
I Can Still Observe You: Flow-level Behavior
Fingerprinting for Online Social Network

Yebo Feng∗, Jianzhen Luo†, Chengyan Ma‡, Teng Li§, Liang Hui¶
∗University of Oregon, †Guangdong Polytechnic Normal University, ‡§Xidian University,

¶China Academy of Information and Communications Technology (CAICT)
Email: ∗yebof@uoregon.edu, †luojz@gpnu.edu.cn

Abstract—The privacy of online social networks (OSNs) re-
mains a major concern for today’s Internet. Researchers have
demonstrated that by analyzing inter-packet or packet-level net-
work traffic, a third-party analyzer is able to fingerprint a user’s
OSN behavior information even when the traffic is encrypted.
In this paper, we propose a learning-based approach that steps
further to perform OSN behavior fingerprinting only through
highly compressed, flow-level network traffic (e.g., NetFlow). By
preprocessing flow records, segmenting traffic flows into bursts,
and leveraging a long short-term memory network to classify
the bursts, our approach can identify major OSN behaviors (e.g.,
Facebook post, Twitter Read, Weibo video, etc.) with nearly 90%
accuracy. Compared with packet-level fingerprinting approaches,
our approach significantly improves the fingerprinting efficiency
in evaluations, making large-scale OSN usage monitoring feasible
only with limited computing resources and coarse-grained net-
work traffic. This work also reveals the huge risks facing privacy
of OSN users on today’s Internet today.

Index Terms—traffic analysis, behavior fingerprinting, online
social network, flow-level traffic monitoring

I. INTRODUCTION

Traffic analysis (TA) is the process of examining network
traffic to deduce hidden information about the ongoing com-
munication, which can be performed even in the presence
of message encryption [1]. As today’s Internet messages are
becoming more and more mysterious due to the increasingly
large-scale use of encryption algorithms, proxy nodes, and
tunneling techniques, people can hardly monitor packets by
simply inspecting their payloads. TA is thus becoming a vital
and indispensable approach for both network administrators
and eavesdroppers to gain insights into network activities.
For example, people have been widely using TA in DDoS
detection [2], fingerprinting websites [3], monitoring mobile
traffic [4], and quality of experience (QoE) measurement [5].

During the last decade, with the widespread use of online
social networks (OSNs), such as Twitter, Facebook, and Insta-
gram, leveraging TA to intercept and fetch users’ behavior
information on OSNs becomes a trend. Such a process is
also called OSN behavior fingerprinting. Here, the behavior
information includes the type of OSN service users are using,
the specific activities (e.g., Facebook post, Twitter read, and
Facebook chat) users are conducting on OSNs, etc. From the

Corresponding author: Jianzhen Luo.

perspective of eavesdroppers, OSN behavior fingerprinting is
a practical approach to infer private information about users,
thereby helping their further malicious conducts. From the
perspective of service providers, OSN behavior fingerprinting
is also a scalable approach to monitor and measure ongoing
OSN events.

However, OSN behavior fingerprinting is a more challeng-
ing task compared with other types of TA as it needs to
deduce fine-grained behavior information simply from content-
agnostic network traffic. Fortunately, with advances of AI
methods, both supervised and unsupervised learning have been
explored for TA, making such tasks technically feasible [6].
For example, Coull et al. [7] combine linear regression and
Naı̈ve Bayes to infer user behaviors regarding Apple iMessage;
Saltaformaggio et al. [8] leverage a K-means clustering model
and an SVM model to identify various user behaviors on
different OSN platforms; Liu et al. [9] utilize a random forest
model to differentiate behaviors related to media streaming on
Facebook, Wechat, and WhatsApp.

Nevertheless, existing OSN behavior fingerprinting ap-
proaches are all based on packet-level network traffic, which
requires intercepting every packet from the OSN communica-
tion to extract features. Such a process is expensive and diffi-
cult to scale. To make traffic monitoring affordable, scalable,
and efficient, common practices usually aggregate relevant
packets into a flow and then capture metadata or statistical
information to represent that flow [6]. This is especially true
for medium or large-scale networks. Therefore, migrating OSN
behavior fingerprinting to flow-level environments is essential
for deploying this technology at scale, even though it is quite
challenging.

In this paper, we propose a flow-level OSN behavior finger-
printing approach. After preprocessing the input flow records,
our approach utilizes a clustering algorithm to segment traffic
into bursts, where each burst represent an OSN behavior. Then,
our approach leverages an LSTM machine learning model to
learn and classify the traffic burst into different OSN behaviors
according to extracted features.

To our best knowledge, our approach is the first to per-
form OSN behavior fingerprinting on top of content-agnostic
flow-level network traffic. According to evaluations, it has
significant efficiency improvements compared with existing
packet-level approaches, enabling a third party to directly978-1-6654-3540-6/22 © 2022 IEEE

2022 IEEE Global Communications Conference: Selected Areas in Communications: Social Networks

6427

User 2

OSN ServerUser n
Router

NetFlow

... ...

Router

Eavesdropper
(source-end deployment)

NetFlow

Eavesdropper
(destination-end deployment)

Internet

User 1

... ...

Fig. 1: The operation model of proposed approach, where two
types of deployment locations are provided: source-end and
destination-end.

observe all users’ OSN usages in a medium-size network
only with a personal computer. Meanwhile, the fingerprinting
accuracy only drops by less than 10% compared to packet-
level fingerprinting. This work not only offers a new efficient
OSN eavesdropping paradigm, but also reveals that OSN
users’ privacy faces a serious breach crisis on today’s internet.

II. OPERATION MODEL

In this section, we elaborate on the operation model of our
approach, indicating its deployment location and data input.

A. Deployment

As our approach is based on TA, it requires inputting
bidirectional (i.e., both inbound and outbound) network traffic
from the monitoring network. Due to this nature, not every
vantage point in the network can observe suitable traffic
because in-network-based observation points usually capture
asymmetric traffic due to asymmetric routing [10]. Besides,
as traffic engineering approaches have been widely deployed
in today’s network, it is usually difficult for in-network-based
observation points to capture robust, stable network traffic.
Therefore, the ideal deployment location for our approach is
on the gateway of the a network, either on the source-end (i.e.,
user-side) or destination-end (i.e., server-side). Such vantage
points can observe both inbound and outbound traffic related
to OSN services, which provides a solid foundation for OSN
behavior fingerprinting.

Figure 1 illustrates the two operation models of our ap-
proach. To conduct analysis, our approach fetches flow-level
traffic from the gateway router of either the source-end or
destination-end. From the perspective of network adminis-
trators, our approach can help measure OSN service usage
or investigate OSN QoE. From the perspective of attackers,
this approach can be used to deduce users’ private behavior
information related to OSN.

B. Input data

Unlike existing approaches that need packet-level or inter-
packet-level information to operate, our approach simply needs
flow-level network traffic. A network traffic flow is defined as
a sequence of relevant network packets sent from a source to

TABLE I: Attributes we use to perform OSN behavior finger-
printing (an example captured by Netflow).

Destination IP 231.157.117.6 Source IP 42.127.17.43

Destination Port 443 Source Port 7652

Portocol TCP Packet Number 5

Bytes 856 TCP Flag ...A....

Start Timestampe 1582824775.808 End Timestampe 1582824802.688

 Proposed Approach

 Background
 Traffic Filtering

Machine
Learning

 Preprocessing

 ...
 Relevant flow
 extraction
 ...

 Burst
 Segmentation

 Classification

NetFlow
Collector

Labeled Flow
Irrelevant Flow

BGP / DNS
Data

Flow to be Analyzed

OSN IP Prefix

Result
 Further Steps

Relevant
Flows

Grouped
OSN
Flows

Classifier

Labeled Data

Data to be Analyzed

Other Data Stream Traffic
Bursts

Fig. 2: The flow chart of our approach.

a destination for the same application [6]. Usually, in a flow-
level traffic capture system (e.g., Netflow [11], Argus [12],
IPFIX [13]), the capture engines no longer copy or make
snapshots of each packet, instead, they first aggregate relevant
packets into a flow and then capture metadata (i.e., information
from packet headers) and statistical information to represent
that flow. Therefore, flow-level traffic engines are able to
capture and log network traffic at large scales, but with
considerable information loss.

In our implementation, we use Netflow records as the
input. Our approach can also easily migrate to traffic flow
environments, such as Argus flow and IPFIX. In addition, we
do not need to utilize all the attributes provided by Netflow, a
small set of attributes is enough to for our approach to perform
OSN behavior fingerprinting. Table I lists all the attributes
required by our approach and shows an example captured by
Netflow.

III. SYSTEM DESIGN

In this section, we elaborate on the design of our approach.

A. Overview

Figure 2 illustrates the flow chart of our approach. Our
approach has two modes: training and inference.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Social Networks

6428

Besides inputting flow-level network traffic from observa-
tion points, it also needs Border Gateway Protocol (BGP)
or DNS information for reverse IP address lookup to pick
out only OSN related traffic. Then, our approach filter out
background traffic and preprocess relevant traffic for infer-
ence. After segmenting traffic into bursts, where each burst
represents a behavior, our approach leverages machine learning
algorithms to learn and classify OSN behaviors.

B. Preprocessing and preparation

The preprocessing and preparation steps mainly serve for
the two purposes below:

• Comb the massive traffic flows collected from the net-
work, grouping them by users for further inference.

• Clean the traffic flows by filtering out irrelevant flows and
background flows.

During operations, the traffic capture engine will stream
real-time network traffic of a network N to our approach.
Such data streaming contains a set of flow records F (F =
{f1, f2, ..., fn}), where flow records of different IP address
are mixed with each other. So the first preprocessing step is to
group flow records by IP addresses according to Equation 1,
thereby flows related to the same IP in the monitoring network
can be in the same flow set G.

fn ∈ Ga, iff fn ∈ F

and (fn.destIP = a or fn.srcIP = a).
(1)

Then, in each flow set G, not all traffic flows are related to
OSN services. Actually, only a small proportion of network
traffic are associated with OSNs. To extract only OSN-relevant
traffic, we check each flow’s both destination and source IP
addresses. If one of these IPs is belonging to an OSN, we
consider that this flow is directly related to an OSN. We will
record the start timestamps and end timestamps of the flow,
and treat all the flows P within this time window as potentially
OSN-relevant. Here, to obtain accurate OSN IP prefixes, we
perform reverse IP addresses lookup from a DNS server near
the network or directly fetch a group of OSN IP prefixes using
BGPStream API [14].

Of a particular note is that flows inside P are not all OSN
flows, actually they contain three sets of flows: uncorrelated
background traffic flows B (i.e., network traffic sent at the time
but has nothing to do with OSN services), traffic flows R that
directly related to an OSN (i.e., network traffic sent from or
to an OSN server), and traffic flows I that indirectly related to
an OSN (i.e., network traffic sent for an OSN service but to
or from an non-OSN IP address). So our next preprocessing
target is to clean the data stream by removing B from P . This
is challenging because it is difficult to differentiate between
flows in set B and I . We observed that background traffic
usually have a longer duration and happen before OSN flow
appears. Therefore, our approach will keep buffering a couple
seconds of traffic for each IP addresses inside the monitoring
network before any OSN flow appears. This set of traffic is
denoted as Bu. Whenever an OSN IP prefix appears and a

flow set P is extracted, our approach will treat all the flows
that appeared in both Bu and P as B. Our approach will
remove such background flows from P (as Equation 2 shows)

O = R ∪ I

= {f |f ∈ P and f /∈ Bu}
(2)

and pass the remaining traffic flow O for further processing .

C. Burst segmentation

By previous steps, we can already obtain only OSN-related
traffic flows. However, the data we have now are still sets of
disordered flow records, where different behaviors’ traffic are
mixed together. We thus need to segment the flows into bursts,
where each burst represents an OSN behavior conducted by
the user. Then we can make inferences on each specific traffic
burst, rather than dealing with miscellaneous flows generated
by different OSN behaviors.

To design an appropriate traffic segmentation algorithm, we
conducted a simple measurement on daily traffic related to
OSNs. We found that each OSN behavior (e.g., send mes-
sages, post images, read post) will immediately incur several
outbound and inbound network packets for necessary data
transmission. From the perspective of traffic flows, the packet
density and byte density will increase with the occurrence of
each OSN behavior. Thus, by separating bursts of traffic flows,
we can separate traffic flows for different OSN behaviors.

We utilize density-based clustering to segment traffic bursts.
More specifically, our burst segmentation is similar to Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) [15], by which two density thresholds are taken
into account to find density-connected areas. Our approach
examines both length and byte density to identify the gap
between two traffic bursts, thereby segmenting traffic flows
to represent OSN behaviors.

The burst segmentation procedure works as follow:
1) Placing flows in O on time coordinates, divide the

duration of each flow f into multiple time bins of equal
length and define a flow point dft for each time bin t.

2) Derive time series data D (D = [bt1, bt2, ..., btn]) from
O using Equation 3.

btn =
∑

f∈O and tn⊂f.time

dftn.bytes (3)

3) Calculate the segmentation timestamps with Algo-
rithm 1, where we identify all the low-density and long
gaps to determine traffic bursts.

4) Generate traffic bursts by dividing and aggregating traf-
fic flows with the calculated timestamps.

Our approach then transmits the generated bursts to the next
step for behavior inferences.

D. Behavior classification

In this step, our approach inputs traffic bursts generated
from the previous steps. Then, it extracts features from the
traffic bursts and classifies them into different OSN behaviors
using machine learning.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Social Networks

6429

Algorithm 1 Burst segmentation with density-based clustering

1: input: time series data D
2: input: time threshold δ and byte threshold ϵ
3: time count←− 0, results←− [] ▷ parameter

initialization
4: for i in D do
5: if i ⩽ ϵ then
6: time count←− time count+ 1
7: else if time count ⩾ δ then
8: append the index number of i to results
9: time count←− 0

10: else
11: time count←− 0
12: end if
13: end for
14: convert the indexes in results to timestamps
15: return results

LSTM LSTM LSTM LSTM

c1

h1

c2

h2

cn-1

hn-1 Result

u1 u2 u3 un...

Fig. 3: Architecture of the LSTM classification model.

Just like the previous segmentation step, our approach
places flows in a traffic burst on a time coordinate and divide
the duration of the burst into multiple units (denoted as u) of
equal length. Then, our approach extracts a set of features from
each unit, including the number of bytes, number of flows,
number of packets, number of different TCP flag types, ratio
of inbound bytes to outbound bytes, ratio of inbound packets
to outbound packets. This feature set covers the majority of
information we can derive from flow-level traffic data and is
compatible with all the widely-used flow-level traffic capture
engines (e.g., Netflow, sFlow, Argus, etc.).

Once features are extracted, we leverage a Long Short
Term Memory (LSTM) network [16] to perform the OSN
behavior classification. As a special type of recurrent neural
network (RNN), LSTM is good at learning hidden knowledge
from time series data in a long-term manner, which fits
our OSN behavior fingerprinting task. Additionally, LSTM is
easy to converge without the need to carefully fine-tune the
parameters.

Figure 3 illustrates the architecture of our LSTM classi-
fication model. Our approach keeps streaming traffic burst
units to the LSTM model until the end of the behavior. The
LSTM model will output the classification result after the last
burst unit, indicating which OSN behavior category the current
traffic burst belongs to. In our implementation, we set a single
hidden layer with 15 neurons for our LSTM model as the input
data is not complicated.

IV. EVALUATION

In this section, we evaluate our approach from multiple
aspects, including the parameter setup, classification efficacy,
deployability, and operation efficiency.

A. Dataset

As our approach is learning-based, it requires labeled data
to train the classification model and perform evaluation. We
thus utilized a synthetic dataset consisting of a part of a public
dataset and a self-collected dataset in this project. The public
dataset is the USTC-TFC2016 dataset [17], which consists of
some network traffic traces related to a few OSN sites in PCAP
format. However, as the dataset only contains a limited number
of OSN sites (e.g., Weibo) and OSN behaviors and is not
well-labeled, we also captured around 3.25 GB of packet-level
labeled OSN network traffic related to Twitter, Facebook, and
Weibo in our experimental network. The experimental network
consisted of 15 devices, including both mobile devices and
personal computers. After cleaning, the final dataset contains
5540 labeled OSN behaviors. The types of OSN behaviors
are listed in Table II. We used 90% of the data to train the
classification model and 10% of the data to perform the tests.
The testing dataset did not engage in the training process.

B. Setup

Although the input datasets we used are in PCAP formats,
we transferred them to NetFlow records before inputting them
to our approach. We also directly used the raw PCAP data
to compare the performances of flow-level and packet-level
OSN behavior fingerprintings. The training and testing tasks
were performed on a personal computer with an Intel i7 8700k
CPU, an Nvidia GTX 1080 GPU, and a 32-GB memory.

For the NetFlow record generation, we set the active flow
timeout as 3 seconds, which is a small time frame that
can reserve informative, fine-grained traffic information but
simultaneously maintain decent system performance. As for
the burst segmentation, according to our experiments, we
set the byte threshold ϵ as 5 because a small amount of
background traffic (e.g., packets for notifications, TCP control
packets) still exist between two burst and this number ensures
that the burst segmentation will not be disturbed by such
background traffic.

To determine the suitable setup for the time threshold δ,
we tried different δ values and recorded the corresponding
segmentation results’ purity scores. Here, the purity score
indicates how accurate the segmentation is, which is widely-
used in clustering assessments. Figure 4 illustrates the trend
of purity scores. We can see that the purity score can reach
the peak when the δ is around 1.6. Therefore, we set δ as 1.6
in our approach.

C. Efficacy of OSN behavior fingerprinting

We evaluated our approach’s efficacy of OSN behavior
fingerprinting using the test dataset. Table II lists the detailed
evaluation results, including the number of ground truth, false
positive rates, recall scores, and precision scores for each type

2022 IEEE Global Communications Conference: Selected Areas in Communications: Social Networks

6430

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
Value of (s)

0.0

0.2

0.4

0.6

0.8

1.0
Pu

rit
y

Sc
or

e

Fig. 4: Segmentation purity
scores with different time
threshold δ values.

Twitter Facebook Weibo0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy 0.

83
67

0.
87

62

0.
89

02

0.
92

35

0.
92

78

0.
93

9

0.
93

88

0.
92

27

0.
94

51

Proposed Approach
Pkt-level (RNN)
Pkt-level (LSTM)

Fig. 5: Accuracy gaps be-
tween flow-level and packet-
level approaches.

TABLE II: Efficacy of OSN behavior fingerprinting (FPR:
false positive rate, REC: recall, PRE: precision).

OSN Behavior Number of
Ground Truth TP FP FPR REC PRE

Twitter Read
(content loading) 55 49 5 0.0100 0.8909 0.9074

Twitter Post
(with image) 21 21 0 0.0000 1.0000 1.0000

Twitter Post
(without image) 39 28 12 0.0233 0.7179 0.7000

Twitter Video 41 40 1 0.0019 0.9756 0.9756
Twitter DM Chat 40 26 14 0.0272 0.6500 0.6500

Facebook Read
(content loading) 67 53 12 0.0246 0.7910 0.8154

Facebook Post
(with image) 37 36 8 0.0155 0.9730 0.8182

Facebook Post
(without image) 50 41 4 0.0079 0.8200 0.9111

Facebook Video 40 40 0 0.0000 1.0000 1.0000

Weibo Read
(content loading) 68 57 10 0.0206 0.8382 0.8507

Weibo Post
(with image) 25 25 0 0.0000 1.0000 1.0000

Weibo Post
(without image) 41 34 8 0.0156 0.8293 0.8095

Weibo Video 30 30 0 0.0000 1.0000 1.0000

of OSN behavior studied. Our approach is able to reach an
0.8664 F1 score in OSN behavior fingerprinting. In particular,
it performs better when identifying network traffic related to
media transmission (i.e., image and video).

D. Comparison with packet-level approach

As features generated from packets are of finer granularity,
packet-level fingerprinting approaches should have better ef-
ficacy compared to flow-level approaches. We thus compared
our approach with packet-level approaches to study how large
the gap is. We utilized two packet-level approaches with RNN
and LSTM algorithms. The input features were in the same
type. The only difference was that packet-level approaches
input features per packet, rather than per time unit as the
proposed flow-level approach does. Figure 5 illustrates the
comparison results. We can see that the accuracy differences
are not large—only less than 10%. Considering the informa-
tion loss for flow-level data and the efficiency improvements,
such a result is acceptable.

0.0 0.5 1.0 1.5 2.0 2.5
Processing Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Proposed Approach
Pkt-level (RNN)
Pkt-level (LSTM)

(a) 50 packets per second.

0 5 10 15
Processing Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Proposed Approach
Pkt-level (RNN)
Pkt-level (LSTM)

(b) 500 packets per second.

Fig. 6: Processing delay comparisons.

E. Operation efficiency

In the end, we evaluated and compared the operation
efficiency of our approach by testing the processing delay
with different volumes of traffic inputs. Figure 6 illustrates
the cumulative distribution functions (CDFs) of our approach
and the two packet-level approaches when inputting 50 pkts/s
and 500 pkts/s of traffic data. From the results, we can see that
benefiting from the low system overhead of flow-level traffic
processing, our approach significantly outperforms packet-
level approaches in terms of processing times, enabling it to
processing a large amount of traffic at the line speed.

V. RELATED WORK

TA has been used for multiple types of tasks by both attack-
ers and network administrators [18]. Recently, with advances
of AI-based methods, the application scope and efficacy of TA
have been significantly enhanced. By capturing and analyzing
the network traffic data, even in encrypted forms, an analyzer
is able to detect ongoing DDoS attack [2], perform QoE
investigation [5], infer the website the users are visiting [19],
measure usages of different web services [20], or even infer
the location of users [21].

Among different categories of TA tasks, behavior finger-
printing for OSN is particularly challenging because it tries to
deduce fine-grained application-layer information out of en-
crypted traffic data, which requires deep understandings about
how traffic patterns change with different application-layer
behaviors [6]. Moreover, as users’ behaviors are unpredictable
on OSNs and there are many different OSN behaviors (e.g.,
content reading, liking, posting, uploading, etc.), it is almost
impossible to perform OSN behavior classification only based
on a small amount of rules.

Back in 2009, Schneider et al. [22] measured and studied
OSN usages from the perspective of network traffic for four
different OSN sites. They found that different OSN behaviors
will incur different statistical characteristics of network traffic.
Later, researchers have proposed several approaches to lever-
age machine learning to identify different OSN behaviors. For
example, Coull et al. [7] combined linear regression, naı̈ve
bayes, and rule lookup table to classify user behaviors on
messaging applications; Fu et al. [23] utilized a hidden Markov
model to differentiate behaviors on Wechat and WhatsApp;

2022 IEEE Global Communications Conference: Selected Areas in Communications: Social Networks

6431

Liu et al. [9] leveraged K-means clustering and a random
forest classifier to identify different medium sharing behav-
iors on multiple OSN sites; some researchers [8], [24] also
fingerprinted more types of OSN behaviors by collecting and
studying more traffic data.

However, all the aforementioned approaches are based on
packet-level or inter-packet-level network traffic, which is lim-
ited for the following reasons: (1) packet-level traffic capture
is not scalable considering the capacity of current Internet in-
frastructures. Conversely, flow-level traffic capture is efficient
and widely deployed, which only incurs less than 5% overhead
for most routers and switches [6]; (2) packet-level traffic data
is not easily accessible for both network administrators and
attackers; (3) as the information contained in flow-level traffic
data is largely reduced, the feature extraction and classification
steps can be much more efficient and can easily reach the line
speed.

Therefore, although flow-level OSN behavior fingerprinting
is more challenging considering the information loss and com-
pression, the benefits it brings are significant. Actually, a few
research projects have been focusing on studying flow-level
OSN traffic [25], but they are either not aimed at identifying
OSN behaviors or weak in this type of classification tasks.

VI. CONCLUSION

In this paper, we propose a learning-based approach to
extend OSN behavior fingerprinting from packet-level to flow-
level. After segmenting network flows into bursts to represent
user behaviors on OSNs, our approach utilizes an LSTM
model to classify each burst into a specific OSN behavior,
thereby measuring OSN usages, performing OSN QoE in-
vestigations, or even eavesdropping users’ private activity in-
formation. Compared to existing packet-level approaches that
usually incur high system overheads, the proposed approach
is efficient and does not have strict requirements on the input
data. With the computing of a personal computer, our approach
can easily monitor all the OSN behaviors within a company-
level network in line speed and with acceptable accuracy. This
work also reveals the huge risks facing privacy of OSN users
on the Internet today.

ACKNOWLEDGMENTS

This research is funded by the special project in key fields of
Guangdong Universities (2021ZDZX1031), National Natural
Science Foundation of China (No. 61902291), the founding
of Shaanxi Key Laboratory for Network Computing and Se-
curity Technology (NCST2021YB-03), and the Fundamental
Research Funds for the Central Universities (XJS211516).

REFERENCES

[1] R. Soltani, D. Goeckel, D. Towsley, and A. Houmansadr, “Towards
provably invisible network flow fingerprints,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2017, pp.
258–262.

[2] Y. Feng and J. Li, “Toward explainable and adaptable detection and
classification of distributed denial-of-service attacks,” in International
Workshop on Deployable Machine Learning for Security Defense.
Springer, 2020, pp. 105–121.

[3] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 1187–1203.

[4] D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “Large-scale mobile
traffic analysis: a survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 124–161, 2015.

[5] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience
monitoring for https and quic,” in IEEE INFOCOM 2018-IEEE Confer-
ence on Computer Communications. IEEE, 2018, pp. 1331–1339.

[6] Y. Feng, “Toward finer granularity analysis of network traffic,” Area
Exam, 3 2022, available at https://www.cs.uoregon.edu/Reports/AREA-
202203-Feng.pdf.

[7] S. E. Coull and K. P. Dyer, “Traffic analysis of encrypted messaging
services: Apple imessage and beyond,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 5–11, 2014.

[8] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, “Eavesdropping on {Fine-Grained} user activities
within smartphone apps over encrypted network traffic,” in 10th USENIX
Workshop on Offensive Technologies (WOOT 16), 2016.

[9] J. Liu, Y. Fu, J. Ming, Y. Ren, L. Sun, and H. Xiong, “Effective and
real-time in-app activity analysis in encrypted internet traffic streams,”
in Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, 2017, pp. 335–344.

[10] M. Crotti, F. Gringoli, and L. Salgarelli, “Impact of asymmetric routing
on statistical traffic classification,” in GLOBECOM 2009-2009 IEEE
Global Telecommunications Conference. IEEE, 2009, pp. 1–8.

[11] B. Claise, “Cisco systems netflow services export version 9,” Tech. Rep.,
2004.

[12] “Argus project,” https://openargus.org/, date of visit: 2021-11-25.
[13] B. Claise, M. Fullmer, P. Calato, and R. Penno, “Ipfix protocol specifi-

cation,” Interrnet-draft, work in progress, 2005.
[14] C. Orsini, A. King, D. Giordano, V. Giotsas, and A. Dainotti, “Bgp-

stream: a software framework for live and historical bgp data analysis,”
in Proceedings of the 2016 Internet Measurement Conference, 2016, pp.
429–444.

[15] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] W. Wang and D. Lu, “The ustc-tfc2016 dataset,”
https://github.com/yungshenglu/USTC-TFC2016, 2016, date of visit:
2021-10-15.

[18] E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network
traffic analysis applications, techniques, and countermeasures,” ACM
Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–35, 2021.

[19] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceedings of
the 2012 ACM conference on Computer and communications security,
2012, pp. 605–616.

[20] J. Mirkovic, Y. Feng, and J. Li, “Measuring changes in regional
network traffic due to covid-19 stay-at-home measures,” arXiv preprint
arXiv:2203.00742, 2022.

[21] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Measuring
serendipity: connecting people, locations and interests in a mobile 3g
network,” in Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement, 2009, pp. 267–279.

[22] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding online social network usage from a network perspective,”
in Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement, 2009, pp. 35–48.

[23] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, “Service usage
classification with encrypted internet traffic in mobile messaging apps,”
IEEE Transactions on Mobile Computing, vol. 15, no. 11, pp. 2851–
2864, 2016.

[24] E. Papadogiannaki, C. Halevidis, P. Akritidis, and L. Koromilas, “Otter:
A scalable high-resolution encrypted traffic identification engine,” in In-
ternational Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2018, pp. 315–334.

[25] Y. Feng, J. Li, L. Jiao, and X. Wu, “Towards learning-based, content-
agnostic detection of social bot traffic,” IEEE Transactions on Depend-
able and Secure Computing, vol. 18, no. 5, pp. 2149–2163, 2020.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Social Networks

6432

