifier is implemented as a two-layer architecture, with
each layer containing 8 nodes. To ensure robust model training, we
performed 5-fold cross-validation with an early-stopping mechanism to
prevent overfitting. For the CANDICE-explainer, we utilize the Adam
optimizer to optimize counterfactual generation over 500 iterations.
Five counterfactuals are generated for each to-be-explained traffic in-
stance to assess the importance scores of features. As soon as a valid
counterfactual is generated, an early stopping mechanism is applied to
finish the optimization process.

For hyperparameter tuning, we utilize Bayesian Optimization [64]
to find the optimal hyperparameters of CANDICE. There are two groups
of hyperparameters that are configurable in CANDICE framework. For
the CANDICE-detector, we set the dimension of disentangled traffic
representation to 8 and 𝛽 = 2 in Eq. (3). For the CANDICE-explainer,
we set 𝜆1 = 𝜆2 = 0.5 for the proximity loss and sparsity loss in Eq. (7).

5.1.3. Baselines and metrics
For evaluating the detection performance of CANDICE-detectors,

we construct a standard Vanilla AutoEncoder (Vanilla-AE) [65] as the
baseline. The difference between Vanilla-AE and CANDICE-detector is
that Vanilla-AE does not perform disentangled representation learning,
which is used to evaluate the effectiveness of our method. The Vanilla-
AE was configured to have the same architecture as CANDICE-MLP
and trained on the same datasets listed in Table 2. Four commonly
used metrics in intrusion detection are evaluated in this experiment,
including Accuracy, Recall, F1-score, and False Positive Rate (FPR).

For evaluating the explanation performance of CANDICE-explainer,
we use the explanation methods listed in Table 1 as the baselines for
comparison. The details of these methods are described in Section 2. We
implement them following the configurations in original works [12–
15]. The fidelity, sparsity, stability, and efficiency of explanation are
evaluated under the three CANDICE-detectors and Vanilla-AE. The
definitions and calculation methods for these metrics are described in
Section 5.4.

5.2. Examples: detecting and explaining network intrusions with CANDICE

We present two examples to illustrate the usage of CANDICE in
detecting and explaining network attacks. The first example involves a
DoH tunneling attack from the CIC-DoHBrw-2020 dataset [62], while
the second one is a DoS-TCP-flood attack in IoT environment [59].

The traffic are first fed into the CANDICE-detector, which outputs
the predicted attack type and the confidence score of the detection.
We use CANDICE-MLP as the underlying detector for both examples.
Then, the CANDICE-explainer is activated to explain the detection
results. It outputs traffic features that contribute most to the decision
as explanation, as well as the difference in feature values between
the original traffic and counterfactual traffic. The description of the
features are illustrated in Table 3. Here, we showcase the 𝑡𝑜𝑝 − 3
explanatory features for simplicity, where ↑ indicates that the feature
value of the original traffic is larger than the counterfactual traffic,
and ↓ the opposite. Finally, CANDICE integrates attack information and
explanation into a human-readable intrusion profile. Note that all host
information (e.g., IP addresses) is virtualized and not related to any
actual network or device.

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
Table 2
Datasets used in the experiments.
 Datasets Attack types Traces Features
 CIC-IoT2023 [59] DDoS-SlowLoris, Mirai-udpplain, Recon-Host Discovery, 75,000 46
 DNS-Spoofing, Benign
 CIC-IDS2017-improved [60] DoS-Hulk, PortScan, Benign 47,622 72
 CIC-DoHBrw-2020 [62] Benign-DoH, Malicious-DoH 39,000 28
 NSL-KDD [63] DoS, Probing, Benign 42,762 41
Table 3
Feature description of the two examples.
 Attack Feature Description

DoH Tunneling

Duration Time between first and last packet received in the flow
 FlowBytesSent Number of flow bytes sent
 PacketLength Variance Variance of Packet Length

DoS-TCP-flood

Flow_duration Time between first and last packet received in the flow
 Header_length Length of packet header in bits
 AVG Average packet length in the flow
5.2.1. Example 1
Fig. 3(a) shows the intrusion profile of a DoH tunneling attack exam-

ple. The CANDICE-detector successfully identifies the attack with a con-
fidence score of 0.87. The 𝑡𝑜𝑝−3 key explanatory features pinpointed by
CANDICE-explainer are Duration, FlowBytesSent and PacketLengthVari-
ance. The sharp increase in Feature 1 indicates that the detected traffic
lasts abnormally longer compared to normal DNS lookups, suggesting
that the connection is possibly being exploited as a covert channel. Fea-
ture 2 further confirms the presence of anomalous data transmission,
whereby bytes sent by the host is significantly larger than standard DNS
queries. Feature 3 implies a large variance of packet lengths within
a traffic flow, which is also anomalous because legitimate domains
generally have similar lengths and result in smaller variance.

5.2.2. Example 2
Fig. 3(b) shows the intrusion profile of a DoS-TCP-flood attack

example in IoT environment, which is successfully detected by the
CANDICE-detector with a confidence score of 0.90. The 𝑡𝑜𝑝 − 3 key
explanatory features identified by CANDICE-explainer are Flow_dura-
tion, Header_length, and AVG. As opposite to Example 1, the decrease in
Feature 1 of the DoS-TCP-flood sample indicates a significantly shorter
flow duration compared to normal connections. This traffic pattern
aligns with typical DoS attack behavior, where the attacker sends
short-lived spoofed requests at a high frequency instead of maintain-
ing a relatively long-standing connection. Furthermore, we examined
the original dataset and observed that DoS-TCP-flood samples exhibit
smaller packet headers and highly consistent within-flow packet sizes
compared to benign traffic, which supports our explanations of Features
2 and Feature 3. This pattern can be attributed to DoS-TCP-flood attack
uses minimal-sized spoofed packets to establish TCP connections, in
contrast to legitimate traffic that carries actual payload data and thus
exhibits significant variations in packet lengths.

These two examples demonstrate that the proposed CANDICE
framework can accurately detect intrusions and provide faithful ex-
planations. By analyzing the fine-grained explanation of the detected
attack in intrusion profile, the SOCs can more effectively understand
the attack behavior and develop countermeasures, e.g., configuring
filtering rules based on the counterfactual features.

5.3. Evaluation of CANDICE-detector

5.3.1. Intrusion detection performance
The comparison results of the three CANDICE-detectors and Vanilla-

AE are shown in Fig. 4. Compared to Vanilla-AE, the detectors demon-
strate superior intrusion detection performance across all four datasets.
Specifically, CANDICE-SVM achieves the highest detection accuracy of
98.95% on the CIC-IoT2023 dataset, showing an increase of 3.29%
7
Table 4
Comparison results of generalization performance on CIC-IDS2017-improved dataset.
 Detectors Accuracy Recall F1-score FPR
 CANDICE-SVM 94.55 ± 0.53 93.73 ± 0.81 94.27 ± 0.73 3.64 ± 0.71
 CANDICE-RF 92.27 ± 1.02 92.13 ± 0.92 92.21 ± 0.87 3.47 ± 0.51
 CANDICE-MLP 94.67 ± 0.47 93.87 ± 0.56 94.56 ± 0.54 3.16 ± 0.40
 Vanilla-AE 91.64 ± 1.08 90.57 ± 1.43 91.43 ± 1.12 3.83 ± 0.81

over Vanilla-AE. The results on CIC-IDS2017-improved dataset further
demonstrate the superiority of CANDICE, which outperforms Vanilla-
AE with up to 5.68%, 3.60%, and 5.64% improvements in accuracy,
recall, and F1-score, respectively. As for the CIC-DoHBrw-2020 dataset,
although Vanilla-AE is slightly superior with the lowest FPR of 2.31%, it
underperforms our CANDICE-detectors on the other three metrics. For
the NSL-KDD dataset, all four detectors demonstrate comparable detec-
tion performance, while CANDICE-RF stands out with the lowest FPR of
1.13%. The experimental results indicate that our CANDICE-detectors
can effectively identify network intrusions with a high accuracy and
low false positive rate. To verify that the observed improvements are
statistically meaningful, we further performed paired t-test [66] on the
5-fold cross-validation results of each dataset. All tests comparing the
CANDICE-detectors against the baseline Vanilla-AE yielded statistically
significant results (𝑝 < 0.05), confirming the superiority of our method.
We attribute this superiority to the gains of traffic representation
disentanglement, which extracts intrinsic and interpretable behavioral
patterns from complex traffic inputs, enabling more accurate intrusion
detection.

5.3.2. Generalization performance
Beyond detecting known attacks, we evaluate CANDICE-detector’s

ability to generalize to unseen attacks. We conduct experiments on the
CIC-IDS2017-improved dataset using a leave-one-class-out strategy to
simulate a real-world zero-day attack scenario. Specifically, we itera-
tively pick one attack type as the previously unseen attack by discarding
the corresponding samples in the training set and identifying them in
the testing set. Then, we train the detectors on the remaining training
data and observe whether they can identify the unknown traffic as
malicious. We repeat this process for each attack type and report
the mean and standard deviation in Table 4. The results demonstrate
that the CANDICE-detectors consistently outperform Vanilla-AE across
all metrics. Specifically, CANDICE-MLP achieves the best generaliza-
tion performance among all detectors. It shows the highest accuracy
(94.67% ± 0.47) and recall (93.87% ± 0.56), with improvements of up
to 3.03% and 3.30% compared to Vanilla-AE, respectively. CANDICE-
MLP also achieves the best F1-score (94.56% ± 0.54), indicating its
superiority in effectively detecting unknown attacks while maintaining
low false positives. The results further validate the effectiveness of the

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
Fig. 3. Examples of CANDICE usage. (a) Intrusion profile of DoH Tunneling attack. (b) Intrusion profile of DoS-TCP-flood attack.
Fig. 4. Comparison results of intrusion detection performance on four traffic datasets.
(a) CIC-IoT2023 dataset. (b) CIC-IDS2017-improved dataset. (c) CIC-DoHBrw-2020
dataset. (d) NSL-KDD dataset.

DTR learning in CANDICE design, as it excels at capturing the essential
behavioral difference between benign and malicious traffic. This core
ability allows the CANDICE-detector to recognize novel deviations
from normal traffic patterns when an unseen attack emerges, thereby
enabling its superior generalization capability.

5.4. Evaluation of CANDICE-explainer

5.4.1. Explanation fidelity
This criterion evaluates whether the explainer accurately captures

the relevant features of a prediction. We adopt the Descriptive Accuracy
(DA) [8] to assess the fidelity of explanations. Given a traffic sample
8
𝑥 and its prediction label 𝑦𝑝𝑟𝑒𝑑 generated by DL-NIDS 𝑓 (⋅), we first
remove the 𝑡𝑜𝑝 − 𝑘 explanatory features pinpointed by the explanation
methods. We then compute the score of prediction 𝑦𝑝𝑟𝑒𝑑 without the
𝑡𝑜𝑝 − 𝑘 features:

DA𝑘 (𝑥, 𝑓) = 𝑓
(

𝑥 ∣ 𝑟𝑒𝑚𝑜𝑣𝑒(𝑥1,… , 𝑥𝑘)
)

. (10)

If the selected features are actually relevant to the prediction 𝑦𝑝𝑟𝑒𝑑 ,
the accuracy should decrease drastically after performing
𝑟𝑒𝑚𝑜𝑣𝑒(𝑥1,… , 𝑥𝑘), since the model loses critical information for making
a correct prediction. We set the value of modified features to zero and
calculate the Average Descriptive Accuracy (ADA) [8] for all samples
in the dataset.

As illustrated in Fig. 5, our CANDICE-explainer has the steepest
drop in ADA among all security systems compared to other explanation
methods. Specifically, the ADA of CANDICE-MLP decreases to 56% with
only two features modified. The results demonstrate that CANDICE-
explainer can effectively identifies features that are highly relevant to
the predictions of DL-NIDS. We attribute the high-fidelity of CANDICE-
explainer to two reasons. First, the validity constraint applied to Eq.
(7) requires that the generated counterfactual traffic 𝑥𝑐𝑓 explicitly
has a different prediction label to 𝑥, i.e., 𝑦𝑐𝑓 ≠ 𝑦𝑝𝑟𝑒𝑑 . This forces
CANDICE-explainer to find the features that truly affect the decision
boundary to change the prediction. Second, the sparsity constraint
requires CANDICE-explainer modifies as few features as possible, mak-
ing the selected features both important and concise to satisfy the
constraints. As a result, CANDICE-explainer finds the smallest subset of
features that are critical to the prediction, thereby ensuring the fidelity
of explanation.

5.4.2. Explanation sparsity
This criterion evaluates whether the explainer generates sparse

explanations with a limited number of features being changed, in order
to reduce the workload of manual inspection and to provide concise
explanations. We use the Mass Around Zero (MAZ) [8] to evaluate
the sparsity of explanation. Specifically, we first scale the importance

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
Fig. 5. Fidelity evaluation of explanation methods. (a) CANDICE-SVM. (b) CANDICE-RF. (c) CANDICE-MLP. (d) Vanilla-AE.
Fig. 6. Sparsity evaluation of explanation methods. (a) CANDICE-SVM. (b) CANDICE-RF. (c) CANDICE-MLP. (d) Vanilla-AE.
scores of counterfactual features to the range [0, 1] and compute their
normalized histogram ℎ. The MAZ is then calculated as follows:

MAZ(𝑟) = ∫

1

0
ℎ(𝑥)dx for 𝑟 ∈ [0, 1]. (11)

The sparse explanation is supposed to have a steep slope near
zero in MAZ, as most of the features are not marked as relevant. The
comparison results in Fig. 6 show that CANDICE-explainer outperforms
baseline methods with the steepest slopes across all settings, demon-
strating its superior performance in generating sparse explanations.
Among all the explainers, LEMNA [12] shows the poorest ability in
providing sparse explanation. This limitation stems from its underlying
assumption that all features contribute similarly to the decision, leading
to most of them being marked as relevant. In contrast, CANDICE-
explainer prevents dense explanation by adding sparsity constraint to
the counterfactual traffic generation process. In addition, the constraint
of only modifying mutable features to generate feasible counterfactual
traffic also promotes the sparsity.

5.4.3. Explanation stability
This criterion evaluates whether the explainer provides consistent

explanations for the same detection result over multiple runs. We assess
the stability of explanation by calculating the average Intersection Size
(IS) [8] of explanatory features:

IS(𝑖, 𝑗) =
|𝑇𝑖 ∩ 𝑇𝑗 |

𝑘
, (12)

where 𝑇𝑖 and 𝑇𝑗 are the 𝑡𝑜𝑝 − 𝑘 explanatory feature sets for the 𝑖th
and 𝑗th run. For a stable explanation method, the intersection size is
supposed to be close to 1, which indicates that the 𝑡𝑜𝑝 − 𝑘 features are
identical over multiple runs. In the experiment, we set 𝑘 = 10 and run
the explanation methods for five times.

As shown in Table 5, DeepAID [15] achieves an intersection size of
1.0 in all settings, indicating perfect stability of explanation. DeepAID
benefits from its white-box property, i.e., using backpropagation to
explain the model’s decision, which ensures the consistency over dif-
ferent runs. On the other hand, the approximation-based methods
(LEMNA [12] and xNIDS [13]), perturbation-based methods
(CADE [14] and CANDICE-explainer), and SHAP [27] show sub-optimal
performance due to the randomness of their sampling/perturbation
9
Table 5
Stability evaluation of explanation methods.
 Explanation methods CANDICE-SVM CANDICE-RF CANDICE-MLP Vanilla-AE
 LEMNA [12] 0.509 0.481 0.437 0.488
 CADE [14] 0.537 0.540 0.547 0.393
 DeepAID [15] 1 1 1 1
 xNIDS [13] 0.680 0.677 0.685 0.630
 SHAP [27] 0.625 0.597 0.572 0.603
 CANDICE-explainer 0.701 0.683 0.729 0.635

Fig. 7. Efficiency evaluation of explanation methods on two datasets. (a) CIC-IDS2017-
improved dataset. (b) CIC-IoT2023 dataset.

process. However, our CANDICE-explainer still outperforms all other
explainers, while overcoming the limitation of DeepAID which requires
full access to model details. It provides stable explanations on all
DL-NIDS systems, especially on CANDICE-MLP with a stability score
of 0.729. We attribute the superior stability to the fact that, when
generating counterfactual traffic under the three constraints, CANDICE-
explainer is forced to constantly seek the most critical changes that lead
to the reverse prediction. This objective-guided selection of explanatory
features reduces the variation introduced by the randomness.

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
5.4.4. Explanation efficiency
This criterion evaluates whether the explainer is efficient in generat-

ing explanations with limited run-time overhead. When intrusion alerts
arise, the security experts need to quickly understand the alerts to take
immediate countermeasures to respond. Hence, the explanations should
be available within a reasonable time, without obstructing the work-
flow of inspection. We assess the explanation efficiency by measuring
the run-time required for each explainer to explain 2500 traffic sam-
ples. For LEMNA [12], xNIDS [13], and CADE [14], the time required
for necessary procedures to generate explanations (e.g., training the
surrogate model) is included. We use CANDICE-MLP as the underlying
detector, repeating the experiment for five times with random sample
selection and recording the average run-time overhead. The results on
CIC-IDS2017-improved and CIC-IoT2023 datasets are shown in Fig. 7.
LEMNA and CADE show sub-optimal efficiency due to the additional
time overhead introduced by building additional learning models. The
white-box method DeepAID [15] shows the best efficiency, as it uti-
lizes gradient information and back-propagation to derive explanations,
which is not easily available in practice. Regarding the black-box meth-
ods, CANDICE-explainer is 10x faster than SHAP [27] and LEMNA [12],
two of the most popular explanation methods in the security domain.
Of all the baselines, SHAP [27] shows the worst performance in effi-
ciency because it requires extensive sampling of feature coalitions to
approximate the Shapley values, leading to high computational costs.
In contrast, CANDICE benefits from its goal-oriented optimization to
guide the generation of explanations, combined with an early-stopping
mechanism and limited search space to further speed up the process.

6. Discussion

The core objective of this work is to enhance the interpretability
of AI-based NIDS. The experimental results in Section 5 demonstrate
the effectiveness of the proposed CANDICE framework, in terms of
explanation fidelity, sparsity, stability, and efficiency. In this section,
we discuss the trade-offs between different explanation types (feature
attribution vs. counterfactuals) and the reasons behind our choice of
counterfactual explanations to explain NIDS, as well as the limitations
and future work.
Why counterfactual explanations for security applications? As outlined
in Table 1, local post-hoc explanation methods can be broadly cate-
gorized into Feature Attribution-based and example-based approaches.
FA-based methods (LEMNA, xNIDS and SHAP) focus on identifying
the contribution of individual input feature to model prediction, while
example-based methods (DeepAID, CADE and CANDICE) explain model
decisions by finding reference examples and comparing the differ-
ences between the references and the query instance. Counterfactual
explanation, as we explored in this work, are the most typical example-
based explanations in the field of Explainable AI. We discuss the
trade-offs between these two paradigms in terms of fidelity, com-
putational overhead, and human understanding. (1) fidelity : As the
most important criterion for evaluating the explanation quality, we
show in Section 5.4.1 that CANDICE outperform FA-based methods
(LEMNA, xNIDS and SHAP) regarding fidelity. CANDICE provides high-
fidelity explanations via two mechanisms in its design. First, it mitigates
spurious explanation by learning disentangled traffic patterns that are
more interpretable. Second, it generates counterfactuals that explic-
itly cross the model’s decision boundary to ensure the explanation
is necessary [58], mitigating the risk of unfaithfulness introduced by
approximation-based FA methods such as LEMNA. (2) computational
overhead: While CANDICE requires to solve a optimization problem
to generate counterfactuals, as shown in Section 5.4.4, it still out-
performs FA-based methods like SHAP with an reasonable run-time.
In addition, CANDICE can further improve efficiency through amor-
tized generation of counterfactuals [67]. (3) human understanding : FA-
based methods provide explanations by outputting a list of importance
10
scores of features. However, regarding security domain, the analysts
are more concerned with the degree of deviation in the features that
trigger an anomaly. Counterfactuals naturally provide such an intuitive
understanding by demonstrating the minimal feature changes that re-
verse the model decision. Furthermore, we provide an intrusion profile
along with the explanation in CANDICE, which helps the end-users to
thoroughly understanding the attack.
Limitations and future work. Our work demonstrates the potential of
counterfactual explanations in improving the interpretability of AI-
based NIDS, yet several limitations remain and warrant future in-
vestigation. First, CANDICE currently focuses on generating tailored
counterfactuals for individual detection results and instances requiring
explanation. Although providing high-quality explanations, the per-
instance optimization may hinder its scalability in high-throughput
NIDS deployments. For future work, we plan to explore amortized
generation of counterfactual explanations [67], e.g., training a gener-
ative model to produce counterfactuals for multiple input datapoints
at once [68]. Second, while CANDICE’s explanations offer intuitive
guidance for designing defense strategies (e.g., by suggesting which
features to modify and how), the development of low-cost, practical
countermeasures remains an area for further exploration. One possible
direction is to incorporate causal intervention [69] to identify the true
cause-and-effect relationships in network traffic, which helps derive
more practical defense rules. Third, CANDICE is now designed to detect
and explain anomalies in network traffic. In the future work, we plan
to extend our explainable intrusion detection framework to broader
cybersecurity domains, such as binary code analysis [34] and API-level
anomaly detection [70].

7. Conclusion

In this paper, we propose CANDICE, an explainable and intelligent
framework for detecting and explaining intrusions in network traffic.
CANDICE provides high-quality explanations for the detection results
of NIDS by disentangling the traffic representations and generating
counterfactual explanations. The evaluation results show that CANDICE
outperforms existing explanation methods in terms of fidelity, spar-
sity, stability, and efficiency, while achieving high accuracy of above
96.10% in detecting intrusions. In addition, we showcase how CAN-
DICE helps end-users better understand the detected attacks through
a human-readable intrusion profile, which can further be utilized for
developing practical and actionable defense mechanisms.

CRediT authorship contribution statement

Shuhua Li: Writing – original draft, Validation, Methodology, Inves-
tigation, Conceptualization. Ruiying Du: Writing – review & editing,
Supervision, Funding acquisition, Conceptualization. Jing Chen: Writ-
ing – review & editing, Project administration, Funding acquisition.
Kun He: Writing – review & editing, Investigation, Funding acquisition.
Cong Wu: Writing – review & editing, Validation. Yebo Feng: Writing
– review & editing, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors thank the editor and anonymous reviewers for their
valuable comments. This research was supported in part by the Na-
tional Key R&D Program of China under grant No. 2022YFB3103300.

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
Data availability

Data will be made available on request.

References

[1] Z. Ahmad, A.S. Khan, C.W. Shiang, J. Abdullah, F. Ahmad, Network intrusion
detection system: A systematic study of machine learning and deep learning
approaches, Trans. Emerg. Telecommun. Technol. 32 (1) (2021).

[2] G. Pang, C. Shen, L. Cao, A. van den Hengel, Deep learning for anomaly
detection: A review, ACM Comput. Surv. 54 (2) (2022) 38:1–38:38.

[3] I.H. Sarker, A.S.M. Kayes, S. Badsha, H. AlQahtani, P.A. Watters, A. Ng,
Cybersecurity data science: an overview from machine learning perspective, J.
Big Data 7 (1) (2020) 41.

[4] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444.

[5] C. Yin, Y. Zhu, J. Fei, X. He, A deep learning approach for intrusion detection
using recurrent neural networks, IEEE Access 5 (2017) 21954–21961.

[6] N. Shone, N.N. Tran, V.D. Phai, Q. Shi, A deep learning approach to network
intrusion detection, IEEE Trans. Emerg. Top. Comput. Intell. 2 (1) (2018) 41–50.

[7] Y. Mirsky, T. Doitshman, Y. Elovici, A. Shabtai, Kitsune: An ensemble of
autoencoders for online network intrusion detection, in: Proc. Netw. Distrib. Syst.
Secur. Symp., NDSS, 2018.

[8] A. Warnecke, D. Arp, C. Wressnegger, K. Rieck, Evaluating explanation methods
for deep learning in security, in: Proc. IEEE Eur. Symp. Secur. Privacy, EuroS&P,
2020, pp. 158–174.

[9] N. Capuano, G. Fenza, V. Loia, C. Stanzione, Explainable artificial intelligence
in CyberSecurity: A survey, IEEE Access 10 (2022) 93575–93600.

[10] B.S. Rawal, G. Manogaran, A. Peter, Cybersecurity and Identity Access
Management, Springer, 2023.

[11] S. Axelsson, The base-rate fallacy and the difficulty of intrusion detection, ACM
Trans. Inf. Syst. Secur. 3 (3) (2000) 186–205.

[12] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, X. Xing, LEMNA: Explaining deep learning
based security applications, in: Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., CCS, 2018, pp. 364–379.

[13] F. Wei, H. Li, Z. Zhao, H. Hu, XNIDS: Explaining deep learning-based network
intrusion detection systems for active intrusion responses, in: Proc. USENIX
Secur. Symp., USENIX, 2023, pp. 4337–4354.

[14] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, G. Wang, CADE:
Detecting and explaining concept drift samples for security applications, in: Proc.
USENIX Secur. Symp., USENIX, 2021, pp. 2327–2344.

[15] D. Han, Z. Wang, W. Chen, Y. Zhong, S. Wang, H. Zhang, J. Yang, X. Shi, X. Yin,
DeepAID: Interpreting and improving deep learning-based anomaly detection in
security applications, in: Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
CCS, 2021, pp. 3197–3217.

[16] G. Srivastava, R.H. Jhaveri, S. Bhattacharya, S. Pandya, Rajeswari, P.K.R. Mad-
dikunta, G. Yenduri, J.G. Hall, M. Alazab, T.R. Gadekallu, XAI for cybersecurity:
State of the art, challenges, open issues and future directions, 2022, arXiv
preprint arXiv:2206.03585.

[17] X. Wang, H. Chen, Z. Wu, W. Zhu, et al., Disentangled representation learning,
IEEE Trans. Pattern Anal. Mach. Intell. (2024).

[18] I.F. Kilincer, F. Ertam, A. Sengür, Machine learning methods for cyber security
intrusion detection: Datasets and comparative study, Comput. Netw. 188 (2021)
107840.

[19] M. Fatima, O. Rehman, S. Ali, M.F. Niazi, ELIDS: Ensemble feature selection for
lightweight IDS against DDoS attacks in resource-constrained IoT environment,
Future Gener. Comput. Syst. 159 (2024) 172–187.

[20] D.D. Bikila, J. Čapek, Machine learning-based attack detection for the internet
of things, Future Gener. Comput. Syst. 166 (2025) 107630.

[21] W. Wang, M. Zhu, X. Zeng, X. Ye, Y. Sheng, Malware traffic classification using
convolutional neural network for representation learning, in: Proc. Int. Conf. Inf.
Netw., ICOIN, 2017, pp. 712–717.

[22] X. Li, W. Chen, Q. Zhang, L. Wu, Building auto-encoder intrusion detection
system based on random forest feature selection, Comput. Secur. 95 (2020)
101851.

[23] R.D. Corin, S. Millar, S. Scott-Hayward, J.M. del Rincón, D. Siracusa, Lucid:
A practical, lightweight deep learning solution for DDoS attack detection, IEEE
Trans. Netw. Serv. Manag. 17 (2) (2020) 876–889.

[24] Z. Jin, J. Zhou, B. Li, X. Wu, C. Duan, FL-IIDS: A novel federated learning-based
incremental intrusion detection system, Future Gener. Comput. Syst. 151 (2024)
57–70.

[25] D.L. Aguilar, M.A. Medina-Pérez, O. Loyola-González, K.R. Choo, E. Bucheli-
Susarrey, Towards an interpretable autoencoder: A decision-tree-based autoen-
coder and its application in anomaly detection, IEEE Trans. Dependable Secur.
Comput. 20 (2) (2023) 1048–1059.
11
[26] M.T. Ribeiro, S. Singh, C. Guestrin, Why should I trust you?: Explaining the
predictions of any classifier, in: Proc. ACM Int. Conf. Knowl. Discovery Data
Mining, SIGKDD, 2016, pp. 1135–1144.

[27] S.M. Lundberg, S. Lee, A unified approach to interpreting model predictions, in:
Proc. Adv. Neural Inf. Process. Syst., NeurIPS, 2017, pp. 4765–4774.

[28] G. Plumb, D. Molitor, A. Talwalkar, Model agnostic supervised local explanations,
in: Proc. Adv. Neural Inf. Process. Syst., NeurIPS, 2018, pp. 2520–2529.

[29] R.C. Fong, A. Vedaldi, Interpretable explanations of black boxes by meaningful
perturbation, in: Proc. IEEE Int. Conf. Comput. Vis., ICCV, 2017, pp. 3449–3457.

[30] M. Wu, M.C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, F. Doshi-Velez, Beyond
sparsity: Tree regularization of deep models for interpretability, in: Proc. AAAI
Conf. Artif. Intell., 2018, pp. 1670–1678.

[31] M. Ibrahim, M. Louie, C. Modarres, J.W. Paisley, Global explanations of neural
networks: Mapping the landscape of predictions, in: Proc. AAAI/ACM Conf. AI,
Ethics, and Soc., AIES, 2019, pp. 279–287.

[32] A. Nascita, A. Montieri, G. Aceto, D. Ciuonzo, V. Persico, A. Pescapè, XAI
meets mobile traffic classification: Understanding and improving multimodal
deep learning architectures, IEEE Trans. Netw. Serv. Manag. 18 (4) (2021)
4225–4246.

[33] C. Smutz, A. Stavrou, Malicious PDF detection using metadata and structural
features, in: Proc. Annu. Comput. Secur. Appl. Conf., ACSAC, 2012, pp. 239–248.

[34] E.C.R. Shin, D. Song, R. Moazzezi, Recognizing functions in binaries with neural
networks, in: Proc. USENIX Secur. Symp., USENIX, 2015, pp. 611–626.

[35] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and smoothness
via the fused lasso, J. R. Stat. Soc. B: Stat. Methodol. 67 (1) (2005) 91–108.

[36] R. Fong, M. Patrick, A. Vedaldi, Understanding deep networks via extremal
perturbations and smooth masks, in: Proc. IEEE Int. Conf. Comput. Vis., ICCV,
2019, pp. 2950–2958.

[37] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-CAM:
Visual explanations from deep networks via gradient-based localization, in: Proc.
IEEE Int. Conf. Comput. Vis., ICCV, 2017, pp. 618–626.

[38] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through
propagating activation differences, in: Proc. Int. Conf. Mach. Learn., ICML, 2017,
pp. 3145–3153.

[39] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks:
Visualising image classification models and saliency maps, in: Proc. Int. Conf.
Learn. Represent., ICLR, 2014.

[40] L. Shapley, A value for N-person games, 1953.
[41] A. Oseni, N. Moustafa, G. Creech, N. Sohrabi, A. Strelzoff, Z. Tari, I. Linkov,

An explainable deep learning framework for resilient intrusion detection in IoT-
enabled transportation networks, IEEE Trans. Intell. Transp. Syst. 24 (1) (2023)
1000–1014.

[42] R. Kalakoti, H. Bahsi, S. Nõmm, Improving IoT security with explainable AI:
quantitative evaluation of explainability for IoT botnet detection, IEEE Internet
Things J. 11 (10) (2024) 18237–18254.

[43] T. Zebin, S. Rezvy, Y. Luo, An explainable AI-based intrusion detection system
for DNS over HTTPS (DoH) attacks, IEEE Trans. Inf. Forensics Secur. 17 (2022)
2339–2349.

[44] M. Wang, K. Zheng, Y. Yang, X. Wang, An explainable machine learning
framework for intrusion detection systems, IEEE Access 8 (2020) 73127–73141.

[45] M. Keshk, N. Koroniotis, N. Pham, N. Moustafa, B.P. Turnbull, A.Y. Zomaya,
An explainable deep learning-enabled intrusion detection framework in IoT
networks, Inf. Sci. 639 (2023) 119000.

[46] L. Antwarg, R.M. Miller, B. Shapira, L. Rokach, Explaining anomalies detected by
autoencoders using Shapley additive explanations, Expert Syst. Appl. 186 (2021)
115736.

[47] R. Kumar, A. Aljuhani, D. Javeed, P. Kumar, S. Islam, A.K.M.N. Islam, Dig-
ital twins-enabled zero touch network: A smart contract and explainable AI
integrated cybersecurity framework, Future Gener. Comput. Syst. 156 (2024)
191–205.

[48] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, in: Proc. Int. Conf.
Learn. Represent., ICLR, 2014.

[49] T.Q. Chen, X. Li, R.B. Grosse, D. Duvenaud, Isolating sources of disentanglement
in variational autoencoders, in: Proc. Int. Conf. Learn. Represent., ICLR, 2018.

[50] I. Higgins, L. Matthey, A. Pal, C.P. Burgess, X. Glorot, M.M. Botvinick, S. Mo-
hamed, A. Lerchner, Beta-VAE: Learning basic visual concepts with a constrained
variational framework, in: Proc. Int. Conf. Learn. Represent., ICLR, 2017.

[51] A. Kumar, P. Sattigeri, A. Balakrishnan, Variational inference of disentangled la-
tent concepts from unlabeled observations, in: Proc. Int. Conf. Learn. Represent.,
ICLR, 2018.

[52] H. Kim, A. Mnih, Disentangling by factorising, in: Proc. Int. Conf. Mach. Learn.,
ICML, 2018, pp. 2654–2663.

[53] E. Dupont, Learning disentangled joint continuous and discrete representations,
in: Proc. Adv. Neural Inf. Process. Syst., NeurIPS, 2018, pp. 708–718.

http://refhub.elsevier.com/S0167-739X(25)00354-1/sb1
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb1
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb1
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb1
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb1
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb2
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb2
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb2
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb3
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb3
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb3
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb3
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb3
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb4
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb4
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb4
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb5
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb5
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb5
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb6
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb6
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb6
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb8
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb8
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb8
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb8
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb8
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb9
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb9
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb9
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb10
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb10
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb10
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb11
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb11
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb11
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb14
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb14
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb14
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb14
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb14
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb15
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb15
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb15
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb15
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb15
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb15
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb15
http://arxiv.org/abs/2206.03585
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb17
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb17
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb17
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb20
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb20
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb20
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb21
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb21
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb21
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb21
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb21
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb22
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb22
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb22
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb22
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb22
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb26
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb26
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb26
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb26
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb26
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb27
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb27
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb27
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb28
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb28
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb28
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb29
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb29
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb29
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb31
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb31
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb31
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb31
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb31
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb32
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb32
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb32
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb32
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb32
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb32
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb32
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb33
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb33
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb33
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb34
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb34
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb34
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb36
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb36
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb36
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb36
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb36
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb37
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb37
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb37
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb37
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb37
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb38
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb38
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb38
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb38
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb38
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb39
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb39
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb39
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb39
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb39
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb40
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb41
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb41
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb41
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb41
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb41
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb41
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb41
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb42
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb42
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb42
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb42
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb42
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb43
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb43
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb43
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb43
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb43
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb44
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb44
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb44
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb48
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb48
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb48
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb49
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb49
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb49
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb51
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb51
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb51
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb51
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb51
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb53
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb53
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb53

S. Li et al. Future Generation Computer Systems 175 (2026) 108059
[54] S. Wachter, B.D. Mittelstadt, C. Russell, Counterfactual explanations without
opening the black box: Automated decisions and the GDPR, Harv. JL Tech. 31
(2017) 841.

[55] A. Dhurandhar, P. Chen, R. Luss, C. Tu, P. Ting, K. Shanmugam, P. Das,
Explanations based on the missing: Towards contrastive explanations with
pertinent negatives, in: Proc. Adv. Neural Inf. Process. Syst., NeurIPS, 2018, pp.
590–601.

[56] R.K. Mothilal, A. Sharma, C. Tan, Explaining machine learning classifiers through
diverse counterfactual explanations, in: Proc. Conf. Fairness, Accountability, and
Transparency, FAT, 2020, pp. 607–617.

[57] R. Guidotti, Counterfactual explanations and how to find them: literature review
and benchmarking, Data Min. Knowl. Discov. 38 (5) (2024) 2770–2824.

[58] R.K. Mothilal, D. Mahajan, C. Tan, A. Sharma, Towards unifying feature
attribution and counterfactual explanations: Different means to the same end,
in: Proc. AAAI/ACM Conf. AI, Ethics, and Soc., AIES, 2021, pp. 652–663.

[59] E.C.P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, A.A. Ghorbani,
CICIoT2023: A real-time dataset and benchmark for large-scale attacks in IoT
environment, Sensors 23 (13) (2023) 5941.

[60] G. Engelen, V. Rimmer, W. Joosen, Troubleshooting an intrusion detection
dataset: the CICIDS2017 case study, in: Proc. IEEE Secur. Privacy Workshops,
SPW, 2021, pp. 7–12.

[61] I. Sharafaldin, A.H. Lashkari, A.A. Ghorbani, Toward generating a new intrusion
detection dataset and intrusion traffic characterization, in: Proc. Int. Conf. Inf.
Syst. Secur. Privacy, ICISSP, 2018, pp. 108–116.

[62] M. MontazeriShatoori, L. Davidson, G. Kaur, A.H. Lashkari, Detection of DoH
tunnels using time-series classification of encrypted traffic, in: Proc. IEEE
Int. Conf. Dependable, Autonomic Secure Comput., Int. Conf. Pervasive Intell.
Comput., Int. Conf. Cloud Big Data Comput., Int. Conf. Cyber Sci. Technol.
Congr., DASC/PiCom/CBDCom/CyberSciTech, 2020, pp. 63–70.

[63] M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the KDD
CUP 99 data set, in: Proc. IEEE Symp. Comput. Intell. Secur. Defense Appl.,
CISDA, 2009, pp. 1–6.

[64] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine
learning algorithms, in: Proc. Adv. Neural Inf. Process. Syst., NeurIPS, 2012, pp.
2960–2968.

[65] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural
networks, Science 313 (5786) (2006) 504–507.

[66] Student, The probable error of a mean, Biometrika (1908) 1–25.
[67] S. Verma, V. Boonsanong, M. Hoang, K. Hines, J. Dickerson, C. Shah, Counter-

factual explanations and algorithmic recourses for machine learning: A review,
ACM Comput. Surv. 56 (12) (2024) 312:1–312:42.

[68] F. Yang, S.S. Alva, J. Chen, X. Hu, Model-based counterfactual synthesizer for
interpretation, in: Proc. ACM Int. Conf. Knowl. Discovery Data Mining, SIGKDD,
2021, pp. 1964–1974.

[69] A. Karimi, B. Schölkopf, I. Valera, Algorithmic recourse: from counterfactual
explanations to interventions, in: Proc. ACM Fairness, Accountability, and
Transparency, FAccT, 2021, pp. 353–362.

[70] R. Guntur, API security: Access behavior anomaly dataset, 2022, https://www.
kaggle.com/datasets/tangodelta/api-access-behaviour-anomaly-dataset.

Shuhua Li received the M.S. degree in cyberspace security
from Wuhan University, Wuhan, China, in 2019. She is
currently working toward the Ph.D. degree with the School
of Cyber Science and Engineering, Wuhan University, China.
Her research interests include network security and traffic
analysis.
12
Ruiying Du received the B.S., M.S., PH. D. degrees in
computer science in 1987, 1994 and 2008, from Wuhan
University, Wuhan, China. She is a professor at School of
Cyber Science and Engineering, Wuhan University. Her re-
search interests include network security, wireless network,
cloud computing and mobile computing. She has published
more than 80 research papers in many international journals
and conferences, such as TPDS, USENIX Security, CCS,
INFOCOM, SECON, TrustCom, et al.

Jing Chen received the Ph.D. degree in computer sci-
ence from Huazhong University of Science and Technology,
Wuhan. He is a professor at School of Cyber Science and
Engineering, Wuhan University. His research interests in
computer science are in the areas of network security, cloud
security. He has published more than 100 research papers in
many international journals and conferences, such as TDSC,
TIFS, USENIX Security, CCS, INFOCOM, TC, TPDS, et al. He
acts as a reviewer for many journals and conferences, such
as TIFS, TC, TON.

Kun He received a Ph.D. in computer science from the
computer school, Wuhan University. He is an associate pro-
fessor at School of Cyber Science and Engineering, Wuhan
University. His research interests include cryptography, net-
work security, mobile computing, and cloud computing.
He has published more than 20 research papers in many
international journals and conferences, such as TC, TIFS,
TDSC, TMC, USENIX Security, CCS, INFOCOM, et al.

Cong Wu received the Ph.D. degree from the School of Cy-
ber Science and Engineering, Wuhan University, in 2022. He
is currently a research fellow with the School of Computer
Science and Engineering, Nanyang Technological University,
Singapore. His research interests include AI system security
and Web3 security. His research outcomes have appeared in
USENIX Security, CCS, TDSC, TIFS, et al.

Yebo Feng is a research fellow in the School of Computer
Science and Engineering (SCSE) at Nanyang Technological
University (NTU). He received his Ph.D. degree in Computer
Science from the University of Oregon (UO) in 2023. His
research interests include network security, blockchain se-
curity, and anomaly detection. He is the recipient of the
Best Paper Award of 2019 IEEE CNS, Gurdeep Pall Graduate
Student Fellowship of UO, and Ripple Research Fellowship.
He has served as the reviewer of IEEE TDSC, IEEE TIFS,
ACM TKDD, IEEE JSAC, IEEE COMST, etc. Furthermore, he
has been a member of the program committees for interna-
tional conferences including SDM, CIKM, and CYBER, and
has also served on the Artifact Evaluation (AE) committees
for USENIX OSDI and USENIX ATC.

http://refhub.elsevier.com/S0167-739X(25)00354-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb57
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb57
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb57
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb58
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb58
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb58
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb58
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb58
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb60
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb60
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb60
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb60
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb60
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb62
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb65
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb65
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb65
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb66
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb67
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb67
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb67
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb67
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb67
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00354-1/sb69
https://www.kaggle.com/datasets/tangodelta/api-access-behaviour-anomaly-dataset
https://www.kaggle.com/datasets/tangodelta/api-access-behaviour-anomaly-dataset
https://www.kaggle.com/datasets/tangodelta/api-access-behaviour-anomaly-dataset

	CANDICE: An explainable and intelligent framework for network intrusion detection
	Introduction
	Related work
	AI-based network intrusion detection system
	XAI methods for cybersecurity

	Preliminaries
	Notations
	VAE-based disentangled representation learning
	Counterfactual explanation

	The CANDICE framework
	Overview
	CANDICE-detector
	DTR learning phase
	Classifier training phase
	Intrusion detection phase

	CANDICE-explainer
	CF generation phase
	CF explanation Phase

	Experiments
	Experimental setup
	Datasets
	CANDICE implementation
	Baselines and metrics

	Examples: detecting and explaining network intrusions with CANDICE
	Example 1
	Example 2

	Evaluation of CANDICE-detector
	Intrusion detection performance
	Generalization performance

	Evaluation of CANDICE-explainer
	Explanation fidelity
	Explanation sparsity
	Explanation stability
	Explanation Efficiency

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

