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Abstract—With the fast-growing popularity of online social
networks (OSN), maintaining the security of OSN ecosystems
becomes essential for the public. Among all the security threats
facing OSN, malicious social bots have become the most common
and detrimental. These bot programs are often employed to
violate users’ privacy, distribute spam, and disturb the financial
market, posing a compelling need for effective social bot detection
solutions.

Unlike traditional bot detection approaches that have strict
requirements on data sources (e.g., private payload information,
social relationships, or activity histories), this paper proposes a
detection method called BotFlowMon that relies only on NetFlow
data as input to identify OSN bot traffic, where every NetFlow
record is a summary of a traffic flow on the Internet and
contains no payload content. BotFlowMon introduces several
new algorithms and techniques to help use machine learning to
classify the social bot traffic from the real OSN user traffic,
including aggregating NetFlow records to obtain transaction
data, fusing transaction data to extract features and visualize
flows, as well as subdividing transactions into basic actions. Our
evaluation shows that with 535GB raw NetFlow records as input,
BotFlowMon can efficiently classify the traffic from social bots,
including chatbot, amplification bot, post bot, crawler bot, and
hybrid bot, with 92.33-93.61% accuracy.

Index Terms—online social network (OSN), OSN security,
social bot, NetFlow data, OSN bot traffic, machine learning

I. INTRODUCTION

The past decades have witnessed a rapid expansion of
online social networks (OSN). Unfortunately, OSNs are in-
creasingly threatened by software-controlled social bots [1]
that impersonate real OSN users for troublesome or malicious
purposes [2]. Even though not all social bots are malicious,
as many are used for customer service and information dis-
semination, there have been reports on various attacks, abuses,
and manipulations based on social bots [3], such as infiltrating
Facebook [4] or Twitter [5], launching spam campaigns [6],
supporting botnets [7], and performing financial fraud.

Existing approaches to detecting social bots need to utilize
the social relationship topology, private content data from
user posts or messages, or OSN account activity histories,
all of which can lead to privacy infringement and can only
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be executed by OSN providers. In this paper, we propose
a new, content-agnostic social bot detection method called
BotFlowMon. It takes traffic flow information as input, such
as NetFlow records [8], to differentiate the social bot traffic
from the real user traffic. As the NetFlow records are low-
volume, coarse-grained summaries of traffic flows and contain
no payload information [9], our approach is privacy-preserving
and can be deployed by Internet/network service providers.
We show that even without traffic payload, BotFlowMon can
accurately and quickly detect the social bot traffic.
BotFlowMon harnesses the power of machine learning on
big data for the best efficacy in classifying social bot traffic, in
order to label NetFlow data that encompass social bot traffic
versus real user traffic. BotFlowMon employs five modules:

1) The preprocessing module that filters out noises and
irrelevant data from raw traffic flow records and extracts
OSN-related traffic flows;

2) The flow aggregation module that transfers the NetFlow
records into transaction-level datasets, making the char-
acteristics of social bots more apparent for detection;

3) The transaction fingerprint generation module that, with
a newly designed data fusion technique, extracts features
from transaction-level datasets, normalizes the values, and
visualizes the flows;

4) The transaction subdivision module that employs a new,
density-and-valley-based clustering algorithm to further
divide each transaction into multiple actions, thus reduc-
ing the training data volume requirement and accelerating
the convergence of training;

5) The machine learning & classification module that takes
the action-level data as input to construct a transaction-
level social bot classification model with multilayer per-
ceptron (MLP) and convolutional neural network (CNN).

Our evaluation shows that BotFlowMon can be easily de-
ployed by Internet service providers or enterprise networks
and it can process big networking data with high efficiency
and detect social bot flows with high accuracy.

After preprocessing 535 gigabytes of raw NetFlow data,
BotFlowMon processed 30,932,991 NetFlow records and
achieved an accuracy between 92.33% and 93.61%. This
accuracy provides a solid starting point for network operators
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to take further actions. Simultaneously, the conciseness of
NetFlow data provides an advantage for fast and efficient data
processing; even only running on a laptop with 2.7-Ghz CPU
and 16-GB memory, BotFlowMon can support real-time social
bot detection for a campus-level network.

II. RELATED WORK

In order to maintain a secure and privacy-respecting online
social environment for users, various approaches have been
developed to identify social bot programs. According to the
input of these approaches, they are often either content-
based or OSN-topology-based, with a new trend on using
crowdsourcing techniques to discover bots. None of these
approaches inspect network traffic to identify the traffic flows
from social bots. On the other hand, there are some work on
detecting traffic of other types of bots, such as DDoS bots.

The key idea of content-based bot detection is to leverage
the differences between bot programs and real users in terms of
OSN post syntax, content, account activity histories, and post
linguistic features. As OSN providers can easily obtain a mas-
sive amount of OSN user data nowadays, many content-based
detection approaches have been proposed [10]-[13], which
apply machine learning, natural language processing, semantic
analysis, and so on, to construct a classification model to bots.
For example, “BotOrNot” [10], the first social bot detection
framework publicly available for Twitter, analyzed content of
15,000 manually verified social bots and 16,000 real user
accounts and achieved 86% accuracy. In general, content-
based approaches require a large volume of labeled social
content data and incur severe privacy concerns.

Approaches based on topology (i.e., social network struc-
ture) focus on detecting amplification bots and Sybil accounts,
where a bot master controls multiple accounts to perform
similar actions in an organized manner. Such an approach
usually obtains the topology structure of an online social
network first, and then applies methods such as Random Walk,
Bayesian Network, and Loopy Belief Propagation to identify
malicious accounts [14]-[18].

A new trend in social bot detection is to use crowdsourc-
ing [19]-[21] in which one can ask individual participants to
judge whether a program is a bot or not and then aggregate the
decisions from all participants. For example, research in [22]
relies on a crowdsourcing layer to have individual users to
determine whether an OSN account is a bot account or not, and
further a filtering layer to filter out unsatisfactory report from
individual users. However, a crowdsourcing approach tends
to incur a long running time, a high cost, and privacy risk.
In addition, a crowdsourcing approach is hardly applicable to
identifying social bot traffic flows in a given network, since it
is almost impossible for a crowd of participants all over the
Internet to even access such traffic flows.

Researchers have studied how to identify traffic gener-
ated by other types of bots. For example, research in Bot-
Miner [23] investigated the detection of Internet Relay Chat
(IRC) protocol-based bot traffic; BotFinder [24] uses machine
learning to identify the key features of command-and-control

(C&C) communications of botnets; Research in [25] identifies
anomalous DNS traffic generated by bot machines. Unfortu-
nately, these methods are not applicable to detecting the traffic
flows from social bots.

III. BOTFLOWMON DESIGN
A. Overview

In order to detect if any machine in its network is a social
bot and producing social bot traffic, a network service provider
can deploy BotFlowMon on any router that sits between its
network and OSN servers, so long as it can access the traffic
between its network and OSN servers. It imports the traffic
flow data from the router to distinguish social bot traffic flows
from real OSN user flows.

There are different traffic flow formats. We focus on the
widely used NetFlow [8] format in this paper; our design can
easily extend to other flow formats such as sFlow [26].

The information to leverage from NetFlow records is simple
and straightforward. Every NetFlow record only contains
information derived from the header of IP packets of the
same flow, such as timestamps, IP addresses, port number,
and packets per second. Of a particular note here is that a
NetFlow record contains no payload data of any IP packet.

Figure 1 illustrates the architecture of BotFlowMon. It
encompasses two modes: training mode which uses labeled
NetFlow data to derive a classification model and detection
mode which uses the classification model to detect social bot
flows from the input traffic flows. It also consists of five mod-
ules: preprocessing, flow aggregation, transaction fingerprint
generation, transaction subdivision, and machine learning &
classification. We describe each module in detail below.

B. Preprocessing

We preprocess the raw NetFlow data collected from a router
as follows.

We first extract the traffic flows only related to OSNs.
After removing flows with zero bytes, zero duration, or ir-
relevant protocols (such as ICMP), BotFlowMon will check
each NetFlow record’s source or destination IP address to
verify whether or not the IP address is associated with the
social network site(s) in question (e.g., Facebook or Twitter).
BotFlowMon then discards those NetFlow records that do not
match. One issue here is that each OSN site may own hundreds
or even more IP prefixes and the current IP prefixes of an OSN
site may change over time. We leverage BGP stream [27] to
obtain the list of current and historical IP prefixes of an OSN
site, and then look up which IP prefixes are associated with
an OSN site at a different time. In order to deal with a large
number of flows efficiently, the matching process we designed
here is similar to the IP forwarding table lookup procedure
when a router forwards packets based on their destination IP
address. Our design allows BotFlowMon to discard flows not
related to the OSN site(s) in question in real time.

We also group network flows by OSN users. Here, a user
is determined by one unique combination value of IP address
and port number. In particular, we use source IP and port to
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Fig. 1. BotFlowMon architecture. It has two modes of operation: training
(data in dashed line) and monitoring (data in solid line).

identify users for outgoing flows, and use destination IP and
port to identify users for incoming flows.

C. Flow Aggregation

Now that we have preprocessed NetFlow records to be
composed of only those relevant to detecting social bot flows,
we address the next challenge in that there is no sufficient
information from data of individual NetFlow records to distin-
guish social bot flows from OSN flows generated by real users.
As both social bot and real OSN user behaviors are conducted
at the application level, their NetFlow records, which do not
record application-specific data, can easily be indistinguishable
and sometimes even identical. We thus introduce the flow
aggregation module in BotFlowMon to inspect collective OSN
behaviors of flows and capture distinct patterns of social bot
versus real user behaviors.

The flow aggregation module aggregates all the NetFlow
records generated by the same transactions, so that we can
inspect and compare transactions of a social bot against OSN
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Fig. 2. A flow aggregation example using modified DBSCAN. Every time
bin is 0.1 seconds. Six NetFlow records are clustered into two transactions by
converting them to NetFlow records with flow points. (Each flow point has
a different gray level, with a darker gray indicating a higher traffic volume.)
One NetFlow record was fragmented into two records, each at a different
transaction.

transactions of real users, including defining and comparing
features with regard to the collective OSN behaviors of flows.
Here, a transaction is a sequence of actions by either a social
bot or real user that are closely adjacent to each other. For
example, a transaction can be a user logging in her Facebook
account, and reading new posts on her Facebook wall; or a
Twitter bot retweeting a spam link one hundred times within
a short period.

In this module, we use modified DBSCAN [28] to ag-
gregate/cluster flows into multiple different transactions, with
each transaction composed of multiple flows. This procedure
includes the following steps:

1) For every flow as described by a NetFlow record, we
divide its duration into multiple time bins of equal length,
and define a flow point for each time bin. Every flow
point has a traffic volume derived from the bits per second
(bps) of the flow multiplied by the length of the time bin.

2) We run the modified DBSCAN algorithm to group flow
points into clusters, with each cluster composed of flow
points that are closely adjacent to each other over a time
window and have a high total traffic volume. In particular,
for any time interval of € seconds from the time window,
the flow points that belong to the interval have a total
traffic volume no less than minPts bits.

3) Finally, we inspect the time window of every cluster from
the above step. All the flows that fall within this window
will belong to the same transaction.

Figure 2 shows an example of this procedure.

D. Transaction Fingerprint Generation

With multiple transactions obtained from the flow aggrega-
tion module, BotFlowMon now generates a fingerprint for each
transaction to make different transactions directly comparable
to each other. Our basic idea is a data fusion method that
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TABLE I
6X N MATRIX AS A TRANSACTION FINGERPRINT

Features Values

1: outgoing bps bps{, bpsy, bps?N
2: outgoing pps PPSY PPSYy ppst
3: outgoing ToS tosy; tosy, tosg’N
4: incoming bps bpst, bpst, bps”{'N
5: incoming pps pps"{'1 ppsﬁ2 ppsiN
6: incoming ToS tosil tos§2 tosiN

derives an f x N matrix from every transaction and use this
matrix as the fingerprint of the transaction. Here, N is the
number of time bins of equal length within the time window of
the transaction, which spans from the earliest start time of all
flows in the transaction to the latest end time of all flows in the
transaction, and f is the number of features of the transaction
over each time bin.

Table I shows a 6x/N example transaction fingerprint matrix.
Row 1 to row 3 are features extracted from outgoing flows and
row 4 to row 6 are features extracted from incoming flows.
Both use bits per second (bps), packets per second (pps) and
type of service (ToS) as features. Note at any time bin there
can be more than one flows active, thus the values of bps and
pps (either incoming or outgoing) for that time bin should be
respectively the sum of the bps and pps values of all flows
that are active in that time bin. The outgoing or incoming
ToS feature for that time bin, however, is not numerical, and
its value is the ToS value of the flow that has the largest bps
value during that time bin. However, because the usage of ToS
field in datagrams has not been standardized and different ISPs
may further modify the ToS fields when collecting NetFlow
records, the ToS feature may not be reliable to help produce
a transaction fingerprint. As such, we introduce a 4 x N
matrix that does not include the ToS feature for incoming and
outgoing flows.

Once a transaction fingerprint matrix is generated, it also
must be normalized. Using the 6x/N matrix from table I as
an example, we can map every bps, pps and ToS value in the
matrix to a number between 0 and 255, which can be done
by analyzing the dispersion of bps, pps and ToS values from
a very large data set of NetFlow records. We draw three
quantile-quantile plots that shows the dispersion of bps, pps
and ToS values based on 235-GB NetFlow data of campus
traffic, which led to three functions f,(bps), fq(pps), and
fv(tos), respectively, to normalize the bps, pps, and ToS values
to numbers between 0 and 255.

We can also easily visualize a transaction fingerprint matrix
for inspection and analysis, since all the values lie between
0 and 255. For each transaction, BotFlowMon can generate
an image composed of two colorful bars in the standard RGB
space, one for the incoming flows in the transaction and one
for the outgoing flows, where each bar has a length of NV
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Fig. 3. Visualizing the fingerprint of a transaction lasting 35.74 seconds with
220 flows.
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Fig. 4. More transaction fingerprint examples

pixels. Figure 3 is an example of visualizing a transaction
fingerprint, which has 220 flows and represents a real user
spending 35.74 seconds browsing Facebook.

Figure 4 shows more examples of visualized transaction
fingerprints from labeled ground truth. Transaction fingerprints
in Figures 4(a) and 4(b) are two Twitter users messaging
each other through Twitter Direct Messages (DM), where the
transaction fingerprint in Figure 4(a) is generated by a real user
and the transaction fingerprint in Figure 4(b) is generated by a
chatbot. The transaction fingerprint in Figure 4(c) is created by
a social bot that uses APIs to tweet text messages on Twitter
every 3 seconds. The transaction fingerprint in Figure 4(d) is
created by a bot that crawls the photo albums of friends and
posts spam links at the same time.

E. Transaction Subdivision

Now that we have produced normalized fingerprint matrix
for every transaction, we observe that there can be countless
types of transactions since every transaction may contain an
arbitrary number of actions of various types. Worse, each
transaction can be of an arbitrary duration, ranging from a
few seconds to a few hours, thus making the feature values of
different transactions not comparable against each other and
not usable for training. We thus subdivide a transaction further
into a limited number of types of primitive actions, where
actions from transactions of different durations are comparable
to each other. For example, an action can be clicking a Like
button, sending a tweet, or submitting a Facebook comment.
It is much easier to differentiate bot actions from real user ac-
tions, and once we tell bot actions apart from real user actions,
we can separate bot transactions from real user transactions.

We design a new clustering algorithm named Clustering
Based on Density Sort and Valley Point Competition to
subdivide a transaction into actions. We first introduce the
following definitions:

1) Density of a data point: For a data point p, there is a
dataset E that contains all the data points within a radius
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of r from p: E = {x|dist(x,p) < r}. The density of
p is then the summation of the values of all the points
in E. Using bps values as an example, we then have:
p.density =) _px.bps.

2) Density of a cluster: For a cluster C, its density is the
density of the point in the cluster that has the highest
density.

3) Potential point of a cluster: For a cluster C, p is a
potential point of C' if p is within radius r of a point
beC.

4) Valley point: A data point p is a valley point of multiple
clusters if p is a potential point of each of these clusters.

5) Valley point competition: When two clusters share a
valley point, they “compete” to include the valley point
as its member, with following cases:

a) The two clusters merge into a new cluster, with the
valley point now belonging to the new cluster;

b) The two clusters keep separate, with the valley point
assigned to the smaller one of the two clusters.

Here, the two clusters keep separate if the density of

the valley point is lower than p% of the density of

both clusters. The subdivision only occurs at a valley

point whose density is in sharp contrast to the density

of surrounding clusters.

Algorithm 1 Clustering algorithm based on density sort and
valley point competition
1: Input: dataset D, radius threshold value r

2: Initialize set C' to store clusters

3: Use r to calculate the density of each data point in D

4: D = Sort(D)

5: > Sort data in D in the decreasing order of density
6: for e in D do

7: if e is not a potential point of any cluster then

8: Label e as a member of a new cluster c,

9: Add cluster ¢, to C

10: else if e is the potential point of only one cluster ¢,

then

11: Label e as a member of cluster ¢,

12: else if ¢ is the potential point of two clusters {c¢;, ¢;+1}
then

13: > e is a valley point, and e can only be two clusters’
valley in two-dimensional space

14: competition(e, {c;, ci+1})

15: > Start the valley point competition mechanism

16: end if

17: end for

18: return C

The pseudocode of the algorithm is shown in Algorithm 1.
It takes a dataset (D) and a radius threshold value () as input.
For example, using the 6x/V or 4x N matrix from section III-D,
D can be a set of data points from a transaction fingerprint
where the i-th data point has a bps value that is the sum of the
outgoing bps and incoming bps from the i-th column of the
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Fig. 5. Transaction subdivision examples

matrix. The algorithm then sorts all the data points in D and
processes the data points in the descending order of density
to form and populate clusters with data points in D. If a data
point is a valley point between two clusters, the algorithm
then decides whether to merge the two clusters or still keep
them using the valley point competition mechanism. If the two
clusters do not merge, we then identify the moment where the
two clusters meet as a subdivision moment.

The algorithm then discovers all the subdivision moments
of a transaction, which BotFlowMon then uses to divide
the transaction into multiple distinct actions. During training,
BotFlowMon labels actions from a social bot transaction
as bot actions and actions from a real user transaction as
real user actions, respectively. Like a transaction represented
by a transaction fingerprint matrix, an action can then be
represented by an action fingerprint matrix.

Figure 5 shows two examples of transaction subdivisions.
Figure 5(a) shows that by subdividing the transaction finger-
print of a social bot (which is a post bot) into five pieces,
every piece now has a more outstanding pattern than the
original transaction fingerprint. Figure 5(b), on the other hand,
shows a transaction by a real user that is composed of two
actions where one was opening an OSN site and the other
was scrolling down the page of the OSN site, as matched by
the subdivision of the transaction into two actions.

F. Machine Learning & Classification

After we use the transaction subvision module (Sec-
tion III-E) to discover the actions that each transaction con-
tains, we now classify actions into bot actions and real user
actions, and then classify the transactions based on how their
actions are classified.

We first train an action classification model to classify
actions. The input to this model is a set of action fingerprints
that are labeled as either bot actions or real user actions. To
construct the model, we use Keras [29] with TensorFlow [30]
to perform the training and classification. Since the training
is about nonlinear and high-dimensional data, BotFlowMon
uses Multilayer Perceptron (MLP) and Conventional Neural
Network (CNN) as its training approaches. We can apply some
other machine learning algorithms to the classification module,
but BotFlowMon was mainly tested with MLP and CNN.
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With the action classification model trained, we then can
detect if every action within a transaction is from a social bot
or from a real user, and decide whether the transaction is a bot
transaction or a real user transaction. In particular, if all actions
are from a real user, we can safely determine the transaction
is by a real user; otherwise, we can decide that a transaction is
a bot transaction if more than a certain percentage of actions
are from a social bot.

IV. EVALUATION
A. Data Source

The datasets we use to construct and test BotFlowMon come
from two sources: (i) traffic generated and gathered from our
lab’s computers and routers, which is a small experimental
platform that has superior flexibility and conveniences for
simulation, data collection, and experiments; and (ii) datasets
generated and collected from our university’s campus traffic,
which offers data from realistic scenarios for analysis and
verification.

We created and labeled the real user and social bot traffic
flows as follows, including obtaining the Institutional Review
Board (IRB) approval to address ethics, privacy, and human
subject issues. For real user traffic flows, we had partici-
pants manually conduct normal daily activities on Twitter and
Facebook. We adopted an informed consent procedure, which
provided the potential participants a clear description about
the project before they agree. For social bot traffic flows, we
employed a variety of well-used social bot programs, software,
and homegrown scripts to conduct bot activities on Twitter and
Facebook, we then collected and labeled the corresponding
traffic as the ground truth. In order to simulate a variety
of social bots and obtain highly credible labeled data, we
categorized the social bots into five types according to their
implementation mechanisms (section IV-B) and simulated all
of them. All of the bots that interacted with Twitter and
Facebook were under their terms of service, and their traces
were erased after each experiment. We guarantee that the
bots we simulated are harmless to campus network, other
OSN users, and the OSN environments. For example, we used
weather reports, university announcements, and encyclopedic
knowledge to simulate fraud and spam posts for post and
amplification bots.

We collected 28 gigabytes raw NetFlow data from our
experimental platform and 507 gigabytes raw NetFlow data
from the university’s campus traffic. After the preprocessing,
30,932,991 labeled NetFlow records are involved in the sub-
sequent steps. All the data collected were content-agnostic
NetFlow records along with the labeling information. No
payload/content data were downloaded and stored during the
research process. For the NetFlow records from our campus
network, all the internal IP addresses were anonymized, so
that we cannot map them back to any individual.

B. Social Bots Simulation

1) Chatbot: Chatbots are very active in messaging applica-
tions such as Twitter Direct Messages, Facebook Messenger, or

WeChat. Either artificial-intelligence-powered or merely logic-
based, they can automatically perform conversations with
regular users for particular purposes.

The simulation of chatbots relies on some existing widely
used chatbot frameworks, APIs, and open-source programs
such as botmaster [31], Ontbot [32], and python-twitter APL
We created many Twitter and Facebook bot accounts only for
research purposes under the OSNs’ terms and conditions of
service. We collected multitudinous traffic flows of the con-
versations between real users and these chatbots, with different
frequencies of interactions, response times and transmission
contents (images, audio files, texts and, hyperlinks).

2) Post Bot: In part due to the easily usable official and
third-party APIs, poster bots have become the most common
social bots in OSN. They distribute spam tweets and Face-
book posts which contain malicious URLs in most cases or
malicious texts occasionally [2] [33].

In order to simulate post bot, we downloaded several
popular open-source poster bot software from GitHub [34]
and wrote some poster bot programs based on APIs such
as Tweepy [35] and Facebook API [36]. We ran these bots
programs with different frequencies during different time
periods to post some harmless messages that contained texts,
videos, images and external URLs on Twitter and Facebook.

3) Amplification Bot: Amplification bot, due to the large
volume of messages it can generate, is often used to create
some hot topics for commercial promotion, consensus manip-
ulation, and spam distribution. Without creating new content,
amplification bots often work as fake followers, such as those
Twitter or Facebook accounts specifically created to inflate
the number of followers of a target account. Amplification
bots also can serve as forwarding and liking robots, popu-
larize some unwanted junk information, and help commercial
promotion.

Since the social relationship is unknown in NetFlow data,
we only need to simulate every individual amplification
bot’s interactions with OSNs. We implemented API-based bot
scripts to simulate amplification bots, and used OAuth [37]
software for token management and switching accounts.

4) OSN Crawler: The core functionality of OSNs is en-
abling users to share slices of life, personal perspectives, and
profiles, however, it can be exploited by crawlers to aggregate
data of a large number of OSN users for re-publication or
other more nefarious purposes that violate users’ privacy and
security.

There are two types of OSN crawlers in social networks
and we simulated both of them. One is API-based and it
relies on a large botnet to dig users’ private, sensitive data.
Because in OSNs it is common that a user’s information can
only be seen by their friends, a significant amount of bots are
needed to become friends of many users and then access their
information. Once the relationship is established, a crawler
bot can easily fetch the private data with API functions. The
following code exemplifies a crawling process.

import twitter
api = twitter.Api ()
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Fig. 6. Social bot traffic classification accuracy

api.GetFollowers()
api.LookupFriendship (user)

Another type of OSN crawler is page crawler. Instead of
using API privileges, it directly reads the HTML files of OSNs
and utilizes regular expressions to extract target information.
The NetFlow traffic of this bot has a strong resemblance to
a regular user’s traffic but still differs in key aspects, such as
flow density and operation frequency.

5) Hybrid Bot: The hybrid bot is not a specific type of
social bot. Instead, it is an arbitrary combination of different
types of social bots. Furthermore, it can be a mixture of a
social bot and a real user, thus hiding its bot activities behind
the normal traffic flows.

C. Results and Analysis

1) Experimental Setup: Based on our empirical studies (of
which we skip the details for space considerations), we set the
parameters in BotFlowMon as follows:

o For the flow aggregation module, we set the length of

every time bin to be 0.1 seconds.

o For the DBSCAN algorithm in the flow aggregation
module, we set € to be 10-20 seconds; also, we set
mainPts to be 1500 bits.

« For the transaction fingerprint generation module, we set
N as 200.

« For the transaction subdivision module, we define p% in
valley competition mechanism to be 50%.

2) Classification Accuracy: We first look at the accuracy

results in classifying social bot traffic. Figure 6(a) shows the

TABLE 11
DETAILED RESULTS FOR CNN

6 x 200 matrix 4 x 200 matrix

Accuracy 0.9361 0.9233
Precision 0.9887 0.9821

Recall 0.9067 0.8919
F1 score 0.9459 0.9348

test results for the machine learning & classification module
with 6x200 transaction fingerprints which use incoming and
outgoing bps, pps and ToS features. The test set contains
675 bot transactions and 420 real user transactions. For both
Multilayer Perceptron (MLP) and Conventional Neural Net-
work (CNN) algorithms, we used 10-fold cross-validation to
check whether the model is overfitting. Since multiple actions
had been taken to prevent the model from overfitting, such
as controlling the learning rate 7 and limiting the number of
iterations, the cross-validation accuracy is very similar to the
testing accuracy and has no sign of overfitting. As we can
see in Figure 6(a), the subdivision procedure helps improve
the accuracy for about 20%. As a true-or-false classification
with the bottom line of 50% accuracy, it is a considerable
improvement. For here, CNN achieves the most significant
result, with 93.61% of accuracy.

As stated in Section III-D, due to reliability concerns
with the ToS features, we also investigated 4x200 transaction
fingerprints that do not consider ToS features but use incoming
and outgoing bps and pps features in order to train another
classification model. The result can be seen in Figure 6(b).
Surprisingly, the overall accuracy is only around 1% lower
than that of the 6x200 action fingerprints. The decrease of
dimensions will reduce the information but also make the
model easier to converge, especially for MLP. Again, CNN
obtains the best result in this model. Table II shows the detailed
evaluation scores for CNN in these two versions of models.

In the real environment, with an accuracy of more than
93%, we can detect most of the bot traffic. Because one bot
can create several transaction fingerprints in a specific time
window, in order to detect the social bot traffic only one of
the transactions need to be identified. A concern here is false
alarms as we do not want BotFlowMon to mislabel real user
traffic. Currently we label a transaction as a bot transaction if
more than 50% of its actions are labeled as bot actions. We
found from our experiments that, if a transaction is labeled as
a bot transaction only when more than 75% of its actions are
classified as bot actions, BotFlowMon will not generate false
alarms, but its accuracy will drop down to 89.56%.

3) Subdivision Efficacy: We further evaluated the transac-
tion subdivision module to see whether the Clustering Based
on Density Sort and Valley Point Competition algorithm
can divide the transaction fingerprints into action fingerprints
correctly. Specifically, we studied how different r values in
the algorithm could generate different subdivision results and
potentially affect the detection outcome. Figure 7 shows the
clustering purity scores with different » values. The horizontal
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Fig. 7. Purity scores with different r values

axis represents the values of r and the vertical axis represents
the purity scores of the resulted clusters. From Figure 7,
we can see that the algorithm is indeed susceptible to the
values of the r parameter and we can generate optimal
results when r is in the range of 18 to 23. For transactions
of social bots, the subdivision module works well and can
achieve up to 0.9358 purity of the resulting clusters when
r = 23. This is because social bots utilize APIs heavily,
making their transaction fingerprints easy to subdivide. For
real user transactions, however, the purity scores of the clusters
derived from the algorithm are lower and more sensitive to the
variation of r than those corresponding to bot transactions,
with the maximal purity score to be 0.7832 when r = 26.
One reason is that the boundaries of different actions in real
user transactions are blurry in flow-level data. Almost all the
OSN web sites preload contents to real users dynamically,
creating NetFlow records that can occupy the gap between
actions, imposing challenges and causing impreciseness to the
clustering in the algorithm.

However, the ultimate goal of subdivision is not precisely
partitioning all the transactions. Instead, it is designed to
make data more friendly to the machine learning process.
We randomly sampled 100 real user transactions and 100
bot transactions, then recorded the number of actions and
their average duration for each transaction after subdivision.
Figure 8 is the scatter plot of the result. While the bot
transactions are divided into relatively shorter actions than
real user transactions, nonetheless, the durations of bot action
fingerprints at O to 15 seconds and real user actions in the range
of 0 to 40 seconds are comparable with each other, making
the subsequent machine learning module easy to converge.

4) BotFlowMon Performance: We tested BotFlowMon on
a personal laptop with 2.7-GHz CPU and 16-GB memory
to measure the detection performance. The test process only
utilized a single thread, and no GPU-based architectures were
engaged in computation. The evaluation shows that it takes
0.71 seconds on average to complete the detection procedure
for one transaction. The transaction fingerprint generation and
subdivision jobs occupy 43.25% of the detection time, while
classification process occupies 56.75%. Just as Figure 9 shows,
the detection time will increase linearly as the data volume
increases. The processing time for flow fingerprint generation
and subdivision tends to be more stable than classification.

od
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Fig. 8. Scatter Diagram for Subdivision
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Fig. 9. Social bot detection time

Because different transactions have different amount of action
data, the classification workload becomes more uncertain.

Compared with other detection approaches, BotFlowMon
has good performance and the ability of real-time monitoring
and detection.

V. LIMITATIONS AND OPEN ISSUES

A primary contribution of BotFlowMon is to use data from
layers 3 and 4 (i.e., NetFlow data) to detect anomalies at layer
7 (i.e., OSN bot activities). It can accurately identify social bot
traffic while protecting OSN users’ privacy at the same time.
However, BotFlowMon has some limitations:

1) Not all the social bots are malicious, and the boundary
between “good” bots and “bad” bots can be blurry. How
to distinguish social bots with malicious intentions from
those that are innocent is hard to achieve without payload
data.

2) Although the training data of BotFlowMon can be en-
hanced to cover traffic from more socia bots, thus im-
proving the capability of BotFlowMon, nonetheless, if
the training does not include traffic from zero-day social
bots, the system probably will not be able to detect them.

BotFlowMon also faces several open issues as possible
future working items:

1) BotFlowMon currently only uses NetFlow records as its
input of traffic flow data. It is worthwhile to extend
BotFlowMon to include other traffic formats such as
sFlow [26].

2) More features may be explored to improve the accuracy
for identifying social bot traffic.

3) BotFlowMon’s detection mechanism is at the IP level.
When a social bot and a real user interact with an OSN
at the same time from the same machine, their traffic will
be aggregated into a single transaction, making it hard to
distinguish the bot traffic from the real user traffic. We
can address this problem as a future work by detecting the
social bot traffic from the port level, a finer granularity
than the IP level.

4) The current approach is focused on distinguishing the
social bot traffic from the real user traffic. Another future
work of BotFlowMon can be further identifying different
categories of social bots.
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VI. CONCLUSIONS

Today’s social bots are becoming far more sophisticated
and threatening than before. To prevent the online social
ecosystems from being troubled or attacked by them, this paper
proposes a social bot detection method called BotFlowMon,
which tackles big networking data to identify the traffic
of OSN bots. As the networking data are layers two and
three information and need nothing about OSN content and
activities, BotFlowMon departs from previous content-based
or OSN-topology-based social bot detection solutions and is a
content-agnostic, privacy-preserving and efficient approach.

With no dependence on any OSN content, BotFlowMon
devises several new techniques and algorithms, such as an
aggregation technique that derives transactions datasets from
NetFlow records, a data fusion technique that extracts fea-
tures from transactions datasets, as well as a density-valley-
based clustering algorithm that divides a transaction dataset
into multiple actions, altogether enabling a fast and accurate
identification of traffic flows from social bots with an accuracy
of 92.33-93.61%.

BotFlowMon is also easy to deploy. Any Internet service
providers or enterprise networks, as long as they are able to
access the traffic flow records such as NetFlow, can deploy
BotFlowMon with little need to stretch their bandwidth.
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