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On Explainable and Adaptable Detection of
Distributed Denial-of-Service Traffic

Yebo Feng ", Jun Li

Abstract—Launched from numerous end-hosts throughout the
Internet, a distributed denial-of-service (DDoS) attack can exhaust
the network bandwidth or other resources of a victim, cripple
its service, and make it unavailable to legitimate clients. Recently
many learning-based approaches attempt to detect DDoS attacks,
but their results are often hardly explainable to users and their
models are seldom adaptable to new environments. In this paper,
we propose a new learning-based DDoS detection approach. It
detects DDoS attacks via an enhanced k-nearest neighbors (KNN)
algorithm, which utilizes a k-dimensional (KD) tree to speed up the
detection process, and classifies DDoS sources at a fine granularity
according to each IP’s risk level. Compared to previous DDoS
detection approaches, this approach outputs explanatory informa-
tion that enables network administrators to easily inspect detection
results and make necessary interventions. Moreover, this approach
is adaptable in that users do not need to retrain the detection
model to have it fit with a new network environment. We evaluated
this approach in both simulated environments and the real world,
achieving more than 95.6 % accuracy in detecting DDoS attacks at
line speed. In addition, we carried out a human subject study on
its explainability, demonstrating that the outputs can help people
better understand the attack and make interventions precisely and
promptly.

Index Terms—Anomaly detection, DDoS detection, distributed
denial -of- service (DDoS), explainable machine learning, K-nearest
neighbors (KNN), principal component analysis (PCA), traffic
analysis.

1. INTRODUCTION

ISTRIBUTED denial-of-service (DDoS) attacks pose a
D severe security problem on today’s Internet and can render
servers, network infrastructure, and applications unavailable to
their users. They overwhelm the targeted machine or network
resources with excessive traffic, thereby preventing legitimate
traffic from being processed [1]. Cisco indicated in their March
2020 white paper [2] that the frequency of DDoS attacks had
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increased more than 2.5 times and the average size of DDoS
attacks had approached 1 Tbps over the last three years.

Of foremost importance in DDoS defense tasks are to detect
DDoS, classify DDoS sources, and do so accurately and quickly.
Decades of research and industry efforts have led to a myriad of
DDoS detection and classification approaches. In recent years,
many researchers have begun to harness machine learning al-
gorithms, such as support vector machine (SVM), Naive Bayes,
convolutional neural network (CNN), etc., on Big Data in de-
tecting and classifying DDoS attacks (e.g., [3], [4], [5]). The
evaluations of such approaches demonstrate their strong ability
in extracting useful knowledge from massive training data and
decent recall scores in detecting a variety of DDoS attacks.

Unfortunately, the negative aspects of most learning-based
approaches are also apparent. First, many learning-based ap-
proaches may not be well-suited for practical applications, as
their detection results are often difficult to interpret, resembling
black boxes [6], [7]. As a result, extracting explanatory infor-
mation from the detection outputs generated by these methods
(e.g., deep neural networks and deep recurrent neural networks)
is challenging. In real-world deployments, network adminis-
trators particularly need good explainability, as they usually
have to manually review and verify DDoS detection results,
including eliminating false alarms and avoiding severe collateral
damage due to filtering traffic from legitimate users. This is
especially true for large-scale networks, such as Internet service
providers (ISPs) and Internet exchange points (IXPs), where a
single filtering rule can disconnect a considerable number of IP
addresses, making network administrators hesitant about which
actions to take. According to previous literature [8], [9], [10]
and our analysis (Section III), detection approaches with useful
explanatory information should possess three features to help
network administrators make appropriate and timely decisions:

® Transparent: The detection model should allow users to
gain clear insight into the traffic processing procedures,
intuitively illustrating all network contexts and situations.

® Traceable: The detection outputs should help users quickly
understand the detection logic and indicate root causes.

e Heuristic: The detection outputs should help users make
applicable decisions to address the ongoing attack by quan-
tifying the attack status, attack intensity, and the mitigation
cost-effectiveness.

However, most existing DDoS detection approaches struggle

to meet these requirements.

Second, most learning-based approaches lack adaptability.
Their performance is heavily dependent on the coverage and
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applicability of the training data. Considering that DDoS at-
tacks are diverse and network traffic regarded as DDoS in one
environment might be considered legitimate in another (and vice
versa), few of the current learning-based approaches can effec-
tively adapt a DDoS detection model trained in one environment
to fit in a new network environment. This limitation leads to poor
detection accuracy or the need for lengthy retraining.

To address these gaps, we design a learning-based DDoS
detection and classification approach that is not only effective,
but also explainable and adaptable. Specifically,

1) With network traffic flows summarized into traffic profiles,
our approach can detect an DDoS attack (i.e., detection)
and identify DDoS sources (i.e., classification) accurately
and quickly. To detect DDoS, it enhances the k-nearest
neighbors (KNN) algorithm to place traffic profiles into
different regions into the searching space and can catego-
rize traffic profiles to be benign or malicious and detect if
the current traffic profile corresponds to a DDoS attack.
Furthermore, to improve the efficiency of the detection
process, it introduces a k-dimensional (KD) tree algorithm
to convert the KNN detection model into a semi-decision
tree, which significantly reduce the time complexity of
traffic monitoring to O(d) in most cases, where d is
the depth of the semi-decision tree. If a DDoS attack is
detected, to identify DDoS sources, it will sort the traffic
sources (i.e., senders’ IP addresses) based on risk levels to
minimize collateral damage, and iteratively identify and
remove the malicious IP addresses until the traffic profile
returns to a benign position in the KNN searching space.

2) Our approach is highly explainable, characterized by its
transparency, traceability, and heuristic attributes. These
attributes enable the generation of intuitive explanatory
information, allowing network administrators to easily
understand and act upon them. Upon detecting a DDoS
attack, our approach not only sends an alert message but
also provides a risk profile, a visual detection model, and
a status graph to elucidate the attack. The risk profile
represents the shortest euclidean distance from the cur-
rent traffic profile to a benign region in the KNN search
space, assisting network administrators in quantifying the
attack’s magnitude and the associated mitigation costs.
The visual detection model clarifies the detection logic,
network context, and root causes by illustrating the relative
distances from the current traffic profile to illegitimate and
legitimate groups. Generated using principal component
analysis (PCA) projection, the status graph concisely and
intuitively depicts the attack stage, intensity, and cost-
effectiveness of mitigation efforts.

3) Our approach is adaptable in that the detection and clas-
sification model derived in one environment can port to
another environment without re-training. It allows direct
modifications on the KNN searching space and enables
users to leverage a variety of prior knowledge to evolve
the detection model.

We evaluated our approach in both simulated environments

and the real world. We first trained and evaluated our approach
with representative DDoS datasets in simulation environments.
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The results indicate that our approach can achieve an accuracy
of 0.956 and a recall of 0.920 even when detecting application-
layer DDoS attacks. We then conducted a human subject study
with questionnaire surveys to evaluate its explainability. The
results demonstrate that the explanatory outputs can effectively
help users understand not only the intensity, stage, and confi-
dence level of the attack, but also can help them make suitable
mitigation strategies quickly. Furthermore, as this approach is
easily adaptable to new environments, we transferred the model
(with merely some measurement data as input) to a real-world
network environment at the Front Range GigaPoP (FRGP) [11],
a regional IXP in USA. We successfully detected most of the
real-world DDoS attacks from February 24 to May 21, 2020,
which we verified with the IXP. The detection latency is also
low—e.g., with a throughput of 100 Gbps, our approach can
complete detection in around five seconds.

The remainder of this paper is structured as follows: Sec-
tion II presents an overview of the related work, followed by
a description of the threat and defense models in Section III.
Subsequently, the method design is detailed in Section IV, and
our approach is evaluated in Section V. Finally, we conclude the
paper in Section VL.

II. RELATED WORK

Using network traffic data to detect DDoS attacks is a tech-
nique that is widely used in the security community. From the
perspective of operating principles, we can further classify the
existing DDoS detection approaches into statistical approaches,
rule-based approaches, learning-based approaches, and soft-
computing-based approaches. We discuss the advantages and
disadvantages of each approach in detail.

A. Statistical Approaches

Statistical approaches detect DDoS attacks by exploiting
statistical properties of benign or malicious network traffic.
These approaches are straightforward and dominated the early
development of DDoS detection. Generally, these approaches
build a statistical model of normal or malicious traffic and
then apply a statistical inference test to determine if a new
instance follows the model [12]. For example, D-WARD [13]
uses a predefined statistical model for legitimate traffic to detect
anomalies in the bidirectional traffic statistics for each desti-
nation with periodic deviation analysis. Chen [14] proposed a
DDoS detection method based on the two-sample t-test, which
indicates that the SYN arrival rate of legitimate traffic follows the
normal distribution and identifies a DDoS attack by testing the
distribution compliance. Zhang et al. [15] proposed a detection
method by applying the Auto Regressive Integrated Moving
Average model on the available service rate of a protected server.

Statistical approaches can provide interpretable results by
outputting abundant metrics to describe the current network
situation, such as shown in Fig. 1. These metrics primarily func-
tion as network measurements, assisting network administrators
in grasping the network context. However, they are often not
arranged in a concise and heuristic manner that would enable
the identification of root causes and cost-effective mitigation
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Fig. 1. Partial outputs of Kentik [16], a popular traffic monitoring tool that
can detect and mitigate DDoS attacks.

strategies. As a result, skilled analysts are still indispensable
for extracting valuable insights from these metrics to not only
understand the importance of the alarms but also determine the
appropriate course of action. Another limitation of statistical
approaches is that as DDoS attacks evolve, traffic generated by
sophisticated DDoS attacks may not always exhibit significant
statistical deviations across various aspects. Consequently, tra-
ditional statistical DDoS detection methods might struggle to
accurately identify modern DDoS attacks.

B. Rule-Based Approaches

Rule-based approaches formulate noticeable characteristics
of known DDoS attacks and detect actual occurrences of
such attacks based on those characteristics. For example, Net-
Bouncer [17] detects illegitimate clients by conducting a set
of legitimacy tests on the clients; If a client fails to pass these
tests, it will be considered malicious until a particular legiti-
macy window expires. Wang et al. [18] detect DDoS with an
augmented attack tree, which captures incidents triggered by
DDoS traffic and the corresponding state transitions from the
view of network traffic transmissions. Limwiwatkul et al. [19]
detect ICMP, TCP and UDP flooding attacks by analyzing packet
headers with well-defined rules and conditions. However, due to
the growing diversity of DDoS attacks, rule-based approaches
face challenges in summarizing and formulating the features of
all possible attack types. Consequently, they are being gradually
replaced by learning-based or soft-computing-based methods.

C. Learning-Based Approaches

Over the past few years, more and more researchers have be-
gun to leverage machine learning to model, mitigate, and detect
DDoS attacks (e.g., [S], [20], [21], [22], [23], [24], [25], [26],
[27], [28]). Some of these methods (e.g., [29], [30], [31]) utilize
unsupervised learning algorithms to distinguish anomalies from
normal traffic, as such algorithms do not require training before
detection. However, unsupervised-learning-based approaches
are sensitive to the selected features and the background traffic.
On the other hand, supervised-learning-based approaches may
struggle to provide users with explainable results, as the preva-
lent machine learning algorithms (e.g., linear regression [32],
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multilayer perceptron [33], convolutional neural network [34],
graph convolutional network [35], etc.) often resemble black
boxes in their functionality. In real-world deployments, explain-
able results are critical for attack mitigation, because network
administrators usually need to manually review the detection
results to eliminate false positives and maintain the usability of
their network infrastructure.

Recently, there has been a surge of efforts aimed at enhancing
the explainability of machine learning algorithms. For example,
Nguyen et al. [36] proposed a learning-based anomaly detection
approach capable of informing users about the types of detected
anomalies and the significant features contributing to the detec-
tion process. Ribeiro et al. [37] introduced Local Interpretable
Model-agnostic Explanations (LIME), which offers insights
into machine learning model predictions by generating locally
interpretable explanations, enabling users to better comprehend
the decision-making process of complex models. Additionally,
Lundberg et al. [38] presented SHapley Additive exPlanations
(SHAP), a unified method for explaining the output of various
machine learning models. However, some of these methods have
not been utilized for DDoS detection; certain explanations they
offer may not be suitable for DDoS detection scenarios, or they
may not fully satisfy the criteria for transparency, traceability,
or heuristic characteristics.

In addition, the applicability of these machine learning algo-
rithms highly depend on the training data and training environ-
ment, which means it is difficult to quickly transfer a detection
model trained in one network environment to another network
environment.

Therefore, although most learning-based approaches are usu-
ally accurate in detecting DDoS attacks, they are not easily
deployable in real-world environments. As opposed to these
previous learning-based approaches, our approach focuses on
the explainability and adaptability.

D. Soft-Computing-Based Approaches

Soft computing is a term for describing the use of approxi-
mate calculations to provide imprecise but usable solutions to
complicated computational problems. Such approaches match
the general goal of DDoS detection, which is to identify attack
sources while allowing only a few false positives and false
negatives. Soft computing approaches can be an ensemble of sta-
tistical, rule-based, and learning approaches. For example, Jalili
et al. [39] use statistical preprocessing to extract features from
the traffic, and then utilize an unsupervised neural network to
classify traffic patterns as either malicious or legitimate. Kumar
et al. [40] utilize a resilient back propagation neural network
as the base classifier, then propose RBPBoost to combine the
outputs, and Neyman Pearson cost minimization strategy to gen-
erate the final classification decision. Shiaeles et al. [41] detect
DDoS attacks based on a fuzzy estimator using mean packet
inter-arrival times within 3-second detection windows. Just like
learning-based approaches, soft-computing-based approaches
also have the disadvantage of poor explainability, making them
difficult to deploy in real-world scenarios.
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III. THREAT AND DEFENSE MODELS

In this section, we begin by presenting the threat models
associated with DDoS attacks, followed by a description of the
defense model of the proposed approach.

A. Threat Model

DDoS attacks are malicious efforts aimed at disrupting the
normal operation of a targeted server, service, or network by
inundating it with an overwhelming volume of internet traffic.
These attacks are carried out by multiple systems, often com-
promised by malware and controlled by a single attacker known
as a botmaster. The compromised systems, referred to as bots,
constitute a network called a botnet. The primary objective of a
DDoS attack is to render the target’s resources inaccessible to
legitimate users, resulting in downtime and potential financial
or reputational harm.

Regarding attack methodologies, DDoS attacks can be cate-
gorized into three main types:

® Volumetric attacks: strive to overwhelm the target’s band-
width by generating an immense volume of traffic, imped-
ing legitimate users from accessing the targeted service.
Examples of volumetric attacks include reflector attacks,
UDP floods, and ICMP floods [42].

® Protocol attacks: leverage vulnerabilities in network pro-
tocols to consume resources or cause network disruptions.
For instance, SYN floods attack by targeting the TCP
handshake; Ping of Death attacks function by transmitting
oversized ICMP packets [43].

o Application-layer attacks: focus on certain applications
or services, overloading them with seemingly legitimate
requests. Such attacks demand fewer resources for execu-
tion but may pose greater challenges in defense. Examples
include HTTP GET floods, Slowloris attacks, and DNS
query floods [44].

DDoS attacks can cause significant harm to victims, leading
to service disruptions, revenue loss, reputational damage, and
increased security expenses. Therefore, it is crucial for organi-
zations to implement strong security measures to minimize the
impact of such attacks.

B. Defense Model

The defense model of the proposed approach operates as

follows:

1) Initially, the network administrator deploys the proposed
approach on the network to be secured. It is important to
note that this network may differ from the one where the
approach was trained.

2) The approach continuously monitors network traffic, iden-
tifying any DDoS attacks aimed at targets within the
protected network.

3) Upon detecting a DDoS attack, the approach classifies
the DDoS traffic and sends the classification results as
mitigation rules to upstream routers or Internet service
providers.
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4) The mitigation rules typically include malicious IP ad-
dresses/IP prefixes or malicious traffic flows. These rules
are then applied to network traffic to alleviate the DDoS
attack, preventing it from reaching its intended victim.

1) Adaptability to the Network to Be Secured: The network
requiring protection might not be the same as the one on which
the approach was trained. This can occur when the approach is
trained using a public dataset that may not accurately represent
the specific network to be secured. Consequently, it is essential
for the approach to rapidly adapt to the network in need of
protection without necessitating extensive time, a large volume
of training data, or numerous fine-tuning processes.

2) Minimizing Collateral Damage and Verifying Results: In
the context of DDoS attacks, collateral damage refers to the un-
intended consequences of mitigation rules on legitimate traffic.
If a rule inadvertently blocks a valid IP address, it can disrupt
genuine traffic, potentially causing more harm than allowing
malicious traffic to reach the intended target.

To minimize collateral damage, network administrators typ-
ically need to manually verify detection results before imple-
menting them as mitigation rules (at steps 2 or 3). Several factors
should be considered during the verification process, including:

® Network Context: Administrators should evaluate the net-
work context, taking into account factors such as attack
intensity, the number of attack sources, current network

throughput, and more. This information is vital for under-
standing the attack’s impact and the necessity of mitigation,
allowing for appropriate planning and next steps.

® Detection Logic: Understanding the detection logic of the
chosen approach is essential for administrators to deter-
mine the reliability of the results. Additionally, this infor-
mation can help identify the root cause of the attack, aiding
in the elimination of potential false positives. For example,
during high-traffic periods, duplicate user requests may be
misclassified as application-layer DDoS attacks (i.e., flash
crowds). This type of misclassification can be avoided by
quick verification.

® Mitigation Cost-Effectiveness: Since mitigation rules can
lead to collateral damage and additional costs, adminis-
trators should weigh the cost-effectiveness of the proposed
rules. In some cases, even when the network is under attack,
the system may have enough redundancy to cope during
periods of low activity. In such instances, administrators
may opt not to apply mitigation rules to avoid unnecessary
collateral damage.

Thus, the proposed approach should offer adequate explana-
tions to aid administrators in verifying the results. Specifically,
it needs to be transparent for assessing the network context,
traceable for understanding the detection logic, and heuristic
for evaluating the mitigation cost-effectiveness and formulating
an appropriate plan.

IV. DESIGN

In our approach, DDoS detection and classification occurs at
the victim end, on a vantage point that sees all the traffic to and
from the victim. It can stream explanations along with detection
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Fig. 2. Operational model of the proposed approach.

results to the network administrator and allow interventions
to the detection pipeline. Fig. 2 illustrates our approach’s op-
erational model. It has three components: the preprocessing
module, detection module, and classification module.

First, the preprocessing module inputs packet or flow-level
traffic data from the router that runs widely used traffic capture
engines, such as NetFlow [45] and sFlow [46]. It monitors the
traffic in batches. Each batch is a uniform time bin, ¢, which
is also the most basic detection unit of our approach. In our
implementation, we set each batch as 5 seconds. During each
batch, the preprocessing module extracts features from the input
data stream to form different types of overall traffic profiles. A
traffic profile can be denoted as s, with s = {f1, fo, f3, ..., fn}>
where f,, denotes the value of the n-th feature during a batch .
The features in s depend on the detectors we use, as each detector
may need a different traffic profile with different features.

Our approach then works in two phases: the detection phase
(illustrated in Fig. 3) and classification phase. In the detection
phase, the detection module detects whether the network is under
a DDoS attack. To provide comprehensive protection to the
victim, our approach can employ multiple detectors, with each
focusing on certain types of DDoS attacks. Once a DDoS attack
is detected, the detection module outputs both detection results
and explanations to ongoing attacks. The network administrators
can review and verify the detected attack according to the
explanatory information, thereby choosing to intervene in the
attack defense procedure or allow our approach to automatically
deal with the attack. In the end, the classification phase begins
by pinpointing the IP addresses of attackers for future actions.
In this phase, the classification module generates a traffic profile
p for every individual IP address and classifies traffic at a fine
granularity according to IP traffic profiles.

A. Detection Phase

The goal of the detection phase is to determine whether a
DDoS attack is present according to the current traffic profile
s. We use the KNN algorithm [47] to achieve the goal, as this
algorithm is straightforward and reliable. The KNN algorithm
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is a non-parametric method used for classification, which finds
the & nearest neighbors of the traffic profile s and uses their
classifications to vote for the label of s. Users can also choose
to build multiple KNN detection models to detect a variety of
DDoS attacks, as Figs. 2 and 3 show.

In our implementation, we built four distinct detection models
to identify TCP SYN floods, ICMP floods, UDP reflection
and amplification attacks, and application-layer attacks, respec-
tively. Each model utilizes different features and training data.
The rationale behind constructing multiple KNN models to ad-
dress different attacks, rather than developing a single complex
KNN model, is to circumvent the curse of dimensionality [48]
and overfitting. A detection model capable of handling vari-
ous types of attacks generally needs to process data in high-
dimensional spaces since it must encompass all the essential
features of each individual attack. Nonetheless, an increase in
the dataset’s dimensions can render the search space sparser.
Consequently, we would require significantly more training data
to cover the search space; otherwise, the detection model’s
accuracy would be unsatisfactory. To overcome this issue, we
build multiple KNN models to cover different attacks, with each
model using only a few features.

Users are able to adjust the voting mechanism of the KNN al-
gorithm to get detection results with higher confidence, thereby
reducing the number of false alarms in real deployments. More
specifically, our approach labels the current traffic profile as
malicious if more than p of the k nearest neighbors in the KNN
searching space are malicious. We usually assign a value to p
that is greater than 0.5. A larger value of p corresponds to a less
stringent detection standard. For instance, in our evaluation, we
set p to 0.5 to diminish the false positive rate.

However, the KNN algorithm has a notable drawback. Al-
though the model training time is minimal, the prediction re-
quires a time complexity of O(nlogn) to complete, as it needs
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Fig. 4. DDoS detector with the modified KNN algorithm and KD tree.

to enumerate the data points in the search space to find the &
nearest neighbors. To address this issue, we leverage the KD
tree [49] to partition the search space, thus reducing the number
of data points to enumerate. With the KD tree, when an incoming
traffic profile arrives, we only need to search a sub-area to predict
the result. Fig. 4 illustrates a simple example where only two
features are included in the training and prediction process.

Furthermore, according to our experimental results, most
DDoS profiles exhibit relatively large differences compared to
legitimate traffic profiles. This leads to an intriguing observation
that most of the search areas partitioned by the KD tree contain
either benign traffic profiles or malicious traffic profiles. As
shown by the red and green areas in Fig. 4, we define a search area
as a confirmed area if one type of traffic profile dominates the
area and the number of any other type of traffic profile is smaller
than pk. If the current traffic profile s falls within a confirmed
area, we can directly label the profile s with the identity of
the confirmed area without conducting any KNN queries. As
a result, we transform the original KNN query process into a
semi-decision tree. The detection module will only trigger the
search for nearest neighbors when the traffic profile s falls within
an unconfirmed area. If anomalies do not occur frequently, this
semi-decision tree data structure can reduce the time complexity
for traffic monitoring to nearly O(d), where d is the depth of the
tree.

However, the use of the KD tree may lead to a slight decrease
in detection accuracy. This is because the search space is parti-
tioned into multiple sub-areas, which may result in inaccurate
results when the traffic profile s falls on the boundary of two
sub-areas. Nonetheless, for most DDoS attacks, legitimate traffic
profiles have relatively large distances from malicious traffic
profiles, leading to a significant margin between the two types of
traffic profiles, thereby minimizing the impact caused by the KD
tree. Moreover, by employing multiple models to detect different
types of DDoS attacks, we ensure clear decision-making for each
detection model, which further minimizes the impact brought by
the KD tree on detection accuracy.

B. Explainability & Manual Intervention

Once our approach detects a DDoS attack, it not only outputs
an alert message, but also employs an interpreter (as shown in
Fig. 2) to export transparent, traceable, and heuristic explanatory

Unconfirmed area

Confirmed area
(benign)

Confirmed area
(malicious)

information to explain and quantify the attack. Such information
includes a risk profile, a visualized KNN model, and a status
graph. According to these outputs, network administrators can
know the attack type, detection logic, intensity, status, confi-
dence level of the alarm, and the cost of mitigations. Unlike
some statistical approaches that provide too many metrics that
can easily overwhelm network administrators, our method aims
to output concise information and intuitive explanations with
the help of appropriate visualizations. With a small amount
of training, network administrators can understand the current
situation within seconds on the basis of the interpreter’s outputs,
and therefore are able to quickly make manual interventions
to the detection decision. Furthermore, network administrators
can choose to either reject or approve the detection results. Of
a particular note is that this manual intervention is optional. If
the administrator does not intervene within a certain amount
of time, the system will automatically execute the decisions of
detectors.

1) Risk Profile: The risk profile A (where A = (m,)) is a
tuple that provides the network administrators with a quantified
and traceable summary about the current attack, indicating
the primary cause and intensity, which meets the traceabil-
ity requirement in the paradigm of explainability. Here, m is
the name of the feature in the traffic profile s that primarily
causes the DDoS attack. This attribute helps the network ad-
ministrator determine the attack type. For example, if m is
the “number of inbound ICMP packets”, the victim is likely
facing an ICMP attack and being overwhelmed by abundant
incoming ICMP packets. § is the smallest value by which
feature f,, needs to be reduced to make the traffic profile s
move to a benign position. In other words, ¢ is the shortest
distance on f,, from the current traffic profile to a legitimate
traffic profile in the KNN searching space. For example, A =
("number of inbound ICMP packets”,8500) means the
victim is currently under an ICMP flooding attack and we need to
eliminate at least 8500 inbound ICMP packets per five seconds
to mitigate the attack.

To figure out A for a given traffic profile s that has been
labeled as DDoS attack by a detector D, we need to first find
the closest benign traffic profile I in the KNN searching space
of D. To achieve this, we conduct a breadth-first search. Then,
we normalize s and [ to ensure that features belonging to both
profiles are directly comparable. In the end, we use 1 to calculate
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Fig.5. Status graph of a SYN flood detector. Red dots represent attack traffic
profiles. Blue dots represent legitimate traffic profiles. The dark green vertical
line represents the current traffic profile.

6 and m.

SA = Snormalized — lnormalizecb

m = max(sa).FeatureName,

d = max(sa). (1

In a few cases, the interpreter may find multiple
risk profiles from multiple detectors, which means A =
{(m1,01), (m2,d2), ..., (My, d,)}. We consider that the victim
is facing either flash crowds or severe hybrid attacks under this
circumstance, as the traffic volume significantly exceeds the
infrastructure’s capacity in multiple aspects. Here, flash crowds
are large surges of legitimate traffic focusing on specific sites on
the Internet over a relatively short period of time [50].

2) Visualized KNN Model: To fulfill the transparency re-
quirement and provide network administrators with a clear
understanding of the detection model, network context, and
detection logic, the interpreter will visualize the KNN detection
model in addition to the detection results. As the training and
input datasets are usually of high dimensionality, the interpreter
will only include three most important features of the datasets
to draw a three-dimensional plot. Besides, the network admin-
istrator can choose to change the visualized features to inspect
the situation from different aspects.

Such a visualized KNN model is informative. From the visu-
alization, network administrators can observe relative distances
from the current traffic profile to benign and malicious groups.
According to this information, network administrators can ob-
tain intuitive understandings regarding the detection logic, attack
severity, and victim status. We further evaluate the explainability
of the visualized KNN model in Section V-C.

3) Status Graph: To facilitate rapid decision-making by net-
work administrators based on current conditions and the cost-
effectiveness of mitigation measures, the interpreter generates a
status graph that provides a concise and intuitive representation
of the attack stage, intensity, and confidence level of the alarm.

Fig. 5 shows a status graph example. It consists of two
subplots. The upper one uses principal component analysis
(PCA) [51] to map the training and input datasets to a one-
dimensional space. PCA is a technique widely used for dimen-
sionality reduction by projecting each data point onto only the
first few principal components to obtain lower-dimensional data,
while preserving as much of the data’s variation as possible.
More specifically, for a k-dimensional DDoS training dataset
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D € RV*F | the interpreter uses PCA to learn a linear transfor-
mation shown in 2.

T, = DW,, Ty € RV*L, (2)

Then, for the incoming traffic profile s, we use 3 to map it onto
a two-dimensional space.

r=Ws, se Rk p e R 3)

In the end, our approach visualizes this one-dimensional dataset
{r} U T, labeling DDoS traffic profiles, legitimate traffic pro-
files, and the input traffic profile with different colors. In other
words, it is areduced-dimensional KNN model. Network admin-
istrators can quickly learn relative spatial relationships between
the current traffic profile and attack/legitimate traffic profiles
from this plot.

The subplot below illustrates the anomaly index «. This value
indicates the confidence level of the detection result. The closer
this value is to one, the more likely it is that the detected attack is
a true positive. Since all of the alarms are detected by the KNN
model, the base value of x is equal to p. Then, our approach
utilizes a window to move from left to right in the upper subplot,
checking the number of attack and legitimate traffic profiles
within the window to calculate .

n"L
N + Ny

k=p+(1—p) “4)
4 shows the calculation of the anomaly index x, where n,,, de-
notes the number of malicious traffic profiles within the window
and n; denotes the number of legitimate traffic profiles within
the window.

In addition, by analyzing the training data, our approach
divides the status graph into three stages from left to right:

® Preparatory stage: the attack is still in its infancy. Its
intensity is low. The network administrator can choose
to ignore this attack if conducting conservative defensive
measures.

o Stalemate stage: the attack is still under the infrastructure’s
capacity, but it is starting to cause a noticeable impact on
the network. Network administrators should mitigate the
attack if conducting rigorous defensive measures. How-
ever, network administrators can still ignore this attack if
they are more concerned about collateral damage caused
by mitigation.

® Overwhelming stage: the attack is overwhelming the net-
work, the network administrator should immediately take
mitigation measures to protect the accessibility of the net-
work.

Network administrators can know the attack status by observ-

ing which area the current traffic profile falls in.

From the example in Fig. 5, we can discern from the status
graph that the detected attack is in the overwhelming stage.
The current traffic profile is much closer to malicious groups.
Moreover, both the attack intensity and anomaly index are
high. Therefore, network administrators should immediately
take measures to mitigate this attack.
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C. Phase Two: Classification

The objective of the classification phase is to differentiate
malicious IPs from benign ones, and output the malicious IPs
for DDoS traffic filtering. It is important to note that the classifi-
cation module will only be activated after some anomalies have
been detected in the detection phase.

The design philosophy of the traffic classification is that the
traffic profile s is currently in a malicious position, and we need
to restrict the traffic from the most suspicious IP addresses so
that the traffic profile can move to a safer position in the KNN
searching space.

We begin the classification phase by building a traffic profile p
for each IP that appeared during the attack. The profile p should
have the same attributes as the overall traffic profile s. The only
difference is that the values of features in p are calculated from
the traffic of each individual IP, while the values of features in s
are calculated from the overall traffic in the network. Afterwards,
we sort the IPs in decreasing order of the risk degree (i.e., a
number that indicates how suspicious an IP is). According to

the risk profile A (A = (m,d)) we obtained from the DDoS

detection phase, we define the risk degree of an IP as f}gf ).

Finally, we conduct traffic filtering on IP addresses such that
the overall traffic profile can move to a benign area.

However, legitimate IPs may sometimes have large risk de-
grees as well. Classifying the IP addresses only according to the
risk degree may cause significant collateral damage. To address
this issue, we also need to minimize the impact on other features
of the overall traffic profile s when determining the malicious
traffic sources. We consider this as an optimization problem
with two constraints, which can be demonstrated by 5. Here,
G denotes the complete set of IP addresses we have seen in
the network during the DDoS attack, GG, denotes the set of
malicious IP addresses that the classification program will output
for future actions, and p("') denotes the traffic profile of the ith-IP.

DY Hpm

9€G,g¢ Gy, 1€9

argmax f (G, G,) =
Gm

2

- > Sl e
9€G,9¢G,, i€g \ k=1
subject to: Z Zpiﬂ > 4,
geG,, i€g
Gm CG. (6)

6 shows two constraints: (1) after eliminating all the traffic from
malicious IP addresses (set GG,,, ), the overall traffic profile should
be reduced by at least § on f,,, in the KNN searching space; (2)
the malicious IP set G, should be a subset of the complete IP
set G.

Deriving the optimal solution of this optimization problem is
expensive, especially when the network we are monitoring is
at the ISP-level. Hence, we designed Algorithm 1 to obtain a
near-optimal solution G,,, efficiently. Since the time complexity
of sorting the IPs according to the risk degree is O(nlogn), the
algorithm conducts the grid partitioning on the searching space
to accelerate the IP classification. Then, we need to eliminate

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Algorithm 1: Recognition of Malicious IPs With Grid Sort-
ing.

1: input: risk profile A = (m, J)
2: input: complete IP set G
3: initialize set GG, to store the malicious IP addresses
4: grid partitioning: G = {g1, 92,93, - - -» gn }
s G.sort() > in decreasing order of feature m and
increasing order of other features
:for g in G do
¢ Gp.add(g.items())
val +— Zieg fﬁ:”
9:  total_eliminated <— val + total_eliminated
10: if total_eliminated >= § then

W

11: return GG,
12:  end if
13: end for

IP addresses along the m axis and minimize impacts on other
features at the same time. With this grid configuration, we can
always find a corner grid g,,, that has the largest value on feature
m but also has the smallest values on irrelevant features. The
classifier considers the grid g, as the most suspicious grid and
gives it the highest priority in classification. Afterwards, the
algorithm sorts the remaining grids in decreasing order of feature
m and increasing order of other features. Finally, the algorithm
eliminates IPs grid-by-grid in such order until the overall traffic
profile returns to the benign area. Fig. 6 illustrates an example
of such procedure.

D. Adaptability

The proposed approach offers superior adaptability compared
to other learning-based methods. When deploying a pre-trained
detection model in a new network environment, users are not
required to retrain the model for a suitable fit. Instead, they
can leverage a variety of prior knowledge to evolve the model,
thereby enhancing its robustness across different environments.

Here, we assume the user will have some type of limited infor-
mation about the new network environment as prior knowledge.
Such information includes the network traffic measurements
or link bandwidth information about the network environment,
some training samples for online learning, and incomplete
threshold values for DDoS detection. Any type of the above
information can evolve the detection model and help the model
adapt to the new environment.

1) Mapping Via Traffic Measurement: Assuming that we
have the network traffic measurement results about the new
network environment, we can normalize the KNN searching
space from the trained environment to the new environment
according to the traffic distributions of the two networks. The
easiest way to do this is by using min-max normalization for the
conversion process.

I = maz(Dhewl:, i) — min(Dhew]: )

D[:,i] — min(D[:,1])

Dot = (DL, ) — min(DF, )

)
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Fig. 6.  Example of the classification process, where the classification module reads the risk profile, partitions the searching space, and find the malicious IP set

Gy, grid-by-grid.

Algorithm 2: Integration With Existing Rules.

1: input: existing rule table 7" as a stack

2: input: detection model D > D is a semi-decision tree

3: while 7" is not empty do

4: r+— T.pop()

5: if D(r.condition) exists and overlaps with searching
area set S then

6: remove overlapped areas from S
7. T.push(r)
8: elseif D(r.condition) exists then
9:  D.update(r)
10:  else > D(r.condition) not exists
11: D.root.rightChild <— D > right child will be
called when not satisfying the condition
12: D.root <— r.condition
13: D.root.leftChild «+— FILTER action
14: endif
15: end while
16: return D

7 shows the conversion process, where D denotes the original
training dataset and D,,.,, denotes the sampled traffic from the
new network environment. By mapping the original training
data to the new network environment, our approach is able to
conduct DDoS detection without retraining or re-collecting any
new training data.

2) Online Updating for KD-Tree: If the traffic monitoring
system can obtain labeled traffic with the system running, we can
conduct online learning on the proposed detection model, thus
making it gradually fit a new environment. The KNN algorithm
does not require training, making it very suitable and efficient to
conduct online learning. However, the KD-tree, along with the
confirmed areas, needs to refresh to reflect new knowledge. We
can control the program to update the classifier only during the
idle times to reduce the performance impact on the detection
system. Nevertheless, the time complexity of refreshing the
model is only O(n).

3) Integration With Existing Thresholds/Rules: In certain sit-
uations, network administrators may already have imperfect
detection rules (e.g., threshold-based rules) tailored to their
network environment. Below are a few examples of such rules:

if (traffic.packets_per_ second >
2_000_000
or traffic.kbs_per_second > 1_800_000
or traffic.in out_ratio > 80
or traffic.external_ips > 15_000):
alert ()
else: pass
Network administrators can integrate our approach with ex-
isting rules to enhance DDoS protection efficacy without dis-
rupting the current detection logic or significantly increasing
the rule budget. Since the pre-trained DDoS detection model
is a semi-decision tree, users can incorporate existing detection
rules into the pre-trained model by modifying the tree structure.
Algorithm 2 illustrates an example procedure for the integration,
where the existing detection rules have higher priority. Users can
also specify different decision priorities based on the current
situation.

V. EVALUATION

In this section, we assess our approach from various perspec-
tives. We tested our approach not only in simulated environments
using multiple publicly-available DDoS datasets (Section V-B),
but also deployed it at FRGP [11], a regional IXP in Colorado
State, to examine its adaptability and usability in real-world
scenarios (Section V-D). Additionally, we conducted a ques-
tionnaire survey to quantitatively evaluate the explainability of
our approach (Section V-C).

A. Features & Training Data

Our learning-based approach requires labeled training data
as input in order to build the detectors for each attack type.
Therefore, we picked several representative DDoS datasets from
public repositories and captured traffic in real-world environ-
ments to train and test our approach. Table I shows the public
datasets we used and the types of attacks they contain. These
datasets and our captured traffic cover volumetric attacks (e.g.,
ICMP flood, UDP reflection and amplification attacks), protocol
attacks (e.g., TCP SYN flood attacks), and application-layer
attacks (e.g., HTTP flood, Slowloris, etc.). We separately trained
four DDoS detection models using the datasets, with one ded-
icated to TCP SYN flood, another to ICMP flood, a third one
for UDP reflection and amplification attacks, and a final one for
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TABLE I
DATASETS FOR TRAINING AND TESTING

Dataset Name Format Size  Attack Type Background Traffic ~ Used For
DARPA 2009 DDoS [52] pcap 1.09 GB TCP SYN flood attack v Training & Testing
CAIDA 2007 DDoS [53] pcap 12.08 GB ICMP flood attack Training & Testing
FRGP NTP Flow Data [54] Argus flows 1.60 TB NTP reflection attack v Training & Testing
DDoS Chargen 2016 [55] flow-tools 74.05GB  UDP reflection and amplification attacks v Training & Testing
FRGP Colorado Traffic [11] FlowRide & NetFlow > 5.00 TB Various v Testing

TABLE 11

FEATURES WE UTILIZE FOR DETECTING AND CLASSIFYING DIFFERENT CATEGORIES OF DDOS ATTACKS

Attack Type

Features We Use

TCP SYN flood — protocol attack

# of inbound TCP packets / # of outbound TCP packets, # of TCP packets,

# of inbound SYN packets, # of outbound ACK packets, # of inbound ACK packets

ICMP flood — volumetric attack

# of inbound ICMP packets / # of outbound ICMP packets, # of ICMP packets,

# of inbound echo requests, # of outbound replies (destination unreachable)

UDP reflection & amplification attack — volumetric attack

# of inbound UDP bytes / # of outbound UDP bytes, # of UDP bytes,

# of inbound UDP packets / # of outbound UDP packets, # of UDP packets

HTTP GET flood, Slowloris, DNS query attack, etc. —
application-layer attack

# of inbound bytes / # of outbound bytes, # of bytes, # of sessions,
# of inbound packets / # of outbound packets, # of packets, avg packet interval

application-layer attacks. Together, these models can provide
comprehensive protection to the victim server.

The training datasets come in various formats, ranging from
packet-level pcap data to flow-level connection data. Since our
approach operates at the flow level, we preprocess the data by
converting the original datasets into traffic profiles tailored to
different detection models with a granularity of five seconds.
We also sampled a small portion (approximately 10%) of the
data from the DDoS datasets as our testing datasets. These
testing datasets were not used during model training phase.
Moreover, we sampled network traffic from a router at FRGP to
simulate legitimate background traffic, thereby complementing
the dataset. The overall ratio of DDoS training data to legitimate
background training data is 1:2.

As our approach works best with low-dimensional datasets,
we selected the best feature sets based on univariate statistical
tests. More specifically, we performed x? tests to the data
samples to retrieve only 4-6 best features. Table II enumerates
the four sets of features we selected to train the four DDoS
detectors. The most frequently used feature was the ratio of the
inbound traffic volume to the outbound traffic volume. We found
that the features listed in Table II are useful in identifying the
majority of DDoS attacks.

B. Detection & Classification Efficacy

To evaluate the detection and classification efficacy of our
approach, we first built a simulation environment where a virtual
switch continuously streams collected traffic to the proposed
system. Such a simulation environment enables us to conduct
convenient and efficient tests. During the evaluation, we si-
multaneously replayed legitimate traffic and a portion of the
DDoS test traffic. We also dynamically adjusted the traffic
volume during the test to effectively mimic real-world DDoS
scenarios.

1) Detection Efficacy: For comparison tests, we utilized
three additional DDoS detection approaches. One is a DDoS
detection model based on a support vector machine (SVM) [56].
We trained this model using the same training data and features
as shown in Table II. Another is FastNetMon [57], an open-
source commercial DDoS detection program. This threshold-
based DDoS detection approach is widely employed in small
to mid-sized enterprises due to its high efficiency and accu-
racy. Lastly, we included Rapid [27], a hybrid DDoS detection
method that combines LSTM and multi-layer perceptron. The
test dataset consists of at least 250 episodes of legitimate traffic
traces and at least 250 episodes of traffic traces with attacks. An
episode is the most basic detection unit, containing more than
five seconds of replayed network traffic.

Fig. 7 illustrates the comparison results for DDoS detection
under simulated environments. For both SYN flood and ICMP
flood attacks, all the three approaches can achieve decent detec-
tion efficacy. As for UDP and application-layer attacks, although
Rapid and the SVM-based approach are slightly superior to our
approach in terms of recall scores, they perform worse in terms
of the false positive rates. A low false positive rate is essential
for the detection system’s usability, as a high number of false
alarms will either cause too much collateral damage or force
network administrators to ignore the detection results. Thus,
when accuracies are similar, users tend to choose the approach
with a significantly lower false positive rate. Compared with
FastNetMon, our approach has a similar false positive rate.
However, our approach is superior to FastNetMon in terms of
accuracy and recall score.

We also halved the training data, resulting in a 1:4 ratio
between the DDoS training data and legitimate background
training data, to assess the detection efficacy in the presence
of unbalanced and insufficient training data. Fig. 7(e) and (f)
present the results. We can see that when the training data is
unbalanced, FastNetMon works significantly better than other
approaches, as it is a threshold-based approach. Among the
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Fig.7. Comparisonresults of DDoS detection efficacy (ACC: Accuracy, REC:
Recall, PRE: Precision, F1: F1 score, and FPR: False positive rate).

other approaches, our method demonstrates superior detection
efficacy compared to the SVM-based approach and exhibits
comparable efficacy to Rapid.

2) Classification Efficacy: As for the traffic classification, we
first replayed a collected network traffic dataset in a Mininet-
based [58] network environment. This dataset consists of 25
minutes of network traffic with both DDoS attack and legitimate
packets. Then, we ran FastNetMon and the proposed approach
respectively, conducting mitigation on malicious IP addresses
reported by them throughout each process. Simultaneously, we
observed the network situation to evaluate the classification
efficacy. To ensure a fair procedure, we did not intervene in
the detection process during evaluation.

Fig. 8 shows the classification efficacy results, where the
y-axis indicates the number of packets. By mitigating all the
traffic from the attackers classified by the two approaches, we
can see our approach can eliminate more malicious traffic than
FastNetMon. The only drawback of our approach is that the
classification will only be triggered when an attack is detected.
After proceeding with mitigation, once the traffic profile is no
longer labeled as malicious, our approach will stop classifying
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IP addresses as malicious, and only begin classification again
as soon as the traffic profile is labeled malicious again. This
explains the periodic fluctuations on the number of packets for
our approach as seen in the figure.

3) Timeliness: We measured the runtime of our approach
on a 100 Gbps link (please refer to Section V-D for details of
the link) and presented the results in Fig. 9. This figure shows
three cumulative step histograms, illustrating the runtime for
pre-processing a batch of traffic (five seconds), monitoring a
batch of legitimate traffic, and monitoring a batch of traffic with
attacks, respectively. Here, the runtime for monitoring legitimate
traffic consists of the time consumption of pre-processing and
detection; the runtime for monitoring traffic with attacks con-
sists of the time consumption of pre-processing, detection, and
classification.

From the figure, we can see that the runtime is short when
there are no attacks present, considering that the program has a
five-second time window to operate. Moreover, as the detection
model is a semi-decision tree, it will directly output the results
without conducting any KNN queries if the traffic profile is
situated in a confirmed benign area. Thus, the majority of time
is spent on traffic pre-processing when monitoring only legiti-
mate traffic. When there is a considerable amount of incoming
DDoS traffic, the runtime almost doubles since fine-grained IP
classification is time-consuming. Fortunately, when an attack is
detected, the system does not need to complete the calculation
within five seconds to catch the next batch. The top priority at the
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TABLE III
BASIC INFORMATION OF THE QUESTIONNAIRE SURVEY
Composition of the participants
Participants with DDoS-related expertise 15
Participants with security backgrounds but not DDoS-related expertise 4
Participants without security backgrounds 4
The total number of participants 23
Basic information of the questionnaire survey
Number of questions 25
Approximate time to explain the usage of our approach (min) 15
Approximate time to complete the survey (min) 30

time an attack is detected is to mitigate the attack, and therefore,
an increased delay in classification is still acceptable.

In conclusion, our approach is efficient in detecting and
classifying DDoS traffic. With delays of around two seconds
during idle time and five seconds during the DDoS peak, our
approach is able to produce timely defense for victims.

C. Explainability

To evaluate the explainability of our approach, we conducted
a questionnaire survey, which is a formal and effective method
in Human-Computer Interaction (HCI) research [59], to collect
feedback from participants and assess their understanding of the
system’s functionality and decision-making process.

We disseminated survey questionnaires to a range of security
labs and individuals without a security background in the USA
and China. In total, 23 people participated in the survey. Table II1
provides an overview of the participants’ basic information as
well as essential details about the questionnaire survey.

Before the questionnaire, we provided a brief introduction to
the background knowledge, our design, and the output explana-
tory information. We then presented several examples of the
outputs to demonstrate how they explain detected attacks and
how to interpret them. Figs. 10 and 11 display a few examples
from the questionnaire.

We proceeded to ask participants questions about the ex-
plainability of our approach, such as the ease of understanding
the outputs, the intuitiveness of the visualizations, and whether
the explanatory information met the design objective. Finally,
we administered tests to assess participants’ comprehension of
the explanatory information for various attack types and their
ability to make correct interventions. Specifically, we presented
scenarios of different attack types detected by our approach
and asked participants to interpret the explanatory information
and recommend intervention measures for the next step under
varying circumstances. Responses were collected anonymously
to protect privacy and minimize bias.

Fig. 12 presents some key findings from our questionnaire
evaluation. Although a few individuals questioned the explain-
ability aspects of our approach, the majority of participants
agreed that the risk profile helps users understand the root cause
and quantify the attack. Additionally, the visualized KNN model
provides an intuitive explanation of the network context, de-
tection models, and detection logic for network administrators.
The status graph illustrates the current attack stage, intensity,
confidence level of the alarm, and mitigation cost-effectiveness,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

® o L
P ®

w

8

w0

S

o ]
o & =
X e ® @
oy . o
0° <
Lo e g
o
e

h o ® o
c

=3

o

Q

£

#*

°g e o~
ICMP attack pgofile®
(] *

Legitimate profile

Ourb
0,

(a) Before normalization. We can clearly see that the training
data does not fit the network environment.

# inbound echo requests

(b) Normalized according to the traffic distribution. The dark
green dot is the current traffic profile for inference, whose risk
profile A = ("number of inbound ICM P packets”,52041).
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Examples of visualized KNN detection models for identifying ICMP

ultimately guiding network administrators in making appropri-
ate interventions. Hence, with respect to transparency, traceabil-
ity, heuristic qualities, and learnability, our proposed method
successfully accomplishes its intended design objectives.

D. Case Study: A Real-World Deployment

In addition to the evaluation under emulation environments,
we deployed our approach at several links in FRGP to further
test its deployability and adaptability. This real-world deploy-
ment also provides a good opportunity to demonstrate how
explanatory information can help network administrators adopt
conservative tactics for eliminating false alarms.

1) Measures for Ethical Considerations: As the network
traffic from FRGP contains private information of users and trade
secrets of operators, we take effective measures to address possi-
ble ethical considerations. Data is collected by FRGP operators
and their collaborators from a local educational institution on
an ongoing basis. We formulate a Memorandum of Agreement
(MoA) with FRGP operators and their collaborators to stipulate
the correct usage and accessibility of the data. To protect the
privacy of users and prevent data leakage, we set rigorous
regulations for data analysis and storage. We list the regulations
below:

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on July 11,2024 at 18:55:30 UTC from IEEE Xplore. Restrictions apply.



FENG et al.: ON EXPLAINABLE AND ADAPTABLE DETECTION OF DISTRIBUTED DENIAL-OF-SERVICE TRAFFIC

Preparatory
stage Stalemate stage Overwhelming stage

[ f——ef ] —]
\L

—85577 —54256 —22936 8385 39705 71025 102346 133666

Value of the principal component
(positively correlated with attack intensity)

~N o0 wo
i

Anomaly
index
ooor

(a) Status graph of an attack shown in Figure 10b. Network
administrators should proceed with mitigation as this attack
has a high intensity and is already in the overwhelming stage.
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(b) A detected ICMP flooding attack. This attack is in the
stalemate stage. Network administrators can either ignore this
attack if following a conservative protection policy or proceed
with mitigation immediately if following a more aggressive
protection policy.

Fig. 11. Examples of status graphs for explaining ICMP attacks.
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approach.

Selected questionnaire evaluation results on the explainability of our

1) The IP addresses in the network traffic data are
anonymized in a prefix-preserving manner with Cryp-
toPAN [60], before collection and storage. This ensures
we cannot trace back to individual users during our de-
ployment.

2) All the data is stored on a restricted server. Besides the
SSH port, all the ports on the server are closed, and no
connections can be initiated from the server. This mini-
mizes the risk of accidental leakage of network data.

3) Ourapproach can only be deployed on the restricted server.

2223

4) We are only allowed to receive the detection results from
the restricted server. Other information related to the IXP
operations have to remain on the restricted server, such
as prefix-level measurements, the trained model, and pre-
processed data.

2) Deployment Setup: The restricted server where our ap-
proach is deployed has an Intel Xeon Silver 4116 processor with
64 GB of RAM. The flow-level data is collected from multiple
routers at FRGP during a 3-month period between 10:20 MST
on February 24 to 21:40 MST on May 21, 2020. At its peak,
the traffic volume usually reaches 100 Gbps during the day. Our
approach can simultaneously obtain access to network traffic
flows in three formats, which are NetFlow, Argus Flow [61], and
FlowRide, a newly developed flow-capture tool that summarizes
traffic every five seconds. The pre-processing module converts
the traffic flows into the overall traffic profiles and IP-level traffic
profiles for each detector.

As was true in the evaluation of the simulation environment,
the deployed detection model was pre-trained with datasets
shown in Table 1. To adapt the pre-trained detection model to
the FRGP environment, we conducted several measurements on
the network to obtain the data distribution for each traffic feature
used by the detectors. Then, we mapped the pre-trained model to
the FRGP environment according to these distributions. While
the program was running, we were able to receive the detection
results for different types of attacks (i.e., NTP, TCP SYN, ICMP,
and UDP attacks). During the evaluation, the FRGP operators
also gave us information about DDoS attacks they discovered
using Arbor Network’s PeakFlow and Threat Mitigation System
(TMS) [62]. Of a particular note is that the attacks reported by
FRGP cannot represent ground truth as the IXP also suffers from
false positives and false negatives, but they have good reference
values for evaluating our approach. In addition, our contract with
FRGP operators does not allow us to alter any traffic flows in
their network, so we did not evaluate the classification efficacy
in this deployment.

3) Findings: To better quantify the traffic change during
an anomaly, we define peak intensity index (, calculated as
¢ = Vpeak/Vewp, Where Vieqp denotes the peak volume of the
anomaly and V,,,, denotes the expected traffic volume. For an
anomaly with a short duration (Iess than 30 minutes), we treat the
traffic volume right before the anomaly as V.. For an anomaly
with a longer duration, we calculate V., by statistically averag-
ing legitimate traffic volumes at the same time in the surrounding
seven days. Fig. 13 shows the anomaly detection results. The top
subplot illustrates the peak intensity indexes ¢ of the anomalies
occurring at different times. The bottom subplot illustrates the
duration of the detected anomalies at different times.

Our approach successfully detected over 90% of DDoS at-
tacks reported by FRGP operators, including all severe attacks
with a ¢ greater than 2. The five missed alarms (highlighted with
red circles in Fig. 13) were all low-intensity attacks that did not
significantly damage the systems.

Furthermore, our approach proved more sensitive in detect-
ing DDoS attacks, generating 21 alarms that FRGP operators
missed (highlighted with yellow circles in Fig. 13). These 21
alarms involved low-intensity, short-duration attacks, which

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on July 11,2024 at 18:55:30 UTC from IEEE Xplore. Restrictions apply.



2224

+ NTPattack % TCP SYN flood o
A ICMPflood & UDP attack

Only detected by IXP
Only detected by ours

o 102 4 .
=
)
qCJ »
2101 o *
= »
¥4
©
9 *
.

10° - . :
—_ »
v 10+ = = J * . =
£ "
~ 2
c10°7 =
RS L4
=1
© 10! *
>
[a}

100_

N > 2 v SYRR) " o © Q A
‘0/1\@( ﬁ\é é\, ?}"l/ ?}"l/ VQK R &"v ) *\, *\,
@ NI RS SR S MR RS

Occurrence time

Fig. 13.  Detection results from 10:20 MST on February 24 to 21:40 MST
on May 21, 2020. Red circles indicate the attacks only reported by FRGP
operators but not detected by our approach. Yellow circles indicate the attacks
only detected by our approach but not reported by FRGP operators. Other dots
indicate the attacks detected by both parties. The depth of the background color
represents the density of attacks.

could represent small-scale floods undetected by FRGP’s system
or false positives. The effective explainability of our approach
enabled network administrators to determine that most of these
attacks were in preparatory or stalemate stages based on their
status graphs. Consequently, if network administrators opt for
a conservative mitigation policy, they can quickly review the
explanatory information and choose to disregard these alarms.

In conclusion, the real-world deployment demonstrates the
adaptability and usability of our approach. Besides, the explana-
tory information can quickly help the network administrators
identify possible false positives or less threatening attacks,
thereby making necessary interventions.

VI. CONCLUSION

This paper presents a learning-based approach for detecting
DDoS traffic. In comparison to existing methods, the proposed
approach offers two key advantages: (1) explainability and (2)
adaptability. By employing a KD tree and a modified KNN
algorithm, the method generates a tree-like classifier that not
only accelerates predictions but also produces interpretable
outputs. These outputs offer network administrators a clear
understanding of network context, detection logic, attack stages,
and mitigation cost-effectiveness. Additionally, users can easily
adapt the detection model to different environments using prior
knowledge, without the need to retrain the model from scratch.
Leveraging grid sorting, the classification module significantly
reduces collateral damage and delivers results promptly.

We trained the detection model using representative DDoS
datasets from public repositories. We then evaluated the ap-
proach in both simulated and real-world settings. The eval-
uation results demonstrate the effectiveness and efficiency of
this approach in both scenarios, as well as its adaptability from
small simulated environments to a real IXP setting. Regarding
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explainability, the evaluation from our questionnaire illustrates
that our approach successfully meets its design objectives in
terms of transparency, traceability, heuristic principles, and ease
of learning.
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