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Towards Learning-Based, Content-Agnostic
Detection of Social Bot Traffic

Yebo Feng, Jun Li, Lei Jiao, and Xintao Wu

Abstract—With the fast-growing popularity of online social networks (OSNs), the security and privacy of OSN ecosystems becomes
essential for the public. Among threats OSNs face, malicious social bots have become the most common and detrimental. They are
often employed to violate users’ privacy, distribute spam, and disturb the financial market, posing a compelling need for effective social
bot detection solutions. Unlike traditional social bot detection approaches that have strict requirements on data sources (e.g., private
payload information, social relationships, or activity histories), this paper proposes a method called BotFlowMon that relies only on
content-agnostic flow-level data as input to identify OSN bot traffic. BotFlowMon introduces several new algorithms and techniques to
classify social bot traffic from real OSN user traffic, including aggregating network flow records to obtain OSN transaction data, fusing
transaction data to extract features and visualize flows, and an innovative density-valley-based clustering algorithm to subdivide each
transaction into individual actions. The evaluation shows BotFlowMon can identify the traffic from social bots with a 96.1% accuracy,
which, based on the worst case study on a testing machine, only takes no more than 0.71 seconds on average after it sees the traffic.

Index Terms—Online Social Network, Social bot, Sybil account, NetFlow, Machine learning, Data mining
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1 INTRODUCTION

THE past decades have witnessed a rapid expansion of
online social networks (OSN). Facebook has achieved

more than 2.196 billion active users around the world and
Twitter has reached 336 million users [1]. Unfortunately,
OSNs are increasingly threatened by software-controlled
social bots [2] that impersonate real OSN users for trou-
blesome or malicious purposes [3]. Even though not all
social bots are malicious, as many are used for customer ser-
vice and information dissemination, various attacks, abuses,
and manipulations are based on social bots [4], such as
infiltrating Twitter [5], launching spam campaigns [6], and
performing financial fraud [7].

Existing approaches to detecting social bots need to
utilize the social relationship structure or private content
data from users’ accounts, all of which can lead to privacy
infringement and can only be executed by OSN providers.
In this paper, we propose a new, content-agnostic social bot
detection method called BotFlowMon. It takes network traf-
fic flow information as input, which is NetFlow records [8]
in this paper, to differentiate the social bot traffic from the
real user traffic. As Internet/network service providers can
easily collect NetFlow records, it is thus also convenient for
them to deploy BotFlowMon, making social bot detection no
longer dominated by OSN providers. Moreover, as NetFlow
records are coarse-grained summaries of packet headers
and contain no OSN content data from packet payload [9],
BotFlowMon is also privacy-preserving.

BotFlowMon can detect social bot traffic accurately and
quickly. It harnesses the power of machine learning on big
data for the best efficacy in labeling social bot traffic versus
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real user traffic. BotFlowMon employs five modules:

1) The preprocessing module that filters out noises and ir-
relevant data from raw NetFlow records and extracts
OSN-related traffic flows;

2) The flow aggregation module that transfers the NetFlow
records into transaction-level datasets, making the char-
acteristics of social bots more apparent for detection;

3) The transaction fingerprint generation module that, with
a new data fusion technique, extracts features from
transaction-level datasets, normalizes the values, and
visualizes the flows;

4) The transaction subdivision module that employs a new,
density-valley-based clustering algorithm to further di-
vide each transaction into multiple actions, thus reduc-
ing training data volume and accelerating training;

5) The machine learning & classification module that uses the
action-level data to construct a transaction-level social
bot classification model with convolutional neural net-
work (CNN) and multilayer perceptron (MLP).

BotFlowMon is the first work that leverages content-
agnostic traffic flows to detect social bots. By embracing
a suite of newly introduced techniques, BotFlowMon pro-
vides social bot detection at behavior level, which is a finer
granularity than existing approaches; it can identify whether
an individual OSN behavior is from a real user or a social
bot account. It also can detect social bots in real time; as
soon as it receives network traffic, BotFlowMon can start
detection immediately.

Our evaluation with 535 gigabytes (GB) of raw Net-
Flow data from a large university environment shows that
BotFlowMon can identify social bot traffic with an accu-
racy of 96.1% (or around 90% if the user adjusts the false
positive rate to zero). Simultaneously, the conciseness of
NetFlow data provides an advantage for fast and efficient
data processing. Even only running on a laptop with 2.7-
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Ghz CPU and 16-GB memory, BotFlowMon can support
real-time social bot detection for a campus-level network;
after the NetFlow records of a social bot are collected, it
takes only 0.71 seconds on average to detect the social bot.

The rest of this paper is organized as follows. After we
outline related work in Section 2, we describe BotFlowMon’s
design in Section 3 and evaluate it in Section 4. We discuss
its limitations and open issues in Section 5 and conclude
the paper in Section 6. Of a particular note here is that this
paper is an extended version of work published in [10].

2 RELATED WORK

As BotFlowMon is a content-agnostic approach to detecting
social bots from network traffic, in this section we inves-
tigate other social bot detection approaches and content-
agnostic traffic classification and anomaly detection work.

2.1 Social Bot Detection Approach
Various approaches have been developed to identify social
bots. According to the input data, they are often either
content-based or structure-based [23], with a new trend on
using crowdsourcing techniques as well. Table 1 shows a
general comparison between these methodologies. BotFlow-
Mon is the only approach that only relies on network traffic.
2.1.1 Content-Based Approach
Content-based social bot detection approaches seek to detect
behaviors, accounts, or account clusters associated with
social bots using OSN content. Here, the OSN content refers
to not only explicit information of an account, such as its
profiles, URLs, and linguistic features of posts, but also im-
plicit information of an account such as its clickstream, local
graph structure, and user behavior. For example, research
in [11], [24], [25] finds URLs in posts can help identify
spam messages or social bot accounts; research in [12],
[26], [27] leverages features related to account profiles or
message content to determine if an account is actually a
social bot; and research in [13], [28], [29] uses local graph
structure information such as the number of followers and
relationship between interactions for social bot detection.

Different methods have been used to model the differ-
ences of the OSN content between social bots and human
users. While some used statistical analysis, including [12],
[13], [26], [30], to be more flexible in tackling complicated
features and more accurate, many leveraged machine learn-
ing techniques, such as random forest ( [11], [28], [31]), SVM
( [14], [27], [32]), and logistic regression ( [24], [32]).

While often effective, content-based approaches have
certain drawbacks. First, they require content data of OSN
users. Compared with flow-level traffic data used in Bot-
FlowMon, such data are usually privacy sensitive and could
lead to potential privacy infringement. Second, they are
vulnerable to adversarial attacks since social bot programs
can mimic human users’ behaviors to escape their detection.

2.1.2 Structure-Based Approach
The assumption of structure-based approaches is that so-
cial bot accounts (often referred as Sybil accounts in these
approaches) can build connections between themselves ar-
bitrarily, but it is difficult for them to establish or manipulate

social relationship with human users [17]. The structural gap
between social bot accounts and human accounts can then
be used to identify social bots.

Structure-based approaches can be classified into two
categories—random walk (RW) based and Markov Random
Field (MRF) based. RW-based methods start walking from
either a social bot node or a human user node and then
use some classifiers to infer the labels of nodes along the
path, as exemplified by research in [15], [33], [34]. MRF-
based methods, such as those in [16], [18], [35], model the
OSN structure as a Markov random field and use probability
methods (e.g., Loopy Belief Propagation) to estimate each
node’s conditional probability of being a social bot. The two
methods can be combined [36], [37].

Unlike content-based approaches, structure-based ap-
proaches are not vulnerable to content-oriented adversarial
attacks. However, they have their own drawbacks: (1) Their
aforementioned assumption is not always true. According to
research in [38], it is easy for a social bot account to establish
a relationship with a real user account. Moreover, once a
real user account is compromised and becomes a social bot,
it inherits all the social relationship of the real user. Con-
sequently, structure-based approaches will have difficulty
in detection social bots in such scenarios. BotFlowMon is
not dependent on OSN structures, thus not subject to these
issues. (2) They can only offer social bot detection at the
account level, which is to determine whether an account is a
real user or a social bot. BotFlowMon works at the behavior
level which is a finer granularity. (3) They only detect social
bot accounts with the change of social topology. If a social
bot keeps posting messages without interacting with other
accounts, they will fail to detect this social bot. In contrast,
BotFlowMon detects social bots in real time soon after it
receives NetFlow records of social bot traffic.

2.1.3 CrowdSourcing-Based Approach
A new trend in social bot detection is to utilize crowd-
sourcing [20], [21], [22], in which one can ask individual
crowdworkers to judge whether a program is a bot or not
and then aggregate the decisions from all crowdworkers.
For example, research in [19] relies on a crowdsourcing
layer to have individual users determine whether an OSN
account is a bot account or not and a filtering layer to filter
out unsatisfactory reports from individual users. Compared
with BotFlowMon, a crowdsourcing approach tends to incur
a high detection latency due to its interactions with human
users, a high cost to pay crowdworkers, and privacy risks
if distributing privacy-sensitive data to the crowd. Besides,
a crowdsourcing approach usually detects social bots at
account level, while BotFlowMon does so at behavior level.

2.2 Content-Agnostic Traffic Classification & Anomaly
Detection
During the early development of traffic classification,
content-agnostic traffic classifications was elementary and
mainly focused on classifying traffic into a few frequently
used applications, such as telnet, https, and BitTorrent. Dif-
ferent traffic data were used as input. For example, research
in [39] used the size, inter-arrival time, and arrival order of
IP packets; research in [40] leveraged packet header infor-
mation; and research in [41] utilized metadata of packets,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TDSC.2020.3047399

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TABLE 1
Comparisons of different social bot detection approaches.

Category Representative work Primary input Detection granularity Timeliness Privacy preservation
Content-based [11], [12], [13], [14], etc OSN content behavior, account (cluster) mostly real time No

Structure-based [15], [16], [17], [18], etc OSN topology account with the growth of topology No
Crowdsourcing-based [19], [20], [21], [22], etc human judgment account with considerable delay No

Traffic-flow-based BotFlowMon network flows behavior real time Yes

flows, and connections. Later, more approaches, such as
those in [42], [43], [44], used increasingly popular NetFlow
data to classify traffic. Compared with BotFlowMon which
aims to classify traffic from the same application (traffic
from social bots vs. traffic from human users), none of these
approaches classify traffic from different groups of entities
within the same application.

Like BotFlowMon, many traffic anomaly detection ap-
proaches are content-agnostic and use network flow in-
formation as input, such as those that detect distributed
denial-of-service (DDoS) [45], botnet [46], worm [47], and
cryptojacking [48]. However, the social bot anomaly that
BotFlowMon tries to detect differs from these anomalies in
fundamental ways, warranting a completely different detec-
tion approach. Foremost, any social bot anomaly is specific
to an OSN application; to detect it using network flow
records, one must extract OSN-specific behaviors from the
records and detect behaviors that are anomalous . Existing
content-agnostic traffic anomaly detection approaches do
not study OSN-specific anomalies, making them unsuitable
for detecting social bot traffic. Moreover, traffic caused by
anomalies such as DDoS, botnet, worm, or crypto-mining
is usually of different protocols, destinations, and under-
lying applications than those of legitimate traffic; social
bot traffic, however, usually use the same protocols (e.g.,
HTTPS), destinations (e.g., Facebook), and underlying ap-
plications (OSN) as those of real OSN user traffic, making
these attributes unusable for social bot detection. In fact,
every content-agnostic traffic anomaly detection approach
is designed for a specific type of anomaly and hardly inter-
changeable. For example, whereas content-agnostic botnet
detection could use the trace of command and control
channels (e.g., [49], [50]), IRC messages (e.g., [51]), or col-
lective DNS queries (e.g., [52]), none of these data or their
properties applies to the detection of social bots.

3 BOTFLOWMON DESIGN

3.1 Overview
In order to detect if any machine in a network is a social
bot and producing social bot traffic, BotFlowMon can be
deployed on any machine that can access and analyze the
traffic flow data between the monitored network and OSN
servers. Figure 1 shows two different operational models of
BotFlowMon, one with BotFlowMon accessing traffic from
the router of the monitored network at the source end (e.g.,
a campus network), the other from the router of an OSN
server at the destination end (e.g., Facebook).

There are different traffic flow formats. We focus on the
NetFlow [8] format, which is widely used for network traffic
monitoring and analysis. Our design can easily extend to
other flow formats such as sFlow [53].

Every NetFlow record logs information of a network
flow inbound or outbound, including its start time, end

Normal Device

Bot

Bot

OSN ServerNormal Device
Router

NetFlow

... ...

Router

BotFlowMon

NetFlow

BotFlowMon

Source-end deployment Destination-end deployment

Monitored Network OSN Site
Internet

Fig. 1. Operational models of BotFlowMon.

time, number of packets, and number of bytes. It also
records information from the TCP/UDP and IP headers of
all the packets in the flow, including source IP address,
destination IP address, protocol, port numbers, type of
service (ToS), and TCP flags. It will not access, read, or
record the payload of any packet where the OSN content
would be carried. As a result, a NetFlow record will not
contain OSN content data such as OSN account profiles,
Facebook or Twitter messages, or posted images. In another
words, NetFlow records are content-agnostic. Using Net-
Flow records as input is thus privacy-preserving. Figure 2
shows the fields of NetFlow records that BotFlowMon uses,
with a few examples.

Figure 3 illustrates the architecture of BotFlowMon. It
encompasses two modes: training mode which uses labeled
NetFlow data to derive a classification model and detection
mode which uses the classification model to detect social
bot flows from the input traffic flows. It also consists of five
modules: preprocessing, flow aggregation, transaction fin-
gerprint generation, transaction subdivision, and machine
learning & classification. We detail each module below.

3.2 Preprocessing

Motivation. With the raw NetFlow records collected from
a router as input, the preprocessing module needs to select
records only related to OSN, group them by OSN users,
and output them to the next module. As a router forwards
packets and summarizes them into NetFlow records, there
can be a vast amount of NetFlow records generated every
second and these records can be noisy as they contain
flows not toward OSNs or flows of irrelevant protocols and
applications. The preprocessing module therefore must be
both efficient and accurate in extracting OSN-related flows.

Design. We preprocess the raw NetFlow data collected
from a router as follows. We first extract the traffic flows
only related to OSNs. After removing NetFlow records
with zero bytes, zero duration, or irrelevant protocols (such
as ICMP), BotFlowMon further discards NetFlow records
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Start Time End Time Protocol Src IP Dst IP Src Port Dst Port TCP Flags ToS pkts bytes 
1582822775.808 1582822802.688 TCP 240.246.127.7 43.175.217.143 80 17608 ...A.... 56 1300 1846000 
1582822776.832 1582822782.208 UDP 28.7.12.109 2.50.210.91 443 49599 ........ 8 8192 10485760 
1582822421.713 1582822425.191 TCP 13.187.25.153 123.41.10.88 443 34530 ...A.... 80 120 37920 

 Fig. 2. Fields of NetFlow records used by BotFlowMon.
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whose source or destination IP address is not associated
with the social network site(s) in question (e.g., Facebook
or Twitter). One issue here is that each OSN site may own
hundreds or even more IP prefixes and they may change
over time. We leverage BGP stream [54] to obtain an OSN
site’s current IP prefixes and check if a NetFlow record’s
source or destination IP address matches one of the prefixes.
In order to deal with a large number of flows efficiently,
the matching process utilizes the longest prefix match al-
gorithm [55], which is similar to the IP forwarding table
lookup procedure when a router forwards packets based on
their destination IP address. Our design allows BotFlowMon
to preprocess NetFlow records in real time. We then group
NetFlow records by OSN users, since these records may
summarize traffic from thousands of users. Here, we define
each OSN user by a unique combination of an IP address
and a port number from the monitored network.

time

NetFow record Flow point

input 
NetFlow 
records

NetFlow 
records w/
flow points

aggregated
NetFlow
records

Transaction 2Transaction 1

Fig. 4. A flow aggregation example using modified DBSCAN. Every
time bin is a small window (e.g., 0.1 seconds). Six NetFlow records are
clustered into two transactions by converting them to NetFlow records
with flow points. (Each flow point has a different gray level, with a
darker gray indicating a higher traffic volume.) One NetFlow record was
fragmented into two records, each at a different transaction.

3.3 Flow Aggregation

Motivation. Now that we have preprocessed NetFlow
records to be composed of only those relevant to detecting
social bot flows, we address the next challenge in that there
is no sufficient information from data of individual NetFlow
records to distinguish social bot flows from OSN flows
generated by real users. As both social bot and real OSN
user behaviors are conducted at the application level, their
NetFlow records, which do not record application-specific
data, can easily be indistinguishable.

Design. We thus introduce the flow aggregation module
in BotFlowMon to inspect collective OSN behaviors of flows
in order to capture distinct patterns of social bot versus
real user behaviors. It aggregates all the NetFlow records
generated by the same transactions, so that we can inspect
and compare transactions of a social bot against those of
real users, including defining and comparing features of
transactions. Here, a transaction is a sequence of actions
by either a social bot or real user that are closely adjacent
to each other. For example, it can be a user logging in her
Facebook account and reading new posts on her Facebook
wall, or a Twitter bot retweeting a spam link one hundred
times within a short period.

In this module, we use modified DBSCAN [56] to ag-
gregate/cluster flows into multiple transactions, with each
transaction composed of multiple flows. Figure 4 shows an
example. DBSCAN is a common density-based clustering
algorithm that groups together adjacent high-density data
points, where outliers are points that lie only in low-density
regions. This procedure includes the following steps:

1) For every flow as described by a NetFlow record, we
divide its duration into multiple time bins of equal
length and define a flow point for each bin. Every flow
point has a traffic volume derived from the bits per
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TABLE 2
6×N matrix as a transaction fingerprint.

Features Values

1: outgoing bps bpsot1 bpsot2 ... bpsotN
2: outgoing pps ppsot1 ppsot2 ... ppsotN
3: outgoing ToS tosot1 tosot2 ... tosotN
4: incoming bps bpsit1 bpsii2 ... bpsitN
5: incoming pps ppsit1 ppsii2 ... ppsitN
6: incoming ToS tosit1 tosii2 ... tositN

second (bps) of the flow multiplied by the bin’s length.
2) We run the modified DBSCAN algorithm to group flow

points into clusters, with each cluster composed of flow
points that are closely adjacent to each other over a
time window and have a high total traffic volume. In
particular, for any time interval of ε seconds from the
time window, the flow points that belong to the interval
have a total traffic volume no less than minPts bits.

3) Finally, we inspect the time window of every cluster
from the above step. All the flows that fall within this
window will belong to the same transaction.

3.4 Transaction Fingerprint Generation

Motivation. With multiple transactions obtained from the
flow aggregation module, every transaction may contain a
different number of NetFlow records, further with its infor-
mation in textual format (as every NetFlow record is tex-
tual). To make different transactions directly comparable to
each other, BotFlowMon must define, extract, and normalize
features from the aggregated flows of each transaction.

Design. BotFlowMon generates a fingerprint for each
transaction. We design a data fusion method that derives
an f×N matrix from every transaction and use this matrix
as the fingerprint of the transaction. Here, N is the number
of time bins of equal length within the time window of the
transaction, which spans from the earliest start time to the
latest end time among all flows in the transaction, and f is
the number of features of the transaction over each time bin.

Table 2 shows a 6×N example transaction fingerprint
matrix. Rows 1 to 3 are features of outgoing flows and
rows 4 to 6 are features of incoming flows. Both use bits
per second (bps), packets per second (pps) and type of
service (ToS) as features. Note for any time bin there can
be more than one flow active, thus the values of bps and
pps (either incoming or outgoing) for that time bin should
be respectively the sum of the bps and pps values of all
flows active in that time bin. The outgoing or incoming ToS
feature for a time bin, however, is not numerical, and its
value is the ToS field (which is widely used for prioritizing
traffic) and TCP flag of the flow that has the largest bps
value during the time bin. However, because the usage of
the ToS field has not been standardized, the ToS feature may
not be reliable to help produce a transaction fingerprint. As
such, we also introduce a 4×N matrix that does not include
the ToS feature for incoming and outgoing flows.

Once a transaction fingerprint matrix is generated, it also
must be normalized. In BotFlowMon, we use the quantile
normalization approach to map every value in the matrix
to a number between 0 and 255. Using the 6×N matrix

Fig. 5. Visualizing the fingerprint of a transaction lasting 35.74 seconds
with 220 flows.

(a) (b)

(c) (d)

Fig. 6. Transaction fingerprint image examples.

from Table 2 as an example, we learned the distributions
of bps, pps and ToS values using a 235-GB NetFlow dataset
of campus traffic, obtained three functions fr(bps), fg(pps),
and fb(tos) based on the distributions, and then normalized
the bps, pps, and ToS values in the matrix to numbers
between 0 and 255, respectively.

With all the values in a f×N transaction matrix between
0 and 255, we can easily visualize it for inspection and analy-
sis. We can generate an image composed of two colorful bars
in the standard RGB space, one for the incoming flows in the
transaction and one for the outgoing flows, where each bar
has a length of N pixels. In particular, we calculate the RGB
value of pixel i (i=1,...,N ) using all the values from the i-th
column of the matrix. For example, for the 6×N matrix in
Table 2, we can use the outgoing bps, pps, and ToS values
in column i to derive the i-th pixel for the outgoing bar in
the image as (R,G,B) = (255-bps, 255-pps, 255-ToS), which
maps a bigger bps or pps value to a darker color.

Figure 5 is an example of visualizing a transaction fin-
gerprint, which has 220 flows and represents a real user
spending 35.74 seconds browsing Facebook. The beginning
and ending positions of the image correspond to the starting
and ending time of the transaction, respectively, with the
upper bar about the outgoing traffic and the lower bar about
the incoming traffic.

Figure 6 shows more examples of visualized transaction
fingerprints from labeled ground truth. Transaction finger-
prints in Figures 6(a) and 6(b) are two Twitter users mes-
saging each other through Twitter Direct Messages, where
Figure 6(a) is generated by a real user and Figure 6(b) is
generated by a chatbot. Figure 6(c) is created by a social
bot that uses APIs to tweet text messages every 3 seconds.
Figure 6(d) is created by a bot that crawls the photo albums
of friends and posts spam links at the same time. We can
clearly see distinguishable patterns between the transaction
fingerprints of a social bot and those of real users in terms
of color depth, frequency, regularity, and density.

3.5 Transaction Subdivision

Motivation. Now that we have produced a normalized fin-
gerprint matrix for every transaction, we observe there can
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be countless types of transactions since every transaction
may contain an arbitrary number of actions of various types.
In addition, each transaction can be of an arbitrary duration
ranging from a few seconds to a few hours, which can lead
to a huge amount of training data if to have enough training
data for every possible duration range.

Design. We thus subdivide a transaction further into a
sequence of primitive, short-lived behaviors called actions.
Compared to countless types of transactions, there are only
a limited number of types of actions, such as clicking a Like
button, sending a tweet, or submitting a comment. As we
will illustrate, as opposed to inspecting their transactions,
it is much easier to differentiate social bots from real users
through their actions in transactions. Once we tell social bot
actions apart from real user actions, we can separate social
bot transactions from real user transactions.

To subdivide a transaction into actions, we design a
new clustering algorithm named density-valley-based clus-
tering for this purpose. Compared with other density-
based clustering algorithms such as DBSCAN [56] and OP-
TICS [57] that work by traversing density-connected areas,
our algorithm clusters data points by finding the density
valley between adjacent clusters. It does not require a den-
sity threshold parameter to conduct the clustering. Instead,
it uses a valley point index ρ to identify the boundary of two
clusters. Besides, our algorithm has a good performance in
processing datasets whose density is not uniform.

This algorithm uses the following terms:

1) Density of a data point: The density of a data point p
is the summation of the values of all data points within
a radius of r from p. Using bps values as an example,
p.density =

∑
dist(x,p)<r x.bps.

2) Density of a cluster: A cluster’s density is the density
of the point in the cluster that has the highest density.

3) Potential point of a cluster: Point p is a potential point
of C if p is within radius r of a point b∈C.

4) Valley point: A data point p is a valley point of multiple
clusters if p is a potential point of each of these clusters.

5) Valley point competition: When two clusters share a
valley point, they “compete” to include the valley point
as its member, with two possible outcome:

a) The two clusters merge into a new cluster, with the
valley point now belonging to the new cluster;

b) The two clusters keep separate, with the valley point
assigned to the cluster with less data points.

Here, the two clusters keep separate if the density of
the valley point is lower than a percentage ρ of, thus in
sharp contrast to, the density of both clusters.

The algorithm works as follows, with its pseudocode in
Algorithm 1. It takes a dataset D and a radius threshold
value (r) as input. Using the 6×N or 4×N matrix from
Section 3.4 as an example, D can be a set of data points
where the i-th data point has a bps value that is the sum of
the outgoing bps and incoming bps from the i-th column of
the matrix. The algorithm then sorts all the data points in
D, processes all the data points in the descending order of
density, and forms and populates clusters with data points
in D. If a data point is a valley point between two clusters,
the algorithm then decides whether to merge the two clus-
ters or still keep them using the valley point competition

mechanism; if the two clusters do not merge, we also iden-
tify the subdivision moment where the two clusters meet.
Finally, the algorithm outputs all the newly formed clusters.
If D is a set of data points from a transaction’s fingerprint,
these clusters then represent actions of the transaction.

Algorithm 1 Density-valley-based clustering algorithm.
1: Input: dataset D, radius threshold value r, valley point

index ρ
2: C = φ . C is a set to store clusters
3: Use r to calculate the density of each data point in D
4: D := Sort(D) . Sort data in the decreasing order of

density
5: for data point e in D do
6: if e is not a potential point of any cluster then
7: Label e as a member of a new cluster ce
8: Add cluster ce to C
9: else if e is a potential point of cluster ca then

10: Label e as a member of cluster ca
11: else if e is a potential point of two clusters {ci, cj}

then . Start the valley point competition
12: if e.density≤ρ·min(ci.density, cj .density) then
13: Add e to ci or cj that has less data points
14: else
15: cnew = merge(ci, cj)
16: Add data point e to cluster cnew
17: Remove clusters ci and cj from C
18: Add cluster cnew to C
19: end if
20: end if
21: end for
22: return C

After subdividing a transaction into actions using the
algorithm, we further ensure every action is short-lived
according to the definition above. If an action produced
from the algorithm is longer than 60 seconds, we further
divide it into multiple actions at 60-second intervals.

Like a transaction represented by a transaction finger-
print matrix, an action can be represented by an action
fingerprint matrix, which has the same look as a transaction
fingerprint matrix as shown in Table 2.

Figure 7 shows two transaction subdivision examples.
Figure 7(a) shows by subdividing the transaction fingerprint
of a social bot (which is a post bot) into five actions, every
action has a more outstanding pattern than the original
transaction fingerprint. Figure 7(b) shows a transaction by
a real user that is composed of two actions, where one was
opening an OSN site and the other was scrolling down the
page of the OSN site. We can see actions from real users
present more complicated fingerprint images than those
from social bots, making them easy to differentiate.

Algorithm 1 is dedicated to low dimensional datasets,
such as the transaction fingerprint data. We further extend
it in Appendix A to make it a general clustering algorithm
that can deal with multi-dimensional datasets.

3.6 Machine Learning & Classification

Motivation. With transactions subdivided into actions,
the main challenge now becomes classifying transactions
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(a) Social bot (b) Real user

Fig. 7. Transaction subdivision examples.

through their actions, while it is yet to be seen what models
work best for classifying actions. Also, we need to devise
an architecture when applying a model to process action
fingerprints.

Design. We first classify actions into social bot actions
and real user actions, and then classify the transactions
based on how their actions are classified.

Action classification model. To classify actions we train
an action classification model. The input to this model is a
set of action fingerprint matrixes labeled as either social bot
actions or real user actions. Since every action fingerprint
matrix is nonlinear and high dimensional, we use Conven-
tional Neural Network (CNN) [58] and Multilayer Percep-
tron (MLP) [59] as classification models. (BotFlowMon is
not bound to MLP and CNN and could use other machine
learning algorithms if applicable.)

CNN and MLP architecture. We use the Keras [60]
library with TensorFlow [61] to implement CNN and MLP
architectures. Figure 8 shows a CNN architecture that is
composed of a convolution layer, a pooling layer and a
flatten step to transform a fingerprint matrix into the input
of a fully connected neural network, which consists of an
input layer, multiple hidden layers (we evaluate the optimal
number of hidden layers in Section 4.2.3), and an output
layer to finally output the label for the fingerprint matrix.
The MLP architecture is similar to the fully connected neural
network in the CNN architecture, with the input layer being
a flattened fingerprint matrix. For both architectures, the
hidden layers use Leaky ReLU as its activation function
so the model can converge quickly; the output layer uses
the Sigmoid function to produce a probability that the
fingerprint matrix is from a social bot. In addition, we train
the CNN and MLP models with the stochastic gradient de-
scent optimization algorithm and use the backpropagation
algorithm to update the neural network.

Transaction Classification. With the action classification
model trained, we then can classify if every action within a
transaction is from a social bot or from a real user and decide
whether the transaction is a bot transaction or a real user
transaction. Apparently, if all actions are from a real user
(or a social bot), we can safely determine the transaction
is by a real user (or a social bot). However, a transaction
may consist of actions of both types. We thus decide that
a transaction is a bot transaction if more than a certain
percentage of actions are from a social bot, and a real user
transaction if otherwise. We define this percentage as the

1@6x200 (fingerprint matrix)

3@4x198

3@2x66

Output layer

1x396 (input layer)

1x198 (hidden layer)

1x99 (hidden layer)

1x33 (hidden layer)

Convolution Layer
(3x3 kernel)

Pooling Layer
(2x3 kernel)

Flatten

Fully Connected
Neural Network

Fig. 8. The CNN architecture of BotFlowMon (with example parameters).

detection sensitivity rate γ of BotFlowMon.

4 EVALUATION

We now evaluate BotFlowMon. We first introduce the
dataset used in Section 4.1, then config and analyze param-
eters used in the BotFlowMon system in Section 4.2, present
detection results and analysis in Sections 4.3–4.6, and finally
discuss BotFlowMon’s performance in Sections 4.7.

4.1 Data Source

The datasets we use to construct and test BotFlowMon come
from two sources: (i) the traffic generated and gathered
from our lab’s computers and routers, which is a small
experimental platform that has superior flexibility and con-
venience for simulation, data collection, and experiments;
and (ii) datasets generated and collected from the campus
network traffic of a large university, which offers data from
realistic scenarios for analysis and verification.

We created and labeled the real user and social bot traffic
flows as follows. For real user traffic flows, we recruited
participants to manually conduct normal daily activities
on Twitter and Facebook using our lab’s computers. For
social bot traffic flows, we deployed open-source social
bot programs and homegrown bot scripts on the experi-
mental platform and the campus network to conduct bot
activities on Twitter and Facebook. We then collected and
labeled the corresponding traffic as the ground truth. As
described in Appendix B, we categorized social bots into
five types according to their implementation mechanisms
and simulated all of them. Besides, since the development
and evaluation of BotFlowMon involved human subjects,
we address the ethical and human subject issues of this
process in Appendix C.

Table 3 shows the composition of the collected data. We
collected 28 GB raw NetFlow data from our experimental
platform and 507 GB raw NetFlow data from the campus
traffic, both containing all traffic flows in the environment.
After preprocessing, we had a dataset of 3.204 GB with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TDSC.2020.3047399

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Value of r

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pu
rit

y 
sc

or
e

Real user
Social bot

Fig. 9. Purity scores with different r values.

0 5 10 15 20 25 30 35
Number of actions

0

5

10

15

20

25

30

35

Du
ra

tio
n 

(s
)

Social bot transaction
Real user transaction

Fig. 10. Scatter diagram for subdivision.

3 5 7 9 11 13
Number of hidden layers

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

Va
lid

at
io

n 
ac

cu
ra

cy

CNN
MLP

Fig. 11. Validation accuracies with different
numbers of hidden layers.

TABLE 3
Composition of collected data.

Raw NetFlow records

Size of data 535 GB (campus network: 507 GB, lab platform: 28 GB)

Labeled NetFlow records

Size of data 3.204 GB (987.710 MB if removing irrelevant fields)

# records 30,932,991

Number of transactions (social bot : real user ≈ 7:3)

Social bot 166,615 Real user 67,723

30,932,991 labeled NetFlow records for training and testing.
The ratio of social-bot transactions to real-user transactions
is approximately 7:3.

4.2 System Parameters Configuration and Analysis
The BotFlowMon system includes multiple system parame-
ters for its different modules. We first set up the empirical or
default values for some system parameters in Section 4.2.1.
We then investigate two key parameters more specifically:
the radius threshold r in the transaction subdivision module
in Section 4.2.2 and the number of hidden layers in CNN
and MLP in the machine learning & classification module in
Section 4.2.3.

4.2.1 System Parameters with Empirical or Default Values
Based on our empirical studies (of which we skip the details
for space considerations), we set the following parameters
as follows:

• For the flow aggregation module, we set the length of
every time bin to be 0.1 seconds. This length provides
a time granularity that is fine enough but not too small
to skyrocket the computation cost of the system. This
parameter is adjustable, as smaller time bins could lead
to more precise results with a higher computational
cost.

• For the DBSCAN algorithm in the flow aggregation
module, we set ε to be 10-20 seconds. According to
the user behavior models from the network perspec-
tive [62], users usually do not trigger NetFlow records
in 10-20 seconds. This setup also helps us lean toward
clustering the flows into transactions over a longer
period rather than short ones, as the former is more
friendly with the transaction subdivision module. Fur-
ther, we set minPts to be 1500 bits, which is a relatively

small value for OSN traffic [62] in order to accommo-
date certain tiny streams between an OSN user and an
OSN server.

• For the transaction fingerprint generation module, we
set N as 200. Note a larger value of N will generate
more accurate results but require more training data
and computations.

We also set the default values of the following parameters:
• For the transaction subdivision module, we define ρ in

valley competition mechanism to be 50% by default.
• For the machine learning & classification module, we

set the detection sensitivity rate γ at 50% by default.

4.2.2 Subdivision Efficacy and Its Radius Threshold (r)

We evaluated the transaction subdivision module to see
whether our density-valley-based clustering algorithm can
divide the transaction fingerprints into action fingerprints
correctly. Specifically, we studied how different values of
radius threshold r in the algorithm could generate dif-
ferent subdivision results and potentially affect the de-
tection outcome. Figure 9 shows the purity scores of the
resulted clusters from subdivision with different r val-
ues. We use this formula to calculate the purity scores:
purity = 1

N

∑
kmaxj |cktruth∩c

j
algo|, whereN is the number

of input data points, cktruth is the k-th cluster from the
ground truth, and cjalgo is the j-th cluster generated by the
algorithm. From Figure 9, we can see that the algorithm is
indeed susceptible to the values of r and we can generate
optimal results when r is in the range of 18 to 23. For
transactions of social bots, the subdivision module works
well when r is in this range and can achieve more than 0.90
purity of the resulting clusters. This is because social bots
utilize APIs heavily, making their transaction fingerprints
easy to subdivide. For real user transactions, however, the
purity scores of the clusters derived from the algorithm
are lower and more sensitive to the variation of r than
those corresponding to bot transactions, with the maximal
purity score to be 0.7832 when r = 26. One reason is that
the boundaries of different actions in real user transactions
are blurry in flow-level data. Almost all the OSN web
sites preload content to real users dynamically, which can
cause irrelevant NetFlow records to occupy the gap between
actions and thus make the clustering in the algorithm less
accurate.

However, the ultimate goal of subdivision is not parti-
tioning all the transactions precisely. Instead, it is designed
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to make data more friendly to the machine learning process.
We randomly sampled 100 real user transactions and 100 bot
transactions, then recorded the number of actions and their
average duration for each transaction after subdivision.
Figure 10 is the scatter diagram of the result. We found
that while the lengths of actions vary, actions from bots
tend to have a short duration (0 to 15 seconds) and actions
generated by real users usually have a long duration (0 to 40
seconds). Nonetheless, the durations of bot actions and real
user actions are comparable, which makes it easy to compress
actions of different durations into fingerprints of a fixed
length and makes the subsequent machine learning module
easy to converge.

4.2.3 Number of Hidden Layers in CNN and MLP
We investigated the optimal numbers of hidden layers of
our CNN and MLP models as this parameter can signifi-
cantly affect the accuracy of the models. In this evaluation,
we took 80% of the labeled data as the training dataset, 10%
of the data as the validation dataset, and the remaining
10% of the data as the testing dataset. For both CNN
and MLP models, we started with three hidden layers. We
trained each model with the training dataset and validated
their accuracies with the validation dataset. We then kept
adding new hidden layers to each model and repeated the
procedure above until the validation accuracies converge.

Figure 11 shows the validation accuracies with different
numbers of hidden layers. We can see the validation ac-
curacy of CNN is already acceptable when the number of
hidden layers is three and remains almost the same after it
reaches nine. The MLP model’s accuracy stabilizes when the
number of hidden layers reaches seven. Therefore, we set
CNN’s default number of hidden layers at nine and MLP’s
default number of hidden layers at seven.

4.3 Classification Accuracy

We evaluated different classification models’ abilities in
detecting social bot transactions. Figure 12 shows the test
results for machine learning & classification module with
different classification models. The test dataset contains 10%
of the labeled data, which has 16,661 social bot transac-
tions and 6,772 real user transactions. Here, we use 6×200
transaction fingerprints which use incoming and outgoing
bps, pps and ToS features. Both CNN and MLP models
can correctly classify more than 93% of the traffic flows.
However, CNN achieves a better significant result, with
96.1% of accuracy. One reason for this phenomenon is that
CNN has convolutional and pooling layers to incorporate
spatial information from action fingerprints, while MLP
only takes flattened vectors as input, which disregards such
spatial information. Moreover, we can clearly see that the
subdivision procedure helps improve the accuracy for more
than 10%. Table 4 shows other detailed evaluation scores of
MLP and CNN for both 6 × 200 and 4 × 200 transaction
fingerprints. We can see that CNN slightly surpasses MLP
under all scoring criteria.

Overall, BotFlowMon can detect social bots with high
accuracy. With low false negative (or high true positive)
rates as shown in Table 4, we can detect every single social
bot transaction with a high probability. In particular, because

TABLE 4
True/false positive/negative rates for social bot traffic detection.

MLP CNN
6× 200 4× 200 6× 200 4× 200

True positive rate 0.9358 0.9318 0.9665 0.9485
True negative rate 0.9260 0.9221 0.9468 0.9334
False positive rate 0.0739 0.0778 0.0531 0.0665
False negative rate 0.0641 0.0681 0.0334 0.0514

a social bot usually creates multiple transaction fingerprints
in a burst and we often only need to identify one of them
to be able to trace the social bot, our chance of detecting the
social bot is even higher.

A concern here is the false positive rates as we do not
want BotFlowMon to mislabel real user traffic. An active
social network user may generate hundreds of transactions
per day, which means the false positive rate of the detection
system needs to be low enough to avoid causing interrup-
tions to real users. For this purpose, we can leverage the
detection mechanism in the machine learning & classifica-
tion module (Section 3.6); in particular, we can adjust the
detection sensitivity rate γ to achieve zero false positive rate,
which we further investigate in Section 4.4.1.

4.4 Putting BotFlowMon to Use

We now study if putting BotFlowMon to use, what factors
the user can config and adjust to suit their environment and
need and how they may affect the detection of social bots.

4.4.1 Detection Sensitivity Rate (γ)
BotFlowMon allows its detection sensitivity rate γ to be
adjusted to achieve different false positive rates. As stated in
Section 3.6, given a sensitivity rate γ, BotFlowMon identifies
a transaction as a social bot transaction if the percentage of
social bot actions in the transaction is larger than γ. If we
want to limit or eliminate false alarms, we can increase γ to
sacrifice the detection accuracy a little bit for an extremely
low (or even zero) false positive rate.

Figure 13 shows the accuracies and false positive rates
of BotFlowMon with both MLP and CNN models when
different γ values are used. We found from our experiments
that the false positive rate of CNN will reach nearly zero
when γ is no less than 0.75 (while the true positive rate is
0.91). Similarly, the false positive rate of MLP will reach zero
when γ is no less than 0.85. If only when more than 75% of
its actions are classified as bot actions will a transaction be
labeled as a bot transaction, BotFlowMon with CNN will
not generate any false alarm, while its accuracy will only
drop down to 0.89. Therefore, a conservative approach to
deploying BotFlowMon is to set the detection sensitivity rate
γ at 0.75 if using CNN (or 0.85 if using MLP), in which case
the detection accuracy will be more than 0.89 if using CNN
(or 0.85 with MLP) with no false positives.

4.4.2 ToS Features
Due to reliability concerns with the ToS features (see Sec-
tion 3.4), BotFlowMon may need to run without such
features. We investigated BotFlowMon’s detection efficacy
without them. We thus used 4×200 transaction fingerprints

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TDSC.2020.3047399

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



MLP(6x200) CNN(6x200) CNN(4x200) CNN(6x200)
 No Subdivision

0.80

0.85

0.90

0.95

1.00
Sc

or
e

0.
93

3 0.
96

1

0.
94

4

0.
81

9

0.
96

9

0.
97

8

0.
97

2

0.
90

80.
93

6 0.
96

7

0.
94

9

0.
82

8

0.
95

2 0.
97

2

0.
96

0

0.
86

7

Accuracy Precision Recall F1-score

Fig. 12. Detection scores for different detection
models.

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

MLP
CNN

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Detection sensitivity rate

0.00

0.05

0.10

Fa
lse

 p
os

iti
ve

 ra
te

MLP
CNN

Fig. 13. Detection accuracy and false positive
rate with different detection sensitivity rates (γ).

1 in 1 1 in 32 1 in 64 1 in 128 1 in 256
Sampling rate

0.5

0.6

0.7

0.8

0.9

1.0

De
te

ct
io

n 
ac

cu
ra

cy

0.
92

57

0.
79

23

0.
59

11

0.
55

60

0.
52

95

0.
92

57

0.
78

45

0.
62

34

0.
57

38

0.
53

81

Time-based
Packet-based

Fig. 14. Detection accuracy with sampled Net-
Flow records (CNN with three hidden layers).

0 30 50 70 80 90    95
Proportion of data removed (%)

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Accuracy
Precision
Recall
F1

Fig. 15. Detection scores with re-
duced training data.

0.30.5 1 2.3 5 10 20 30 40 50
# Real User Trans / # Social Bot Trans

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
or

e

Accuracy
Precision
Recall
F1

Fig. 16. Detection scores with im-
balanced test datasets.

which only included incoming and outgoing bps and pps
features. Figure 12 shows the results, where the overall
accuracy is 0.944, which is 1.7% lower than that with 6×200
transaction fingerprints. We can see without ToS features,
we can have a classification model that is not only more
usable but also still fairly accurate.

4.4.3 Detection with Sampled NetFlow Records
A reality factor in running BotFlowMon against NetFlow
records as input is that many times due to computational
and bandwidth pressure on routers, only sampled NetFlow
records are available. We thus investigated BotFlowMon’s
accuracy with sampled NetFlow records.

We applied two sampling methods over the original
NetFlow data from Table 3: time-based sampling that takes
packets from a τ -second interval every τ ·x seconds, and
packet-based sampling that takes one packet every x pack-
ets. We created multiple datasets using both methods with
different sampling rates (i.e., 1

x ) and run BotFlowMon using
the CNN classification model with three hidden layers. Fig-
ure 14 shows the results. We can see that as the sampling rate
decreases the accuracies drop dramatically. BotFlowMon
still works well with a low sampling rate at 1 in 32, but
it becomes barely usable when the sampling rate becomes
1 in 64 or lower. On the other hand, as we pointed out in
Section 4.3, because a social bot usually spawns multiple
transaction fingerprints in a burst, among which only one
needs to be identified to track down the social bot, we still
have a reasonably high chance to include at least some bot
transactions in the sampled input and be able to detect at
least one of them.

4.4.4 Detection with Less Training Data
It is laborious to train a classification model with a large

amount of labeled data. We investigated BotFlowMon’s
capability with less training data to understand the least
amount of training data that would still lead to acceptable
performance. Specifically, we removed different portions of
data from the original training dataset and evaluated Bot-
FlowMon’s detection ability under each different training
data size with default parameter values. Figure 15 shows
the results. We can see BotFlowMon maintains a decent
accuracy even after we removed 90% of the training data,
but its accuracy degrades significantly when it is more than
90%. In another words, to maintain satisfactory performance
the training needs at least 1500 transactions (250 MB) from
real users and also this much from every type of social bot.

4.4.5 Detection with Imbalanced Datasets
When deploying BotFlowMon in different environments,
the ratio of real user transactions to social bot transactions
can change significantly. For instance, the proportion of
social bot transactions in a VPS provider’s network can
be higher than that in residential networks. We therefore
generated ten test datasets with different ratios to evaluate
BotFlowMon’s detection performance under such scenarios
with default parameter values. Each of the generated test
sets has 3000 samples. Figure 16 describes BotFlowMon’s
accuracy, precision, recall, and F1 scores with these test
datasets. We can see that when the proportion of real user
transactions increases, the accuracy and recall remain almost
the same, but the precision and F1 score clearly drop. This
phenomenon is expected as the false positive samples will
dominate the detection errors when the number of false
samples grows. To solve this problem, we can adjust the
detection sensitivity rate discussed in Subsection 4.4.1 to
reduce false alerts.

4.4.6 Selection of Parameters in New Environments
When transferring BotFlowMon to a different network en-
vironment, users do not need to reset the parameters if the
following two conditions are met: (1) The input NetFlow
records are of the same version and configuration. (2) Users
are going to detect the same types of social bots on the same
OSN sites. Otherwise, users need to reset the parameter
values or retrain the detection model. To quickly set up the
parameters in BotFlowMon and achieve acceptable perfor-
mance in such scenarios, we suggest the users to begin with
default parameters and use a conservative detection sensi-
tivity rate γ (e.g., 0.85 - 0.95). Such setting will sacrifice the
true positive rate to decrease the false positive rate, enabling
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users to detect social bots to some extent while not being
overwhelmed by false alarms. Later, after other parameters
(e.g., the neural network) are fine-tuned according to the
environment, users can adopt a radical detection sensitivity
rate (e.g., 0.5 - 0.75) for better accuracies.

4.5 Comparisons with Other Approaches

We have compared BotFlowMon with other social bot de-
tection approaches, specifically content-based methods and
structure-based methods (elaborated in Section 2). As illus-
trated in Figure 17, they each operate using different input
at a different granularity in order to detect social bots.

We compared BotFlowMon with a content-based method
described in [63], which we refer as SpamFilter. It utilizes
four types of content features to detect social bots and
achieves a true positive rate (TPR) of 80.8% and a false
positive rate (FPR) of 0.32%. By analyzing their experi-
mental data, an OSN account has to generate at least two
transactions in order to create enough data to derive values
of these features for SpamFilter to conduct its detection.
We thus compare BotFlowMon with SpamFilter with two
transactions.

As for structure-based methods, we selected Sybil-
Walk [17] to compare, which achieves a TPR of 96% and
a FPR of 1.3%. Here, in order to have enough data to derive
values of features used by SybilWalk, an OSN account
has to conduct at least four transactions, including account
creation, profile initiation, and relationship establishment.
We thus compare BotFlowMon with SybilWalk with four
transactions.

Figures 18(a) and 18(b) illustrate the comparison results,
where BotFlowMon uses the CNN model with 6 × 200
fingerprints and sets the detection sensitivity rate γ at 0.75.
We can see the following. When there is only one transac-
tion, only BotFlowMon can detect whether it is a social bot
transaction with a TPR of 91% and a FPR of 0.1%. When
there are two transactions, BotFlowMon can detect whether
there is at least one social bot transaction with a TPR of
99.1% and a FPR of 0.2%, which is significantly better than
SpamFilter’s TPR (80.8%) and FPR (1.3%). And when there
are four transactions, BotFlowMon can detect whether there
is at least one social bot transaction with a TPR of 99.9%
and a FPR of 0.5%, which is still significantly better than
SpamFilter’s TPR (96.3%) and FPR (2.6%) and is also better
than SybilWalk’s TPR (96.0%) and comparable to its FPR
(0.3%). Overall, BotFlowMon outperforms both SpamFilter
and SybilWalk with less transactions needed, a higher TPR,
and a higher or comparable FPR.

4.6 Feasibility Study on Multiclass Classification of So-
cial Bot Traffic

Besides identifying social bot traffic flows, we investigated
whether BotFlowMon may further classify the social bot
traffic flows into different categories of social bots. By using
the transaction fingerprints of different categories of social
bots, we trained a multiclass CNN classification model that
labels a social bot transaction fingerprint as one of the five
following categories: chatbot, post bot, amplification bot,
OSN crawler, and hybrid bot.
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Fig. 18. BotFlowMon vs. other approaches.

Figure 19 shows the multiclass classification scores for
different categories of social bots. We used a test dataset that
contains 250 bot transactions, with 50 transactions for each
category. The overall classification accuracy is 78%. We can
see from Figure 19 that this model achieves the best score
for labeling OSN crawlers. This is because OSN crawlers
usually have high frequencies, large packet sizes, and sharp
contrast of outgoing and incoming traffic volumes, leading
to the most differentiable traffic flows among the five types
of social bots. The scores for chatbots and hybrid bots
are less remarkable, but still decent. On the contrary, it is
relatively hard to distinguish traffic flows from post bots
and amplification bots; the API calls made by both types
of bots, regardless of the functions invoked (e.g., liking a
post, posting a message, following an account), will result
in almost identical traffic flows.

In general, the accuracy for classifying categories of
social bots is significantly lower than that of detecting
social bots. These two tasks are fundamentally different.
The former aims to classify the traffic as different types of
social bot traffic, while the latter is focused on classifying
the traffic as real-user traffic or social-bot traffic. Obviously,
the difference between real-user traffic and social-bot traffic
is more significant and easier to distinguish.

4.7 Time Complexity and Performance
4.7.1 Time Complexity
The time complexity of BotFlowMon is O(n), where n is
the total number of input NetFlow records. The detailed
analysis is in Appendix D.

4.7.2 Performance
We tested BotFlowMon’s performance to see how fast it is
in detecting social bot traffic. We tested it on a personal
laptop with a quad-core 2.7-GHz CPU, 16-GB memory, but

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TDSC.2020.3047399

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Chatbot Post
bot

Amplification
bot

OSN
crawler

Hybrid
bot

0.5

0.6

0.7

0.8

0.9

1.0
Sc

or
e 0.
76

4

0.
68

6

0.
72

0

0.
83

9 0.
92

1

0.
84

0

0.
70

0

0.
72

0

0.
94

0

0.
70

0

0.
80

0

0.
69

3

0.
72

0

0.
88

7

0.
79

5

Precision
Recall
F1-score

Fig. 19. Multiclass classification scores for dif-
ferent categories of social bots.
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no GPU. We ran it in a single thread with the worst case for
performance where every flow is an OSN flow.

We first evaluated how long it takes for BotFlowMon to
process a single transaction, or TPT (time per transaction).
Note among the three factors we analyzed in Section 4.4,
only the ToS features will affect TPT. We thus measured
BotFlowMon’s TPT with both 6×200 and 4×200 transaction
fingerprints. Figure 20 shows the cumulative distribution
functions (CDFs) of the TPT for both. Clearly, the TPT with
4x200 transaction fingerprints is shorter, where TPTs with
6×200 and 4×200 transaction fingerprints are 0.71 and 0.49
seconds on average, respectively.

Moreover, we measured the time spent on each module
of BotFlowMon and found that about half time of a TPT
is spent on the classification step. For the TPT with 6×200
transaction fingerprints, its 56.75% is from the final classifi-
cation step and its 43.25% is from the rest operations.

Finally, Figure 21 shows that as the number of transac-
tions increases, the total processing time increases basically
linearly. Here, the processing time is the total time for the
classification and the rest operations. The linear increase of
the classification time is less stable than that of the rest op-
erations, as the classification workload for each transaction
depends on the number of its actions, which is uncertain.

Clearly, there is an ample space to improve both hard-
ware and software support (e.g., using GPU and multi-
threading) for running BotFlowMon. Even without doing
so, BotFlowMon is already fairly fast to detect social bot
traffic in real time.

5 LIMITATIONS AND OPEN ISSUES

A primary contribution of BotFlowMon is to use data from
network layers 3 and 4 to detect anomalies at network layer
7. However, BotFlowMon has some limitations:

1) As BotFlowMon is focused on distinguishing the social
bot traffic from the real user traffic, its ability to identify
different categories of social bots is not ideal (demon-
strated in Section 4.6). To address this limitation, we
could consider using social bot traffic identified by
BotFlowMon to trace relevant OSN content and then
leveraging the content to help classify social bots.

2) In fact, not all the social bots are necessarily malicious,
and the boundary between “good” bots and “bad” bots
can be blurry. To distinguish social bots with malicious
intentions from innocent ones, not only will we very
likely need content data of these social bots, but we also

will have to apply techniques such as natural language
processing to identify the intention behind a social bot.

3) If the training data of BotFlowMon does not include
traffic of certain social bots, such as zero-day social bots,
the system probably will not be able to detect them.

BotFlowMon may also be enhanced with new functions
and capabilities:

1) We may explore adding more features to BotFlowMon
to improve its accuracy, such as the AS number of an IP,
non-OSN traffic from the same IP, and time of the day.

2) We may add an online learning capability to BotFlow-
Mon to make it adaptable to possible concept drifts.

3) We may study how to enhance BotFlowMon with ad-
versarial machine learning techniques such that it is
resilient against social bots that try to mimic real users.

6 CONCLUSIONS

Today’s social bots are becoming far more sophisticated and
threatening than before. To prevent the online social ecosys-
tems from being troubled or attacked by them, this paper
proposes a social bot detection method called BotFlowMon,
which takes advantage of big networking data to identify
the traffic of OSN bots. As the networking data it processes
are only information from network layers two and three
and contain nothing about OSN content and structure, Bot-
FlowMon departs from previous content-based, structure-
based, and crowdsourcing-based solutions and is a content-
agnostic, privacy-preserving, and efficient approach.

BotFlowMon devises several new techniques and al-
gorithms, including an aggregation technique that derives
transaction datasets from network flow records, a data
fusion technique that extracts features from transactions
datasets, and an innovative density-valley-based clustering
algorithm that can both divide a transaction fingerprint into
multiple actions and serve as a general clustering algorithm
like DBSCAN to process other types of data. It can identify
traffic flows from social bots with an accuracy of around
95%. It is also easy to deploy; any Internet service provider
or enterprise networks, as long as they are able to access the
traffic flow records such as NetFlow, can deploy BotFlow-
Mon. Finally, it can monitor traffic of a network and detect
social bots in real time; the study of the worst case on a
testing machine shows BotFlowMon can determine whether
a flow is from a social bot or not within 0.71 seconds on
average after it sees the flow.
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APPENDIX A
EXTENSION FOR THE DENSITY-VALLEY-BASED
CLUSTERING

Algorithm 1 only applies to one-dimension datasets since
the valley point competition mechanism only handles cir-
cumstances where two clusters share a valley point. This
design is sufficient for processing transaction fingerprint
data, but not able to deal with multi-dimension datasets
where there can be more than two clusters sharing a valley
point. We thus designed a more universal valley point com-
petition mechanism in Algorithm 2 to solve this problem. In
particular, if data point e in Algorithm 1 is a valley point
of multiple clusters {c1, c2, ..., cn}, it can invoke Algorithm 2
instead. It first divides competing clusters into a low-density
group and a high-density group. It then merges all the
clusters in the low-density group, as well as the cluster
with the lowest density in the high-density group, into
one cluster, and assigns valley point e to the cluster with
the fewest data points among all clusters. With the help
of Algorithm 2, Algorithm 1 can handle more complicated
transaction fingerprint configurations, or even serve as a
general clustering algorithm to process other types of high-
dimension and low-dimension datasets.

Algorithm 2 Valley point competition for n ≥ 2 clusters.
1: Input: Valley point e, set of competing clusters Cn =
{c1, c2, ..., cn}, set C from Algorithm 1 that stores cur-
rent clusters, valley point index ρ

2: Clow = φ; Chigh = φ . two sets to store the low density
and high density clusters from Cn, respectively

3: C = C - Cn . remove Cn from C
4: for cluster c in Cn do
5: if c.density · ρ ≤ e.density then
6: Add c to Clow

7: else
8: Add c to Chigh

9: end if
10: end for
11: if Clow 6= φ then
12: if |Chigh| >= 2 then
13: cborder = the cluster with the lowest density in

Chigh

14: remove cborder from Chigh

15: cnew = merge(Clow, {cborder})
16: Call = Chigh ∪ {cnew}
17: Add e to the cluster with the fewest data points

in Call

18: Add Call to C
19: else
20: cnew = merge(Clow, Chigh)
21: Add e to cluster cnew
22: Add cnew to C
23: end if
24: else
25: Add e to the cluster with the fewest data points in

Chigh

26: Add Chigh to C
27: end if
28: return C

APPENDIX B
SOCIAL BOTS SIMULATION

There are various types of social bots existing in the world,
also, they can create different traffic flows during opera-
tions. BotFlowMon’s design requires inputting a significant
amount of labeled traffic data as ground truth. To derive
the labeled dataset, we categorized the social bots into the
following five types and comprehensively simulated them.

B.1 Chatbot
Chatbots are active in messaging applications such as Twit-
ter Direct Messages, Facebook Messenger, or WeChat. Either
artificial-intelligence-powered or merely logic-based, they
can automatically perform conversations with regular users.

The simulation of chatbots relies on existing widely used
chatbot frameworks, APIs, and open-source programs such
as botmaster [64], Ontbot [65], BotLibre [66], and python-
twitter API. We created many Twitter and Facebook bot
accounts only for research purposes under the OSNs’ terms
and conditions of service. The chatbots we created only
talked to the recruited participants during the data gen-
eration process. We collected multitudinous traffic flows
of the conversations between real users and the chatbots,
with different frequencies of interaction, response time and
transmission content (image, audio, text, or hyperlink).

B.2 Post Bot
In part due to the easily usable official and third-party APIs,
poster bots have become the most common social bots in
OSN. They distribute spam tweets and Facebook posts with
malicious URLs in most cases or malicious texts occasionally
[3] [67].

In order to simulate post bots, we downloaded several
popular open-source poster bot software from GitHub [68]
and wrote some poster bot programs based on APIs such
as Tweepy [69] and Facebook API [70]. The open-source
programs we used included botmaster [64], BotLibre [66],
and TwitterBot [71]. We first set up OSN accounts on Twitter
and Facebook platforms. Then, we ran these bots programs
with different frequencies, including random frequencies,
during different time periods to post some harmless mes-
sages that contained texts, videos, images and external URLs
on Twitter and Facebook.

B.3 Amplification Bot
Amplification bot, due to the large volume of messages
it can generate, is often used to create hot topics for
commercial promotion, consensus manipulation, and spam
distribution. Without creating new content, amplification
bots often work as fake followers, such as those Twitter or
Facebook accounts specifically created to inflate the number
of followers of a target account. Amplification bots also
can serve as forwarding and liking robots, popularize junk
information, and help commercial promotion.

Since the social relationship is unknown in NetFlow
data, we only need to simulate every individual amplifi-
cation bot’s interactions with OSNs. The simulation of am-
plification bots is similar to the post bot simulation. We used
open-sourced programs [64], [66], [71] and implemented
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API-based bot scripts to simulate amplification bots. Be-
sides, we used OAuth [72] software for token management
and switching accounts.

B.4 OSN Crawler
OSN crawlers can exploit OSNs to aggregate data of a large
number of OSN users for re-publication or other nefarious
purposes that violate users’ privacy and security. There are
two types of OSN crawlers and we simulated both of them.
One is API-based, which relies on a large botnet to extract
users’ private, sensitive data. Twitter and Facebook used
to have powerful APIs such that even a small number of
accounts can fetch a large amount of information from their
sites. Recently OSN operators have taken plenty of measures
to limit the APIs’ capacity in crawling user data, especially
after the Facebook-Cambridge Analytica data scandal [73].
Moreover, in OSNs it is common that a user’s information
can only be accessed by their friends or followers. Therefore,
a significant amount of social bots are necessary to overcome
the API limitations and retrieve users’ private information.
The following code exemplifies a crawling process.
import twitter
api = twitter.Api()
api.GetUser(user)
api.GetFollowers()
api.GetStatus(status_id)
api.GetFriends(user)
api.LookupFriendship(user)

Another type of OSN crawler is page crawler. Instead of
using API, it reads the HTML files of OSNs and uses regular
expressions to extract target information. The NetFlow traf-
fic of this bot has a strong resemblance to a regular user’s
traffic but still differs in key aspects, such as flow density
and operation frequency.

B.5 Hybrid Bot
The hybrid bot is not a specific type of social bot. Instead,
it is an arbitrary combination of different types of social
bots. This characteristic makes the activities of a hybrid bot
hard to detect. However, with BotFlowMon’s subdivision
module, we can subdivide its transactions into actions, thus
still able to detect it.

We implemented a hybrid bot that consists of a chatbot,
a post bot, an amplification bot, and an OSN crawler on
a single node. During the execution of the hybrid bot, its
chatbot is always active, so it automatically replies when-
ever other accounts send it messages. Meanwhile, it ran-
domly conducts actions provided by other underlying bots.
We simulated its activities with both periodic and random
frequencies.

APPENDIX C
ETHICAL AND HUMAN SUBJECT ISSUES

We carefully addressed the ethical and human subject is-
sues involved in this research. As the development and
evaluation of BotFlowMon involved human subjects, we
obtained the Institutional Review Board (IRB) approval to
ensure that our procedures are ethical and appropriate in
order to safeguard the welfare of the campus network and

the privacy of research participants. We introduce the main
measures we adopted to address the ethical considerations
below.

C.1 Data Generation
In recruiting participants, we adopted an informed consent
procedure, which provided the potential participants with
a clear description about the project before they agree.
After the data generation, all their personal data were
deleted immediately. In simulating social bots, we ensured
they followed the terms of service of OSN providers, were
harmless to other users and the OSN environments, and
left no traces after each experiment. For example, we used
weather reports, university announcements, and encyclo-
pedic knowledge to simulate fraud and spam posts for
post and amplification bots. The external URLs contained
in the bot messages were well-known innocent URLs, such
as google.com and facebook.com. The chatbots and OSN
crawlers only interacted with the informed participants, and
the personal data gathered by them were not stored in any
form.

C.2 Data Collection
All the data we collected were content-agnostic NetFlow
records, along with the labels, time stamps, and short de-
scriptions of real user and social bot activities. No payload
or content data were downloaded and stored during the
process. For the NetFlow records from the campus network,
every internal IP address was anonymized, so it cannot
be mapped back to any individual. Using anonymous IP
addresses, however, makes it hard to identify the NetFlow
records created by ourselves. To address this issue, every
time we generated legitimate or illegitimate traffic, we
pinged several external IP addresses and recorded their time
stamps to create distinctive features of these traffic, making
it easy to identify their NetFlow records and discard all
irrelevant ones. In addition, all the data we collected were
stored in an encrypted form, and any access to the data
must have the approval of the principal investigator of this
project.

APPENDIX D
TIME COMPLEXITY ANALYSIS

D.1 Time Complexities for Different Modules
Preprocessing module: This module’s input is all the NetFlow
records from a monitored network. Assume their number is
n. This module applies the longest prefix match to output
OSN-related NetFlow records, which takes a linear time. Its
time complexity is therefore O(n).

Flow aggregation module: This module’s input is OSN-
related NetFlow records per OSN account (which can be
either a real user or a social bot). Assume the number of time
bins of these records is m. As this module uses DBSCAN to
aggregate related NetFlow records into transactions, it takes
O(mlogm) time.

Transaction fingerprint generation module: This module’s
input is a set of NetFlow records that form a single trans-
action. Its purpose is to produce an f×N matrix as the fin-
gerprint of the transaction. This module’s time complexity
is thus O(fN).
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Transaction subdivision module: This module’s input is the
f×N fingerprint matrix of a single transaction. It applies
its density-valley-based clustering algorithm to subdivide
the transaction and output a set of actions in the form of
action fingerprint matrixes. As the time complexity of the
clustering algorithm is similar to DBSCAN, this module’s
time complexity is O(NlogN).

Machine learning & classification module: This module’s
input is j actions that a transaction is subdivided into. As-
suming the number of layers in CNN or MLP classification
model is l, this module is to classify each action with a
time complexityO(l). This module’s time complexity is thus
O(lj).

D.2 Overall Time Complexity
As BotFlowMon processes incoming NetFlow records on-
line, its time complexity is the sum of the time complexity
of every module. Assume after the preprocessing module
the selected NetFlow records belong to a OSN accounts.
Also assume the flow aggregation module outputs b trans-
actions per OSN account. BotFlowMon’s time complexity is
thus O(n) + a·O(mlogm) + a·b·O(fN) + a·b·O(NlogN) +
a·b·O(lj). Here, m is a constant as BotFlowMon receives
NetFlow records periodically, f and N are constants as
f is 4 or 6 and N is 200 in our setup, and l is a con-
stant with a default value of 9 for CNN and 7 for MLP.
So BotFlowMon’s time complexity can be simplified as
O(n)+O(a)+O(ab)+O(ab)+O(abj), which is equivalent to
O(n)+O(abj). Note abj represents all the actions by all
OSN accounts from these n NetFlow records, which is
approximately proportional to n. Therefore, BotFlowMon’s
time complexity is O(n), where n is the total number of
input NetFlow records.
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