Unmasking the Internet: A Survey of
Fine-Grained Network Traffic Analysis

Yebo Feng, Jun Li, Jelena Mirkovic, Cong Wu, Chong Wang, Hao Ren, Jiahua Xu, and Yang Liu

Abstract—Fine-grained traffic analysis (FGTA), as an ad-
vanced form of traffic analysis (TA), aims to analyze network
traffic to deduce fine-grained information on or above the
application layer, such as application-layer activities, fine-grained
user behaviors, or message content, even in the presence of traffic
encryption or traffic obfuscation. Different from traditional TA,
FGTA approaches are usually based on complicated processing
pipelines or sophisticated data mining techniques such as deep
learning or high-dimensional clustering, enabling them to dis-
cover subtle differences between different network traffic groups.
Nowadays, with the increasingly complex Internet architecture,
the increasingly frequent transmission of user data, and the
widespread use of traffic encryption, FGTA is becoming an
essential tool for both network administrators and attackers to
gain different levels of visibility over the network. It plays a
critical role in intrusion and anomaly detection, quality of experi-
ence investigation, user activity inference, website fingerprinting,
location estimation, etc. To help scholars and developers research
and advance this technology, in this survey paper, we examine
the literature that deals with FGTA, investigating the frontier
developments in this domain. By comprehensively surveying
different approaches toward FGTA, we introduce their input
traffic data, elaborate on their operating principles by different
use cases, indicate their limitations and countermeasures, and
raise several promising future research avenues.

Index Terms—Network traffic, traffic analysis, traffic classifi-
cation, traffic monitoring, fine-grained traffic analysis, intrusion
detection, user behavior identification.

I. INTRODUCTION

N the context of Internet, protocols and applications are

usually built upon hierarchical models [1f] (e.g., TCP/IP
and OSI), where the communication functions of a telecom-
munication or computing system are categorized into several
abstraction layers. Higher layers only encapsulate high-level
methods, protocols, and specifications, operating with the
support of lower layers [2]. With such design, program-
mers can easily develop interoperable Internet applications
regardless of diverse underlying protocols and technologies.
However, this convention also makes cross-layered network
analysis feasible. As developers of higher layer applications

Yebo Feng, Cong Wu, Chong Wang, Hao Ren, and Yang Liu are with
the College of Computing and Data Science (CCDS), Nanyang Technological
University, Singapore, 639798 (E-mail: {yebo.feng, cong.wu, chong.wang,
yangliu} @ntu.edu.sg and hao.ren@ieee.org).

Jun Li is with the Computer Science Department, University of Oregon,
Eugene, OR, 97403, USA (E-mail: lijun@cs.uoregon.edu).

Jelena Mirkovic is with the Information Sciences Institute, Univer-
sity of Southern California, Marina del Rey, CA, 90292, USA (E-mail:
mirkovic @isi.edu).

Jiahua Xu is with the Computer Science Department, University College
London, UK (Email: jiahua.xu@ucl.ac.uk).

Corresponding author: Hao Ren.

usually only take higher-layer measures (e.g., encryption,
anonymization, etc.) to preserve the user privacy regardless
of leaving traceable patterns on lower layers, analyzers can
capture network features from the lower layers to infer higher-
layer knowledge in communication [3|], even in the presence
of message encryption. Such a process is called traffic analysis
(TA), a technique widely used in today’s Internet.

TA has been studied for decades, with myriad systems,
tools, and algorithms [4]-[[10] developed to serve different
types of purposes, such as traffic measurement, traffic engi-
neering, anomaly detection, and network surveillance. In early
development of TA, traditional TA approaches were mainly
designed for basic network traffic measurement/forecast [11]]—
[13]], anomaly detection [14], and coarse-grained traffic clas-
sification [15]]. These approaches are usually rule-based,
statistics-based, sketch-based [16], [[17] or clustering-based,
can separate traffic of different network protocols or con-
duct basic modeling of traffic flow changes. Later, with the
advancement of the Internet and the growing complexity of
network traffic, a deeper level of network visibility became
necessary. For instance, application-layer visibility is crucial
for measuring application usage, conducting application secu-
rity inspections, and monitoring fine-grained network events.
Similarly, visibility above the application layer is vital for
modeling user behavior, analyzing user experiences, and per-
forming content analysis. As a result, researchers and devel-
opers are evolving traditional TA into the more sophisticated
fine-grained traffic analysis (FGTA), enabling the extraction
of more granular insights from network traffic data. In this
paper, we define FGTA as a type of advanced TA techniques
that focus on deducing information on or above the application
layer from network traffic data. These processes utilize only
link-layer or network-layer traffic data and are applicable
regardless of whether the traffic data is encrypted.

As a subset of TA, FGTA is mainly different from traditional
TA in the following ways:

o The most essential difference is the output of analysis.
Traditional TA can coarsely distinguish or model traf-
fic from different types of protocols (e.g., HTTPS vs.
SMPT), communication methods (e.g., VPN vs. Tor), or
networking models (e.g., peer-to-peer vs client-server),
generating coarse-grained traffic statistics, traffic flow
models, or traffic classification results. However, FGTA
aims to analyze traffic at a finer granularity, providing
fine-grained analysis results on or above the application
layer, such as traffic from different application-layer ac-
tivities (e.g., Twitter posting vs. Twitter reading), different
groups of application users (e.g., online social network



(OSN) bots vs. normal users), or different user content
(e.g., the visiting of a specific website).

o The analysis pipelines of traditional TA and FGTA are
often, but not always, distinct. FGTA, aiming at gen-
erating more granular information, usually have more
complicated and sophisticated analysis pipelines. For
example, some FGTA approaches takes traditional TA as
a prerequisite step to “preprocess” the traffic before the
final inference, such as a FGTA approach that tries to
identify the web page the user is visiting needs to first
leverage traditional TA to extract all the web browsing
traffic.

o As for analysis algorithms, compared to traditional TA
approaches, most FGTA approaches depend on more
sophisticated modeling, classification, or prediction meth-
ods, such as deep machine learning or high-dimensional
clustering, to tackle the challenging fine-grained analysis
tasks. On the other hand, traditional TA, dealing with
more straightforward tasks, can utilize a number of dif-
ferent analytical methods, such as rule-based, statistics-
based, or soft-computing-based approaches.

With the increasingly complex Internet architecture, increas-
ingly frequent transmission of user data, and the widespread
use of traffic encryption [6], FGTA is becoming a more and
more important research topic. Compared with traditional TA,
FGTA can reveal more information from network traffic and
can achieve high efficacy even in various complicated network
environments [18]]. Besides, as network traffic data become
more easily accessible than before, the applicable scenarios of
FGTA are more extensive compared with directly analyzing
traffic content. Furthermore, FGTA is efficient and portable in
discovering application-layer knowledge [19]-[21]]. By analyz-
ing a small amount of metadata or statistical information of
traffic, FGTA can obtain almost the same level of visibility as
decoding large amount of message content. Therefore, FGTA
has a wide range of usage scenarios. As for network manage-
ments, FGTA can help measure application usage [22], detect
complicated network intrusions or anomalies [23]], investigate
edge user experience [24]], etc. As for the attacker side, FGTA
can help eavesdrop on private information of users [25]], model
user behaviors [26]], estimate user locations [27], etc. Studying
FGTA is essential for comprehensive network inspection,
safeguarding information transmission, and precise network
configuration.

In this paper, we conduct a comprehensive examination
of over 300 pieces of literature related to FGTA. Our se-
lection criteria encompassed sources from academic journals,
academic conference proceedings, workshop papers, industry
reports, preprint papers, etc. We prioritized academic publi-
cations that have made significant theoretical and practical
contributions to the field of FGTA, published in reputable
venues (e.g., ACM Computing Surveys, ACM CCS, Usenix
Security, NDSS, ACM IMC, etc.), or have been widely cited.
We search the literature from popular academic databases,
such as IEEE Xplore, ACM Digital Library, SpringerLink, Sci-
enceDirect, etc., and search engines, such as Google Scholar,
Microsoft Academic, Google, etc. We employ a diverse set

1. Introduction V. Use Cases and Representative Approaches
Il. Related Work
I1l, Traffic Input —1 Intrusion/anomaly detection

- Quality of experience measurement
Traffic data acquiring Traffic

capture | |~
engines
Flow-level —

Passive Network
and active observation
TA point

Packet-level Application identification

Device identification

IV. Methodology Location inference

Pipeline  Feature extraction Application usage inference

]
Intrinsic feature N~
—

Demvediieatirs Website fingerprinting

Classification and prediction approach

VI. Limitations

Traditional statistical approach VII. Countermeasures

Rule-based approach

Probabilistic approach Network-layer countermeasures

Sdmysealnach jeled o) Application-layer countermeasures

Unsupervised machine learning

Hybrid approach VIII. Future Research Direction

IX. Conclusion

Evaluation metrics Classification efficacy

Acronyms

Efficiency

Acknowledgements

Other metrics
References

Fig. 1: The paper organization and snapshots of proposed
taxonomies.

of keywords and keyword combinations to broadly identify
potentially relevant 1iteratur Subsequently, we manually
review the content of these works to ensure their relevance to
FGTA. This survey primarily focuses on literature published
within the last two decades, specifically from 2004 to 2024.
This time frame was deliberately chosen to capture both the
foundational theories and the latest advancements in FGTA.
Our analysis of the literature is conducted in a two-stage
process: firstly, an initial review is conducted to assess the
relevance, quality, and alignment of the sources with the
objectives of our survey; secondly, we perform an in-depth
review of these sources to identify their key contributions,
methodologies, limitations, experimental setups, results, etc.
The methodology we adopted aims to strike a balance between
comprehensiveness and depth. By doing so, we ensure that
our survey not only covers the most pertinent literature in the
field of FGTA but also provides a thorough analysis of the
most significant contributions within this domain.

The rest of this paper is organized as follows. We first
introduce related work and compare existing surveys to our
work in Section [lI, We then discuss the input data of FGTA
(i.e., network traffic data) and its collection in real-world
environments in Section Next, in Section we discuss
and summarize the methodologies of FGTA, including their
operating pipelines, feature extraction methods, classification
approaches, and evaluation metrics. Besides, we elaborate on
frontier developments of FGTA by their use cases in Section [V}
We then point out the limitations of existing FGTA in Sec-
tion and introduce the countermeasures in Section
In addition, based on our observations and reflections on

IThe keywords include but are not limited to: fine-grained traffic anal-
ysis, fine-grained network traffic classification, traffic-based user behavior
inference, application-layer behavior modeling with network traffic, website
fingerprinting, user location estimation with network traffic, detailed network
traffic classification, etc.



TABLE I: Overview of related literature (O: not included; ©: partially included; @: included).

Subjects covered

Ref. Year Summary Focus
General FGTA Traffic  Counter-
TA capture  measure

This paper | 2025 A survey of FGTA, which aims to analyze network traffic to ~FGTA () [ ) [ )
deduce information related to high-layer activities, fine-grained
user behaviors, or application-layer message content.

[17] 2023 A survey of sketch-based traffic analysis using sliding windows,  Sketch-based TA () O () O
including their fundamental principles, primary use cases, advan-
tages, and limitations.

28] 2023 A review of the literature on network traffic prediction, including  Network traffic () O () O
experiments based on real data sets to compare the various prediction
approaches directly in terms of fitting quality and computational
costs.

18] 2022 A recent survey on achievements in machine learning-powered  Machine- () O () (D)
encrypted traffic analysis, including the workflow, feature extrac-  learning-based
tion, and algorithms. encrypted TA

[29] 2022 A survey that consists of an analysis of IoT traffic data acquisition ~ Machine- O © [ O
approaches, a classification of public datasets, a literature evalua-  learning-based
tion of IoT traffic processing, and a comparison of ML approaches  IoT TA
for IoT device classification.

[30] 2022 A survey of deep neural network (DNN) architectures commonly =~ DNN-based traf- © O © O
used in the traffic flow prediction literatures, categorizes and  fic prediction
describes the literatures themselves, and presents an overview of
the commonalities and differences among different works.

6] 2021 A survey of literature that deals with network traffic analysis  Encrypted TA © © O [
and inspection after the ascent of encryption in communication
channels.

[31] 2021 An extensive analysis of the communications channels of 32 IoT  IoT TA © © O
consumer devices, including traffic measurement and modelling.

32] 2020 A survey that looks at the emerging trends of network traffic  IoT TA ) () O
classification in IoT and the utilization of traffic classification in
its applications. It also compares the legacy of traffic classification
methods.

151 2019 A survey that mainly focuses on approaches and technologies to  General TA ) © [ O
manage the big traffic data, additionally briefly discussing big data
analytics (e.g., machine learning) for the sake of TA.

133] 2018 A review of works that contributed to the network traffic analysis ~ Mobile device © © © (]
targeting mobile devices, including a systematic classification of ~ TA
such works according to their goal, traffic capture point, and
targeted platforms.

171 2018 A systematic review based on the steps to achieve traffic clas- Machine- © © O O
sification by using machine learning techniques, including their  learning-based
workflow, feature extraction, deployment, etc. TA

[134] 2016  An examination of the literature on analyses of mobile traffic ~ Mobile device © [ O
collected by operators within their network infrastructure. TA

351 2015 A survey of approaches for classification and analysis of encrypted ~ Encrypted TA
traffic, including widespread encryption protocols and payload and
feature-based classification approaches.

[36] 2014 A survey in which a complete and thorough analysis of the Payload-based () O () O
most important opensource deep packet inspection modules is  TA
performed.

1371 2013 A survey of peer-to-peer traffic detection and classification, with ~ P2P TA () @) @)
an extended review of the related literature.

38] 2009 A survey explains the main techniques and problems known in the ~ General TA
field of IP traffic analysis and focuses on application detection.

[39] 2009 A report attempts to provide an overview of some of the widely = General TA () @) @)
used network traffic models, highlighting the core features of the
model and traffic characteristics they capture best.

this field, we propose some avenues for future research in
Section [VIII] thereby helping future academics and developers
to advance FGTA. In the end, we conclude this paper in
Section [IX] To our best knowledge, this paper is the first
survey paper that focuses on FGTA and compares the state-
of-the-art approaches in this field. Figure [I| illustrates the
organization of this survey paper and give snapshots of the
proposed taxonomies.

II. RELATED WORK

In this section, we introduce related work on TA and
compare our paper with them. Table [[] summarizes the most
related and representative ones.

Our work differs from existing survey works regarding TA
in the following aspects:

« we have a clear and focused survey topic: the whole paper
focuses on FGTA, which aims to analyze network traffic
to only deduce fine-grained outputs, such as information



related to high-layer application activities, fine-grained
user behaviors, or application-layer message content. No-
tably, no other related survey papers, including [[17]], [[18]],
and [29], have FGTA as their primary focus;

« to investigate FGTA comprehensively, our paper utilizes
multiple methodologies, including literature survey, sum-
marization, and taxonomization, to cover different related
subjects, such as traffic capture, application identifica-
tion, website fingerprinting, countermeasures, etc. Most
existing related survey papers only cover a subset of the
aforementioned topics;

« although studied for many years, TA is still iterating
rapidly and continuously, especially for FGTA. Compared
with other earlier literature, this paper sorts out and
examine the most recent development of FGTA at the
time of writing this paper.

In the early development of TA (i.e., before 2010), the
survey papers in this field mainly focus on coarse-grained
traditional TA [38[]-[40], including protocol-level traffic clas-
sification, TA approaches based on deep packet inspection
(DPI), distinguishing server or peer-to-peer nodes from clients,
and coarse grained application identifications.

Later, due to increasingly diverse web-applications and
widespread use of traffic encryption, there is an increasing
need for more sophisticated TA approaches to monitor and
analyze the modern networks. Meanwhile, the evolution of
classification algorithms and easy access to big data also
effectively stimulate the development of TA. Therefore, survey
papers began to examine works that leverage big data [5]],
machine learning [7]], or efficient data structures [17] to tackle
TA.

On the other hand, the network is also becoming more and
more specialized, which has spawned many TA approaches
with specific design goals. To track such a trend, many of the
recent survey papers only investigate a certain type of TA ap-
proaches, such as TA for Internet of things (IoT) devices [31]],
[32], encrypted TA [6]], [[18]], TA for mobile devices [33]], [34],
among others. Similar to these papers, our work focuses on a
new and specific topic—FGTA, which means our paper only
focus on the TA approaches that input conventional network
traffic data but generate fine-grained inference outputs (e.g.,
fine-grained user behaviors and application message content).
This direction has not been systematically studied before.

III. TRAFFIC INPUT

Similar to traditional TA, FGTA approaches utilize the same
type of network traffic data from some vantage points in the
network as input to synthesize knowledge. Network traffic
data refers to the information exchanged between devices on
a computer network. Such data can be in diverse formats and
include a wide range of information, such as communication
logs, packet headers, and payload. The network traffic data is
the inference object for all TA approaches. In this section,
we introduce different types of traffic capture engines by
the way they collect network traffic data, compare different
types of network traffic data, and survey their usabilities. We
also introduce these traffic capture engines’ deployments and
application scenarios in FGTA.

A. Passive and Active TA

TA can be generally classified into passive and active
approaches based on the way they collect network traffic
data [41]], [42].

Passive TA approaches involves monitoring and analyzing
network traffic without altering or injecting any data into
the network [42]], [43]. It relies solely on the observation of
existing traffic flows. Typically, passive TA approaches consist
of capturing packets, logging traffic patterns, and analyzing
these logs to infer information. Such approach offer several
advantages. First of all, passive TA approaches are non-
intrusive. Since they do not interfere with the network, they
are less likely to be detected by users or security mechanisms.
Furthermore, passive TA approaches do not add additional
load to the network, making them suitable for continuous
monitoring. However, passive TA approaches may not capture
all relevant information, particularly in cases of encrypted
or obfuscated traffic. Additionally, as they rely on existing
traffic flows, passive TA approaches cannot proactively test or
measure specific aspects of network performance or behavior,
making them inherently reactive.

Active TA approaches involve actively injecting data into the
network to provoke responses, which are then analyzed to gain
insights into the network’s behavior and performance [44],
[45]. Active TA approaches may include techniques such as
sending probe packets [46[], watermarking existing traffic [47]-
[49], performing packet timing analysis, or conducting specific
tests to measure latency, throughput, and other metrics. Com-
pare to passive TA approaches, active TA approaches offer sev-
eral advantages. First, active TA approaches can provide more
detailed and precise information, especially about specific
network conditions and device status. Besides, By generating
traffic, active TA approaches can test scenarios and conditions
that may not naturally occur, allowing for more thorough
analysis. However, the act of injecting traffic can be detected
by network users and security mechanisms, potentially leading
to countermeasures [[50]]. Active TA approaches also add addi-
tional load to the network, which can affect performance and
may not be suitable for continuous monitoring. Furthermore,
active TA approaches require additional network infrastructure
and resources to operate, such as a traffic encoder to inject or
watermark traffic flows and a traffic decoder to identify marked
traffic flows. This makes active TA approaches less applicable
in real-world scenarios.

In the context of FGTA, passive TA approaches are more
commonly used due to their non-intrusive nature, ability to
continuously delve into network traffic data, and their focus
on user-behavior-centric analysis models. In contrast, active
TA approaches are rarely employed in FGTA as they are
designed for measuring specific network conditions, endpoint
device status, or the accessibility of network services, and
focus less on undisturbed user behavior, which is the core of
FGTA. Therefore, throughout this paper, we primarily focus on
passive TA approaches. In this section, we specifically discuss
the network traffic input by passive TA approaches rather than
active TA approaches.



®Observation Point

G@’ Obs:‘l;i/r:tion

(a) The observation point is the
gateway of the network. The
traffic capture engine can collect
bidirectional traffic data.

(b) The observation point is in
the network. The captured traffic
can be asymmetric.

Fig. 2: Network visibility with different observation locations.

B. Network Observation Point

The observation point of the traffic capture engine will
significantly impact the integrity of the captured data and the
network visibility. Different observation points are suitable for
different types of TA tasks.

The optimal observation point for most FGTA tasks is at
the network gateway (as shown in Figure [2a), as it provides
full visibility into communication sessions between two nodes.
The gateway allows for the capture of complete inbound
and outbound traffic, which is essential for FGTA. Although
such a bidirectional traffic dataset is suitable to infer the
interactions between the observed network and rest of the
Internet, analyzers cannot learn about the traffic in the rest
of the Internet according to this dataset.

Sometimes, the observation point can be in the middle of the
network (illustrated in Figure [2b)), especially when the traffic
capture engine is deployed by an ISP or IXP. In this case, the
capture engine is able to collect a large amount of traffic that
pass by it. However, it also raises the following concerns:

e Due to asymmetric packet routing [51]], in-network ob-
servation point sometime may only capture traffic in one
direction (illustrated in Figure [2b).

« It cannot guarantee the integrity of captured traffic for a
long period because of the deployment of various traffic
engineering techniques [52f, [53|]. The routing path for
any packet can be dynamic in today’s networks.

Therefore, in-network observation points may be more suitable
for traditional TA tasks such as Internet measurement and
network-layer anomaly detection. As for FGTA, many ap-
proaches (e.g., user behavior inference, website fingerprinting)
prefer to use the gateway-based observation point to capture
more complete traffic data from endpoints. However, wherever
the observation point is located, it is difficult to capture all the
relevant traffic in the network.

To capture comprehensive traffic data from the network with
complex topology, we can deploy multiple observation points
at different vantage points if conditions permit. By using a pool
of metering processes to collect network packets at multiple
observation points, optionally filter them and aggregate infor-
mation about these packets, a traffic exporter can gather each
of the observation points together into an observation domain
and sends this information to a traffic capture engine [54].
Then we can obtain relatively comprehensive network traf-
fic data without redundancy. Another benefit of deploying

multiple observation points is that it allows distributed or
cooperative TA, where multiple analyzers can collaborate
to analyze traffic data and synthesize more comprehensive
knowledge [55]-[57]]. For example, analyzers can choose to
upload only extracted features or intermediate results to a
central server to reduce the burden of data transmission or
enhance the privacy of the data [58|]; researchers can also
leverage federated learning techniques to train a global model
without sharing sensitive traffic data [59]-[62]]. However, these
approaches are costly to implement and often impractical
due to real-world constraints, making them seldom used in
practice, particularly in the context of FGTA.

C. Traffic Data Acquiring

Since the birth of the Internet, various traffic capture engines
have been developed to log traffic information. TA approaches
can further leverage these “log information” to measure net-
work events, detect anomalies, and analyze network behaviors.
Based on different information captured, these traffic capture
engines can be classified into either packet-level or flow-
level [4].

1) Packet-level capture: Packet-level capture is widely used
in local networks and endpoint devices. As its name states, it
copies or makes a snapshot of all the network packets that pass
by the network interface and forwards the collected data to a
collector. The agent that takes charge of the capture is called a
packet-level traffic capture engine or a “sniffer”, which can be
either software-based (e.g., Snoop [63]], Wireshark [64], etc.)
or hardware-based (e.g., Sniffer InfiniStream [65])). It can be
as simple as an IP table rule on a route that copies all the
traffic to a cloud disk besides normal forwarding.

Packet-level capture can collect raw network traffic, contain-
ing both packet headers and packet payloads. Theoretically,
it can support all types of FGTA tasks by logging all the
information flowing through the network, making it an ideal
input source for FGTA. However, in most cases, packet-level
traffic capture might not be the right solution to deploy for the
following reasons:

o Packet-level traffic capture is expensive, not only because
the interface needs to copy all the packets that pass by
it, but also because the interface needs to forward all
the captured traffic to an analysis node through a link.
All these operations will double the workload of the
network interface and occupy a considerable amount of
link bandwidth. Packet-level traffic capture is therefore
not scalable.

o The information contained in packet-level traffic data
is sometimes an “overkill” for TA, as many TA ap-
proaches only require statistical information from the
packet headers to complete the analysis. Moreover, user
messages, website content, and video streaming are usu-
ally contained in packet payloads in encrypted forms,
making most information captured in packet-level traffic
meaningless for all TA approaches.

o Packet-level traffic may contain sensitive information
(i.e., payload) of users. Thus, network service providers
are cautious about capturing and analyzing such data.



Workflow without traffic capture engines

1 -
Forward» Trafflc. Ingress Port
. 1 Forwarding

Forward % All Packets Workflow with 1
Copy of Packet Headers

1

1 Cflowd as the !
1

1

1

1

1

1

1| Header Information

1 Processing and
1

1

1

1

1

1

1

1

1

New or
Existing
Flow?

ew->|

Add Entry

Flow Cache Updating

Existing

A 4

Update Entry 5| Flow Cache

Fig. 3: Workflow of a network interface when Cflowd serves
as the traffic captured engine.

2) Flow-level capture: To address the aforementioned is-
sues of packet-level traffic captures and make traffic cap-
turing affordable, scalable, and practical for network service
providers, researchers and developers have proposed myriad
flow-level traffic capture engines.

In flow-level traffic capture systems, the capture engines
no longer copy or make snapshots of each packet, instead,
they first aggregate relevant packets into a flow and then
capture metadata or statistical information to represent that
flow. Here, the concept of flow has been around for a long
time. Typically, a flow can be identified by either a 5-tuple
(i.e., source IP address, source TCP/UDP port, destination
IP address, destination TCP/UDP port, and IP protocol) or a
3-tuple (i.e., source IP address, destination IP address, and
IP protocol) [66]. However, with the development of flow
capture engines, researchers have proposed many other formal
and informal definitions of network traffic flows (e.g., RFC
2722 [67], RFC 3697 [68]l, RFC 3917 [69]], etc.). In this paper,
we define a network traffic flow as a sequence of relevant
network packets from a source to a destination for the same
application. In most instances, the network system will process
packets within a flow in the same manner. Besides, each
application-layer behavior will generate one or multiple flows
in both directions.

By capturing traffic at flow-level, traffic capture engines no
longer suffer from high system overhead and high bandwidth
usage. Figure [3|illustrates the workflows of a network interface
with and without Cflowd as the flow-level traffic captured
engine [[70]]. Unlike packet-level traffic capture that will copy
and forward any packet entirely to the collector port, flow-
level traffic capture only copies information from headers to
assemble traffic flows. The volume of data to process is then
largely reduced in such a procedure. According to existing
literature [[71], NetFlow, the most frequently used flow-level
traffic capture engine, only creates 1-1.5% of throughput
(without sampling) on the interface it is exported on [72].
With a great deal of data reduction, network administrators can
store, process, inspect and analyze large amounts of network
data efficiently. Furthermore, when combining this procedure

with packet sampling, it becomes feasible to capture and store
traffic flows at an ISP or IXP scale, thereby extending the
usage scenarios of TA. As we can see from a study, NetFlow
only occupies around 15% of the router/switch’s CPU load
when capturing sampled network traffic [[73]. Compared with
packet-level traffic capture that sometimes may double the
system overhead and link usage, flow-level traffic capture is a
huge improvement regarding efficiency and deployability.

However, flow-level traffic capture has a notable
drawback—it reduces the visibility of network traffic
by providing only metadata and aggregated statistical
information rather than details of individual packets. This
limitation is particularly problematic for FGTA, as many
approaches rely on inter-packet information, such as packet
interval times. To address this issue, the lifecycle of each
flow in traffic capture engines can be shortened, allowing
flows to be generated more frequently and thereby improving
network visibility.

D. Widely used traffic capture engines

Here, we introduce widely-used traffic capture engines in
academia and industry (Table [[I| shows comparisons of them).

1) Packet-level traffic capture engines: Back in the early
days of Internet, developers had realized the importance of
capturing network packets for troubleshooting. Thus, Tcp-
dump [80], a software-based packet-level traffic capture engine
(sniffer), was proposed in 1988. It allows users to store and
display TCP/IP and other packets being transmitted or received
over a network. Nowadays, Tcpdump has been ported to
several operating systems (e.g., Unix with libpcap library,
Windows with WinPcap) and is still frequently used in network
studies. Similar software-based sniffers were also proposed
to meet different needs. For example, Snoop [63]], a simple
packet capture tool that is bundled on Solaris operating system;
Wireshark [64], a free packet capture and analysis software
that not only supports multiple operating systems (e.g., Linux,
Solaris, Windows, FreeBSD, Mac OS, etc.), but also comes
with a user-friendly interface; PF_RING [81], a high speed
packet capture library that can turn a commodity PC into an
efficient and cheap network measurement box suitable for both
packet capture and TA. As for routers and switches, traffic
mirroring [83]-[85] is also well-studied, with many software
or hardware-based approaches [65]], [86] proposed to support
real-time packet capture for enterprise-level networks.

However, as capturing the entire packet is expensive and
sometimes impractical, people began to make a snapshot of
each packet rather than storing it entirely. The most frequently-
used approach is sFlow [79], an industrial method (defined in
RFC 3176 [79]) originally developed by InMon Inc., to capture
packet-level snapshot from switches and routers. Compared
to previous packet-level traffic capture engines, sFlow offers
several features that make it an ideal input for most FGTA
approaches:

o Without capturing the entire packet, sFlow can just copy
the first N bytes of a packet to save computing and
transmission resource. This is especially useful for TA
tasks as packet payloads are useless in such scenarios



TABLE II: Comparisons of selected widely-used traffic capture engines (@: fully supported; ©: partially supported; O: not

supported.).
Traffic . Open Layer Hardware .
Capture Data Captured Granularity or . Sampling
. . (OSI) Acceleration
Engine Proprietary
. T . . Flow-level
SNMP [74] | High-level statistical information about the interface. (aggregated) Open 2,3 O O
IPFIX [75] | Metadata and statistical information about the flow. Flow-level Open 3,4 [ ] ]
NetFlow v9 [76] | Metadata and statistical information about the flow. Flow-level Proprietary 3,4 [ )
NetFlow v5 [[77] | Metadata and statistical information about the flow. Flow-level Proprietary 3,4 o o
Argus [78] Metadata and statistical information about the flow. Flow-level Open 2,3,4 o O
sFlow [79] | Complete packet headers and partial packet payloads. Packet-level ngzgy 2-17 [ ®
Tepdump [80] | Network information passing through the observation point. Packet-level Open 2-17 @) @)
Wireshark [64]] | Network information passing through the observation point. Packet-level Open 2-17 O O
PF_RING [81] | Network information passing through the observation point. Packet-level Open 2-17 [ ©
Netmap [82] | Network information in the memory of the observation point. ~ Packet-level Open 2-17 [ ©

but the entire packet headers are still preserved for fine-
grained analysis.

e As an industrial standard, sFlow is compatible on many
different platforms of network switches and routers and
utilizes a dedicated chip built into the devices to operate,
which removes the burden of the CPU and memory of
the router or switch when capturing the traffic.

« By introducing time-based or packet-based sampling
techniques, sFlow can capture traffic on all interfaces
simultaneously at wire speed.

Therefore, sFlow can reach a good balance between data
integrity and velocity for FGTA—being able to capture all
the packet headers and simultaneously create less burden on
the router or switch.

2) Flow-level traffic capture engines: Flow-level traffic
capture engines also have a long history. Back in 1984,
the Audit Record Generation and Utilization System (Argus
flow [[78]]) was proposed as the first implementation of network
flow monitoring, and is still an ongoing open source network
flow monitor project now. Argus can monitor all network traf-
fic, including Internet Protocol (IP) traffic, data plane, control
plane and management plane. It captures much of the packet
dynamics and semantics in each flow, providing reachability,
availability, connectivity, duration, rate, load, delay metrics
for all network flows. It also captures most attributes that are
available from the packet headers [87]. Later, in 1988, Simple
Network Management Protocol (SNMP) [74] was proposed as
a component of the Internet Protocol Suite as defined by the
Internet Engineering Task Force (IETF). Unlike Argus flow
that provides rich information about ongoing traffic, SNMP
only provides statistical information per interface, such as link
utilization, interface bandwidth, and some other information
if the device provides. SNMP is thus less applicable in TA
compared with Argus, especially in the domain of FGTA.

With rapid development and popularization of the Internet,
the industry had realized the importance of flow-level traffic
capture engine and many solutions were proposed. The most
typical example is NetFlow [76], so far the most widely-
used flow-level capture engine with many TA approaches
built upon. Just like Argus, NetFlow uses a flow record to
represent a set of packets. However, unlike Argus, which is a

bidirectional monitoring approach, NetFlow is a unidirectional
flow monitor, reporting flow information of each direction
of conversations independently. This feature allows NetFlow
to have a finer granularity than Argus. Since NetFlow was
developed by Cisco, it is bundled with most Cisco routers
and switches, making it the object of imitation of the entire
industry. Following NetFlow, many similar systems were pro-
posed by both research institutions and commercial companies,
such as Cflowd [70f], J-Flow [88]], NetStream [89], Remote
Network Monitoring (RMON) [90]], etc. NetFlow itself also
has evolved into different variations. The most famous one is
Internet Protocol Flow Information Export (IPFIX) [75], an
IETF protocol built upon NetFlow v9.

The most recent development of traffic capture and traffic
handling have been mainly focusing on the velocity issue.
Researchers have proposed multiple approaches to capture
large volume of network traffic at line speed without having
any effect on data plane. For example, Netmap [82] a memory-
based framework that enables commodity operating systems
to handle millions of packets per seconds without the support
of custom hardware; eXpress Data Path (XDP) [91]], a fast
programmable packet processing approach based on the oper-
ating system kernel, supports high speed packet logging and
processing; hXDP [92], an efficient software network packet
processing approach written in extended Berkeley Packet
Filter (eBPF) on Field Programmable Gate Arrays (FPGA)
network interface controllers (NICs); NetSeer [93], a flow
event telemetry (FET) monitor, which aims to discover and
record all performance-critical events on the programmable
data plane. However, these approaches do not alter the FGTA
pipeline; they simply enhance the speed of infrastructure for
capturing and processing network traffic, without modifying
the captured data itself.

IV. METHODOLOGY

In this section, we delve into the methodology of FGTA
and explore this field from the perspectives of data processing
pipelines, feature extraction approaches, classification & pre-
diction approaches, and evaluation metrics. These components
are integral to the success of FGTA and play crucial roles in
achieving accurate results.



Traffic collection

Preprocessing

v

Feature Extraction --------.

\ 4
Inference

(e.g., classification) |~

Y

Future steps
(e.g., access <
control)

Fig. 4: The most widely-used processing pipeline for FGTA,
which consists of three key steps: preprocessing, feature
extraction, and classification.

Traffic collection

. 7

Traffic matching

| e @

Fig. 5: Example of a simplified FGTA data processing pipeline,
which is used when the target traffic pattern is distinct or well-
defined.

Future steps
(e.g., access
control)

A. Pipeline

The process of generating fine-grained analysis results from
raw network traffic collected from network infrastructures typ-
ically involves several necessary steps. These data processing
procedures are known as the FGTA pipeline. Different FGTA
approaches may have different pipelines, with different steps
and different orders. In this subsection, we discuss three types
of FGTA pipelines (illustrated in Figure [5} f] and [6).

Figure [] depicts a commonly adopted pipeline for FGTA.
This pipeline is also prevalent in traditional TA methodolo-
gies as it offers a complete and versatile framework for the
processing of network traffic data. Regardless of whether the
input traffic is in flow-level or packet-level format, it usually
cannot be directly processed by analysis algorithms. Therefore,
similar to traditional TA pipeline, the first step of this FGTA
pipeline is usually to preprocess the raw traffic data. The
preprocessing step typically involves the following tasks:

o Data decoding: the raw network traffic data is usually
encoded in a format that is not easily processable (e.g.,
binary format or encrypted form). This task converts the
raw traffic data into a readable and processable form.

o Data cleaning: the raw traffic data may contain some
noise, invalid data, or control messages. This task extracts
only the valuable data for further analysis.

o Data refactoring: this task refactors the raw network
traffic data and make it suitable for the subsequent
analysis or maintenance. For example, indexing the raw
traffic data by socket pairs, or converting the flow records
to a B tree structure [94]).

o Other tasks necessary for subsequent steps: depending
on different FGTA pipelines, there may be other tasks
necessary for subsequent steps. For example, extracting
marked packets from the raw traffic data, anonymizing the
raw traffic data for General Data Protection Regulation

(GDPR) compliance [95]], or compressing the data for
efficient storage.

After the preprocessing step, FGTA approaches usually
move to feature extraction, which refers to the process of
selecting and transforming raw network traffic data into a set
of relevant features that are suitable for machine learning,
inference, or other analysis steps. For both traditional TA
and FGTA approaches, the feature extraction is a particularly
important step for representing the ongoing network events and
achieving accurate results. However, compared with traditional
TA approaches, FGTA approaches may require more sophis-
ticated feature extraction steps as they often need to extract
more detailed information from the raw traffic data. We further
discuss more details about feature extraction in Section [V-Bl

After relevant features are extracted, FGTA approaches are
typically ready for inference. The inference goals of these
approaches can vary, including identifying specific network
events, classifying traffic flows based on different application
behaviors, detecting network anomalies, or predicting specific
future network traffic. We further discuss the use cases of
FGTA approaches in Section|[V] The inference results of FGTA
approaches can be used for a variety of purposes, including
network monitoring, access control, device management, data
center protection, etc. However, regardless of the inference
goal, the inference step of FGTA always operates in the
form of fine-grained classification or prediction. For example,
classifying outlier traffic flows from normal traffic flows (i.e.,
anomaly detection), or classifying traffic flows according to
different applications (i.e., application identification). There-
fore, we use the term classification and prediction to refer to
the inference step of FGTA approaches. Compared traditional
TA approaches, FGTA approaches may require more sophis-
ticated classification and prediction approaches as they often
need to classify or predict more detailed information from
extracted features. These advancements may include more
sophisticated machine learning algorithms, more sophisticated
statistical modeling, or more complicated rule-based match-
ing. Section discusses the classification and prediction
approaches used in FGTA.

The previously mentioned pipeline outlines the general steps
for FGTA approaches. However, depending on the specific
goals, system design, and operational environments, the FGTA
pipeline can be simplified or extended, with specific steps
omitted or added.

Figure [3] illustrates a simplified FGTA pipeline, where the
raw network traffic data is directly used for rule-based traffic
pattern matching. A short data processing pipeline is very
efficient to operate and can still generate accurate results if the
pre-defined matching rules are simple and effective. It is useful
when target traffic pattern is distinct or well-defined (i.e.,
location inference [27]). This simplified pipeline is widely-
used in traditional TA approaches due to the simplicity of the
target traffic pattern. For example, sketch-based approaches
utilize probabilistic data structures (e.g., hash-based methods)
to directly match and measure incoming traffic’s statistics with
low overheads and high throughput [96]-[101]]. However, these
approaches can only coarsely distinguish or measure traffic
from different types of devices, protocols, or distinguishable



Traffic collection

Preprocessing

v

Classification 1

v

Session assembly

g P

Y

Visualization

Feature extraction -------- N

v @

Classification 2~ «-------

Future steps
(e.g., access <
control)

Fig. 6: Example of a more complicated FGTA data processing
pipeline, which is used when the target traffic pattern is not
directly distinguishable.

applications, serving as a tool for large-scale network measure-
ment or a prerequisite step for more sophisticated FGTA ap-
proaches. To generate fine-grained, application-layer inference
results, such a simplified pipeline is inadequate. Additional
data processing steps are needed to more thoroughly analyze
the traffic data for digging the hidden fine-grained information.

To infer high-level, fine-grained information from content-
agnostic network traffic data, many FGTA approaches tend to
employ more complicated pipelines to mine hidden and hard-
to-dig knowledge. These complicated pipelines are not widely
seen in traditional TA approaches due to the simplicity of
the target traffic pattern and added computational complexity.
Figure [6] illustrates such an example. Many application usage
inference approaches apply similar pipelines [26]], [[102]], [[103]]
because they need to extract features and classify traffic for
multiple times at different phases to derive detailed user
behavior information of specific applications. The sample
pipeline include two different analysis phases, with one for
narrowing down the analysis scope and the other for generating
fine-grained analysis results. More importantly, this pipeline
re-assemble traffic flows into sessions (some papers may call
them transactions [21]] or bursts [22], [104]]) before extracting
features for the final classification. This step is very helpful for
digging fine-grained behavior information from the traffic data
because the target network behavior or event usually consist of
multiple packets or traffic flows. Simply analyzing the network
traffic flow by flow or packet by packet may not be able
to capture the whole picture of the ongoing network events.
Therefore, session assembly is used to aggregate adjacent,
relevant, or similar traffic data into an analysis unit, which
is a more representative data structure to present the ongoing
network events and makes it easier for FGTA approaches
to infer fine-grained application-layer information. Figure
illustrates an example of session assembly [103], where flow
records are divided into flow points and then aggregated into
sessions according to the traffic density. Based on current
literature, the following approaches are commonly used for
session assembly:

o Time-based session assembly: this approach aggregates

mmm Flow record

@ Derived flow point

Input flow
records

v

Flow points

from flow

records

v

Aggregated
sessions

time g
Fig. 7: Example of a session assembly procedure, where
relevant flow records are aggregated into a traffic session to
represent a network event.

traffic flows into sessions based on the timing or the
intervals of ongoing network traffic.

e Clustering-based session assembly: this approach uti-
lize clustering algorithms to group traffic flows into
sessions.

o Index-based session assembly: this approach aggregates
traffic flows into sessions by specific indexes (e.g., socket
pair, packet ID ranges, time to live (TTL), etc).

o Rule-based session assembly: this approach aggregates
traffic flows based on pre-defined rules (e.g., rules on the
hash value of packet payload, rules on TCP flags, etc.).

The session assembly step is rare in traditional TA approaches.
After sessions are assembled, representative features can be
properly extracted and forwarded to next steps for fine-grained
classifications or predictions.

B. Feature extraction

Feature extraction is a term refers to the process of selecting
and generating relevant features from the raw data in order to
create a representation that can be used for machine learning,
statistical modeling, or other analysis procedures [105]. It is
an essential step for both traditional TA approaches and FGTA
approaches. In the context of TA, feature extraction involves
inspecting network traffic data to identify relevant features
that can be used for the corresponding classification tasks.
This process typically involves techniques such as packet
inspection, data fusion, and statistical modeling to identify
and derive patterns or characteristics in the data that are
relevant to the specific inference goal. Recently, the rise of
deep learning techniques has enabled numerous approaches
to automatically extract or select features from preprocessed
data inputs or extensive feature sets [106]—[108]]. However,
considerations of efficiency, efficacy, explainability, and the
complexity of network traffic data mean that many FGTA
approaches continue to depend on meticulously crafted fea-
ture extraction techniques to generate features for subsequent
analytical steps. The resulting set of features will be used as



TABLE III: Examples for intrinsic and derived features for
FGTA.

Category | Example
Intrinsic | Flow-level \ Packet-level
feature Flow size, number of packets, TCP flag, ToS, packet size,
AS number, protocol type, packet interval,
flow duration, etc. first n bytes of the payload, etc.
Derived | Flow/packet-based \ Session-based
feature

. . L Session duration,
Interval deviation, size deviation, >

interval distribution,
inbound/outbound packet ratio,
packet similarity, etc.

normalized session vector,

etc.

density distribution, session image,

round-way communication number,

input to the classification or prediction models to generate
the analysis output. In contrast to traditional TA methods,
FGTA often necessitates more advanced and intricate feature
extraction techniques. This is because FGTA aims to deduce
detailed application-layer information from raw traffic data,
requiring a more insightful and informative representation of
the network traffic data.

Due to the nature of network traffic collection, all the
extracted features can be categorized into two types: intrinsic
features and derived features. Intrinsic features are directly
contained in the raw network traffic data, such as packet
length, packet header fields, etc. The process of fetching intrin-
sic features is simple and straightforward. The analysis system
can directly select, slice, or generate intrinsic features from the
raw data, requiring little to no additional processing. On the
other hand, derived features are not directly contained in the
raw network traffic data. They are generated by applying some
data processing techniques to the raw data, such as statistical
modeling, feature transformation, information assembly, data
fusion, etc. Typically, traditional TA methods more commonly
utilize intrinsic features, while FGTA approaches tend to rely
on derived features. This preference is attributed to their
differing analysis objectives, granularity, and efficiency goals.

Table [[TT] lists some typical examples of intrinsic and derived
features. Different features are suitable for different FGTA
tasks. Typically, some relatively easy FGTA tasks may only
require intrinsic features to operate. For example, some appli-
cation identification or anomaly detection approaches can gen-
erate accurate results by directly inputting intrinsic features.
Because the network traffic of such applications or anomalies
can already be distinguishable by intrinsic features [20], [[109],
[110]. However, some more complex FGTA tasks may require
derived features for finer granularity analysis, especially for
tasks that infer detailed, application-layer user behaviors [22],
[103], [111]. The target network traffic of these FGTA tasks
is less distinguishable and may only show obvious patterns
with sophisticated feature engineering techniques. We discuss
more details about suitable features for different FGTA tasks
in Section [V]

Although derived features are more powerful than intrinsic
features in mining fine-grained information from network
traffic data, they are also more complex and expensive to
generate. One may need to apply sophisticated data processing
techniques, such as traffic buffering, data fusion, session

assembly, statistical modeling, etc., to fetch these derived
features. Such processes are time-consuming and may require
significant computational resources. As time-sensitive tasks,
it is vital for FGTA procedures to be efficient and scalable,
thereby outputting analysis results in a timely manner. Thus,
carefully selecting and generating necessary features is a
critical step for all FGTA approaches.

C. Classification and prediction approach

The key step of FGTA is to classify the target network traffic
from others or to predict the target network traffic’s behavior.
Designing a proper classification or prediction approach deter-
mines the efficacy and performance of FGTA approaches. In
many cases, constructing a classification or prediction model
requires labeled data. In the context of FGTA, labeled data
refers to network traffic data that has been manually labeled
or annotated with ground truth information. This ground truth
information typically includes information such as the applica-
tion type, user behavior type, or whether the traffic is generated
by malicious behavior or not. Obtaining labeled data can
be a challenging and resource-intensive process. It typically
requires a significant amount of manual effort and expertise to
accurately label network traffic data. Researchers may be able
to automate the labeling process with the help of other state-
of-the-art classification approaches, but the accuracy of labels
may not be ideal [112]]. On the other hand, some classification
and prediction approaches can be trained without labeled data
or with other forms of prior knowledge. In the remaining of
this subsection, we discuss the classification and prediction
approaches that are commonly used in FGTA approaches
(summarized in Table [[V)).

1) Traditional statistical approach: Traditional statistical
approaches leverage statistical properties, statistical models or
some other mathematical methods to identify subtle differ-
ences or patterns in different groups of network traffic [[123]].
Typical examples of statistical approaches include distribution
fitting [[113]], logistic regression [114], linear regression [23],
etc. Traditional statistical approaches are widely used in
traditional TA tasks because they are explainable, easy to
implement, usually efficient to operate, and good at tackling
relatively easy tasks. However, as FGTA tasks becoming more
and more challenging, traditional statistical approaches are not
sufficient to identify subtle differences in network traffic. Thus,
traditional statistical approaches are gradually replaced by
more sophisticated classification approaches, such as machine
learning approaches. Still, traditional statistical approaches
are commonly used in feature extraction, pre-analysis, and
pre-classification. For example, many FGTA approaches use
traditional statistical approaches to narrow down the analysis
scope before fine-grained analysis, thereby reducing the com-
putational complexity of the subsequent procedures [113].

2) Rule-based approach: Rule-based approaches are based
on a set of pre-defined rules that are manually designed by
experts to locate the target network traffic group [[124]. Before
defining the classification rules, the experts usually need a
thorough understanding of the target network traffic and the
network environment. Typical examples of classification rules



TABLE IV: Summary of widely-used classification and prediction approaches in FGTA.

Category Description R.ep resentative Pros Cons Use in FGTA Reference
algorithms/approaches
Traditional Leverage statistical properties  Distribution fitting, regres-  Explainable, easy to imple-  Poor efficacy especially when  Limited [23], [113], [114]
statistical or statistical models for FGTA sion, variance matching, etc. ment, and efficient to handle the FGTA task is challenging.
approach tasks. large amounts of network traf-
fic.

Rule-based Utilize a set of pre-defined  Session signatures, traffic ~ Explainable, easy to imple- It is usually challenging to  Limited [19], [24], [115]
approach rules to locate the target net-  thresholds, predefined packet  ment, controllable, and effi-  define rules for FGTA tasks.

work traffic group. For FGTA  header fields, etc. cient to handle large amounts  Poor efficacy and poor flexi-

tasks, the rules can be compli- of network traffic. bility.

cated.
Probabilistic Approaches based on proba- Bayesian classifier, Markov Flexibility, adaptability, and  Complexity, sensitivity to as- Popular [109], [116], [117]
approach bility theories to analyze net- model, HMM, etc. ease of use. sumptions, limited accuracy,

work traffic at a fine granular- and relatively poor explain-

ity. ability.
Supervised ML methods that rely on la- KNN, SVM, LSTM, trans- Great efficacy, ease of use, Limited explainability, over- Most popular [1181-[120]
machine beled network traffic data to  former, few shot learning, etc. and good flexibility. fitting, dependency on high-
learning learn knowledge, which can quality labeled data, limited

be used for network traffic scalability, and requiring rel-

classifications or predictions. atively long training time.
Unsupervised ML methods that do not re- K-means, PCA, DBSCAN, Discovering unknown patterns Limited result interpretability, Popular [103], [121], [122]
machine quire labeled training data and  etc. in network traffic data, flex-  limited efficacy, poor scalabil-
learning can discover patterns and rela- ibility, no labels needed, and ity in inference, and overfit-

tionships in the network traffic no training time. ting.

data on its own.
Hybrid Combine multiple different Ensemble model, semi- Inherits advantages of multi- Complicated to design, and Popular [201, [113], [122]
approach approaches for better perfor-  supervised machine learning,  ple classification or prediction ~ computationally expensive.

mance in FGTA. combining statistical approaches.

approaches with rule-based
approaches, etc.

include session signatures [24]), traffic thresholds [115]], pre-
defined packet header fields [19], etc. Similar to traditional
statistical approaches, rule-based approaches are explainable,
easy to implement, and efficient to operate, thereby being
widely used in traditional TA tasks. However, in the era
of FGTA, the analysis tasks are in finer granularity and
becoming more and more challenging. Thus, the pre-defined
rule sets are becoming larger, more complex, making them
more difficult to define, verify, and maintain. Moreover, the
rule-based approaches are not able to adapt to the dynamic
network environment, which is a common feature of modern
networks. Therefore, in recent trends, rule-based approaches
are less used in FGTA tasks. But they are still powerful tools in
some specific FGTA tasks, pre-classification, and accelerating
the analysis process.

3) Probabilistic approach: Probabilistic approaches are
based on probability theory and statistical inference to identify
the target network traffic group [125[]. They model the traffic
data probabilistically for classification tasks. For instance,
typical probabilistic approaches like Bayesian classifier [126],
Markov model [[127]], or hidden Markov model (HMM) [128]
are widely used to model network traffic first. These models
can then be utilized to identify traffic patterns of specific
applications, protocols, anomaly, or behaviors. Benefitting
from the following advantages, a variety of FGTA approaches
have been proposed based on probabilistic approaches to tackle
different FGTA tasks [[109], [116], [117]:

« Flexibility: probabilistic approaches can be used to model
a wide range of traffic patterns and behaviors. Besides,
they can tolerate noise and uncertainty in the data,
making them powerful tools for analyzing complex and
heterogeneous traffic data.

o Adaptability: probabilistic approaches can be -easily

adapted to changes in traffic patterns over time, allowing
them to detect new or previously unseen threats.

o Ease of use: with the support of various libraries, prob-
abilistic approaches are relatively easy to implement
and does not require extensive domain knowledge or
expertise.

However, probabilistic approaches feature the following dis-
advantages, resulting limited performance and application
especially in complicated FGTA tasks (e.g., user behavior
inference):

o Complexity: probabilistic approaches are usually compu-
tationally expensive, especially when the network traffic
data is large and complex.

o Sensitivity to assumptions: probabilistic approaches are
sensitive to the assumptions (labels) made during model
training or development, and incorrect assumptions can
lead to inaccurate results.

o Limited accuracy: probabilistic approaches may not
achieve the highest accuracy compared to other more
advanced methods, such as deep learning, in some scenar-
i0s. Also, they are relatively weak in handling nondiscrete
data.

« Explainability: probabilistic approaches may not provide
as much interpretability as other methods, making it
difficult to understand how the models arrived at their
conclusions.

4) Supervised machine learning: Supervised machine
learning is a widely used machine learning method that can
be applied to almost any FGTA tasks with reliable prior
knowledge [18]]. In supervised machine learning, a classifier
is trained using a labeled training dataset that includes known
classification labels. The trained classifier is then used to
classify or detect anomalies in new traffic data. Supervised ma-



chine learning approaches typically involve two main phases:
training and inference. During the training phase, the classifier
is trained on the labeled dataset (i.e., labeled network traffic)
to learn the relationship between the input features and the
classification labels. The inference phase involves using the
trained classifier to infer the classification labels of ongoing
network traffic.

With decades of development, researchers have proposed a
variety of supervised machine learning approaches [129], from
traditional machine learning methods, such as k-nearest neigh-
bor (KNN), decision tree, Support Vector Machine (SVM), to
advanced deep learning methods [130], [131]], such as multi-
layer perceptron (MLP), recurrent neural network (RNN),
long short-term memory (LSTM). Recently, there has been
a notable surge in applying state-of-the-art machine learning
techniques to FGTA. These include few-shot learning [[132]-
[135], which achieves commendable accuracy with minimal
training network traffic data; transformers [[136]], [[137]], known
for their superior pattern recognition capabilities and scalabil-
ity in training; transfer learning [138]], [[139], which utilizes
knowledge from other tasks or domains to enhance FGTA
performance with limited training traffic data; and online learn-
ing [140]], a dynamic approach where the model continually
updates and refines its parameters with incoming network
traffic streams, enabling real-time adaptation to evolving net-
work traffic patterns. Each of the proposed supervised machine
learning approaches has its own advantages and disadvantages,
making them suitable for different FGTA tasks. Selecting the
most suitable supervised machine learning approach is the
key to designing an effective ML-based FGTA approach. We
discuss more details about the ML algorithm select by use
case in Section [V1

Overall, due to the following advantages, supervised ma-
chine learning approaches are the most widely used ap-
proaches in FGTA [23], [118]]-[120]:

o High accuracy: supervised machine learning can achieve
high accuracy in FGTA, especially when compared to
other methods.

o Ease of use: on the one hand, supervised machine learn-
ing approaches are relatively easy to implement, with
supports of various libraries and tools [141]-[143]]. On
the other hand, they do not require extensive domain
knowledge or expertise to manually identify distinguish-
able rules or patterns.

o Flexibility: supervised machine learning approaches can
be used to model a wide range of traffic patterns and
behaviors.

However, supervised machine learning approaches also have
many shortcomings that limit their performance and use cases
in FGTA tasks:

o Limited explainability: many supervised machine learn-
ing algorithms, such as DNN, can be difficult to interpret,
which can limit their usefulness in some applications,
especially in anomaly or attack detection.

o Opverfitting: supervised machine learning models can
overfit to the training data, which can result in poor
performance on new data.

« Dependency on labeled data: supervised machine learning
requires high-quality labeled training data, which can
be time-consuming and expensive to collect, making
them less effective than unsupervised or semi-supervised
methods in some cases.

o Limited scalability: many supervised machine learning
approaches may not scale well to extremely large or
complex datasets. Both the training and inference phases
may be computationally expensive.

5) Unsupervised machine learning: Unlike supervised ma-
chine learning, unsupervised machine learning is a machine
learning method that does not require labeled training data
and can discover patterns and relationships in the data on
its own [144]. Unsupervised machine learning algorithms
typically involve clustering [[145] or dimensionality reduc-
tion [146] techniques that can help identify similarities and
differences between traffic flows. These algorithms do not
directly output labeled classification results, but can be used
to group similar traffic flows together or identify anomalous
traffic flows that do not fit into any of the existing clusters.
Widely used unsupervised machine learning algorithms in-
clude K-means [147], DBSCAN, principal component analysis
(PCA) [[148]], hierarchical clustering [149], etc.

Unsupervised machine learning algorithms feature the fol-
lowing advantages in FGTA:

o Discovering unknown patterns: unsupervised machine
learning approaches can identify previously unknown
patterns and behaviors in the traffic data, which can be
useful for detecting new or emerging threats.

o Flexibility: unsupervised machine learning approaches
can be more flexible and adaptable than supervised ma-
chine learning as they do not require labeled data, making
them easy to work with a wide variety of traffic datasets.

e No training time: unsupervised machine learning ap-
proaches usually takes zero training time, making them
more efficient than supervised machine learning ap-
proaches regarding model development.

They also inevitably have the following disadvantages:

o Limited result interpretability: interpreting the results
of the clustering or dimensionality reduction algorithms
used in unsupervised machine learning can be difficult
without prior domain knowledge.

o Limited accuracy: unsupervised machine learning may
not achieve the same level of accuracy as supervised
machine learning, especially when dealing with complex
or noisy traffic datasets.

e Scalability in inference: although taking no time for
training, some unsupervised machine learning algorithms
are computationally expensive in the inference phase,
which can limit their scalability.

o Opverfitting: unsupervised machine learning models can
also suffer from overfitting or underfitting, which can
result in poor performance on certain datasets.

In conclusion, unsupervised machine learning is a powerful
tool for FGTA, but it may have limitations in terms of result in-
terpretability and accuracy. Due to such natures, unsupervised



TABLE V: Widely used metrics that indicate the classification
efficacy for FGTA, where TP denotes the number of true
positives, T'N denotes the number of true negatives, F'P
denotes the number of false positives, and F'N denotes the
number of false negatives.

Metric Description Calculation

TPR The probability that an actual positive will test positive,
the key metric that indicates the sensitivity or true positive
rate of an analysis, reflects the FGTA approach’s ability

to correctly identify those with the condition.

TP
TP+FN

TNR The probability that an actual negative will test negative. %

PPV The probability that an item with a positive test result is

truly positive.

TP
TP+FP

NPV The probability that an item with a negative test result is

TN
X TNTFN
truly negative.

FNR The probability of positives which yield negative out-
comes, an important metric especially in anomaly or attack

detection.

FN
FN+TP

FPR The probability of negatives which yield positive out-
comes, one of the most important metrics that indicates the
usability of the FGTA approach. A high false positive rate
(FPR) can lead to a large number of false alarms, forcing
network administrators to ignore the analysis results.

__FP __
FPITN

FDR The probability that an item with a positive test result is

FP
. FP4+TP
truly negative.

FOR The probability that an item with a negative test result is

FN
at FN+TN
truly positive.

F1 The harmonic mean of precision (PPV) and recall (TPR),
indicating a balance between the accuracy of positive
predictions and the completeness of positive case iden-
tification.

2T P
TP+ FPTFN

TP+TN

ACC How close a given set of analysis results are to their TPITNIFPIFN

true value, the most widely used metric that indicates the
overall reliability of the FGTA results in reflecting the
actual situation.

ROC A graph showing the performance of a classification model
at all classification thresholds, key to understanding and
adjusting the trade-off between true positive rate and false
positive rate to reach the best analysis performance for the
FGTA approach.

Through TPR and FPR.

AUC The area under the entire ROC curve.

Through ROC.

machine learning approaches are not widely used in tasks such
as anomaly detection and attack detection [[103]], [[121].

6) Hybrid approach: Hybrid approaches combine the ad-
vantages of multiple classification approaches to achieve better
adaptability, explainability, or performance. People can use
different approaches as different procedures in the FGTA
pipeline, enhancing the feature extraction or pre-classification
phase, or simply use an ensemble classification model to
increase the robustness. For example, combining supervised
and unsupervised machine learning approaches for semi-
supervised traffic classification [20], combining statistical
approaches with machine learning approaches better FGTA
performance [[113]], or utilizing a variety of approaches in the
FGTA pipeline for more comprehensive attack coverage [[122].

Although hybrid approaches can usually achieve better
performance, they are more complex to design and assemble.
Besides, hybrid approaches are usually more computationally
expensive than using single approaches.

D. Evaluation metrics

In FGTA, evaluation metrics are important measures of the
performance, efficiency, and usability of proposed approaches.
In this section, we discuss some commonly used evaluation
metrics.

1) Classification efficacy: The most important evaluation
metrics for FGTA are to indicate the classification efficacy,
They measure the accuracy of the proposed approach in classi-
fying the target traffic flows. The classification efficacy is well-
defined in the domain of data mining [[150]]. It can be measured
by true positive rate (TPR), true negative rate (TNR), positive
predictive value (PPV), negative predictive value (NPV), false
negative rate (FNR), FPR, false discovery rate (FDR), false
omission rate (FOR), F1 score (F1), accuracy (ACC), receiver
operating characteristic (ROC), area under the curve (AUC),
etc. Table [V] lists the calculations and descriptions of these
metrics. For specific FGTA tasks, some metrics may be more
important than others. For example, in anomaly or attack
detections, FPR and FNR are more important than PPV and
NPV because FPR determines the false alarm rate, reflecting
the usability of proposed approaches, and FNR determines the
miss rate, reflecting the detection effectiveness of proposed
approaches. FGTA is usually a high-throughput analysis task.
Given its substantial volume of input, even a relatively small
FPR or FNR can be magnified, resulting in numerous false
alarms or overlooked detections. This situation places network
administrators in a challenging position, where they might
have to disregard the analysis results or risk allowing excessive
malicious traffic through the network. While in tasks such as
webpage fingerprinting, PPV and NPV are more important
than FPR and FNR because PPV and NPV are more relevant
to the classification efficacy.

2) Efficiency: Efficiency is another important evaluation
metric for FGTA, which is usually measured by the time cost
of finishing analyzing a certain amount of traffic flows by the
proposed approach. In addition to accuracy and other perfor-
mance metrics, the time cost can have a significant impact on
the proposed approach’s practicality and applicability. In real-
world scenarios, the majority of FGTA tasks are performed
on a large amount of traffic flows in real time. Therefore,
the bottom line of these FGTA tasks is to reach the line
speed in processing traffic flows. Here, the line speed refers to
the maximum speed at which a FGTA approach can process
incoming traffic data without dropping or losing packets. It is
typically measured in terms of bits per second (bps) or packets
per second (pps).

To increase efficiency, many FGTA approaches optimize the
feature extraction procedure, classification algorithms, or the
general pipeline. Some approaches also choose to design ded-
icated hardware architectures to accelerate the FGTA process.
For example, FlowLens [[151] utilizes programmable switch
to support ML-based flow classification at hardware level,
making ML-based flow classification efficient enough to catch
up with line-speed traffic. We discuss more details about this
issue in Section [V]

3) Other metrics: According to different use cases, FGTA
approaches may need to consider many other metrics, such
as the memory cost, the storage cost, compatibility, stability,
etc. For example, FGTA-based intrusion detection approaches
may need to consider the explainability of the outputs to
help network administrators understand the logic behind the
detection results, thereby facilitating the network security
management with confidence [152]]. The explainability here



‘ Fine-Grained Traffic Analysis (FGTA) ’

Used by
X
| )

Side-Channel Attacker

Network Administrator/

—
analyst Application
Identification
Intrusion/Anomaly - Location
P—
Detection ) Inference
Device
Identification
Quality of .
[S{PERIEiEs Application Fin\g:rzfil:\eting
Measurement Usage
Inference

Fig. 8: A taxonomy for FGTA by use case.

not only refers to the reason why the FGTA approach generates
a certain output but also refers to the mitigation costs, network
situations, confidence level, etc. In addition, some FGTA
approaches may need to consider the privacy of the users
for compliance with certain regulations (e.g., GDPR [95] and
California Consumer Privacy Act (CCPA) [[153]]). In such
cases, they may not able to collect, store, or process certain
types of network traffic data directly, such as the payload
of network packets. Thus, developers need to select suitable
metrics for specific use cases.

V. USE CASES AND REPRESENTATIVE APPROACHES

As discussed in Section [l FGTA has a wide range of
uses. FGTA can be leveraged by both attackers and network
administrators, for both illegal purposes and social good.
Attackers can leverage FGTA to eavesdrop on user activities
online [114], [118], [154], stealing sensitive information and
raising significant privacy concerns. By analyzing even en-
crypted traffic patterns, they can infer user behaviors and pref-
erences, posing threats to both individual and organizational
security. This highlights the need for effective countermeasures
to prevent the misuse of FGTA technologies. On the other
hand, people can leverage FGTA to detect network anoma-
lies [103]], [[155]], [156] or better manage the network [24],
[157]. This has also been widely practiced in the industry. For
example, Kentik [[I58]] provides a network traffic intelligence
platform that can help network administrators detect network
anomalies, optimize networks, and perform fine-grain network
troubleshooting. Palo Alto Networks [159] provides a network
traffic analysis platform that can help network administrators
detect intrusions in fine granularity.

According to their use cases, we propose a taxonomy for
FGTA approaches (illustrated in Figure [§)). In the remainder
of this section, we review representative FGTA approaches
across different categories, examining their goals, operation
mechanisms, performance, and key differences. We have also
summarized some of the comparisons in Table
and [X] Notably, since most existing works do not provide code

for testing, we cannot directly compare their detailed perfor-
mance. Therefore, system overheads are estimated based on
the complexity of their pipelines, feature extraction methods,
and algorithms. Similarly, their real-time analysis capabilities
are estimated based on their operational mechanisms and the
processing time data listed in the papers (if available). For
papers that do not explicitly mention the time needed for anal-
ysis, we estimate the time based on their input data, method-
ologies, or other related data. Thus, the real-time analysis
capabilities listed in the tables are only rough estimates based
on specific settings in the papers, which may vary in different
environments. In the comparisons, approaches that can deliver
results within a minute with sufficient computational resources
are considered real-time; those requiring certain amount of
flow-level data or traffic session completion are deemed par-
tially real-time (e.g., 1-10 minutes); and approaches needing
a long time (e.g., over 10 minutes) to collect enough data or
the entire dataset for offline analysis (e.g., clustering-based
approaches) are classified as not real-time.

A. Attack/Anomaly Detection

TA approaches are widely used by both the industry
and academia to detect anomalies or attacks. With more
than two decades of research, we have seen a myriad of
solutions (e.g., [160]-[163]]) targeting at different types of
threats. However, as network attacks become increasingly
sophisticated, detection approaches based on traditional TA
are gradually becoming insufficient to address modern threats,
particularly those occurring at or above the application layer.
For example, traditional TA approaches may excel at detecting
conventional DDoS attacks but often fall short in identifying
application-layer anomalies, such as online social network
bots or data exfiltration. Therefore, researchers began adopting
FGTA to model endpoints’ or users’ behaviors to detect such
attacks/anomalies. In this subsection, we elaborate on FGTA-
based attack/anomaly detection approaches, introducing their
applicable scenarios and operation mechanisms (Table
shows an overview).

1) Intrusion detection: Many FGTA approaches focus on
detecting complicated intrusions in the network by examining
the characteristics of the underlying network traffic. Most of
them apply machine learning models to perform the detection.

Amoli et al. [[121]] leveraged an unsupervised machine learn-
ing model (i.e., density-based spatial clustering of applications
with noise (DBSCAN)) to distinguish subtle differences be-
tween historic traffic and intrusion traffic. Their approach is
able to detect zero-day and complex attacks without much
prior knowledge of these attacks. Papadogiannaki et al. [174]
generated traffic signatures from packet metadata sequences
and then used these to detect intrusions in the UNSW-NB15
dataset [[175]).

Many researchers also focus on utilizing supervised deep
learning models to detect intrusions. Tang et al. [110] extracted
six basic features from traffic flows and trained a DNN
model with the NSL-KDD dataset to detect intrusions. Shone
et al. [122] first leveraged nonsymmetric deep autoencoder
(NDAE) for unsupervised feature learning. Then, they im-
plemented stacked NDAEs with GPU-based architectures for



TABLE VI: Comparisons of

supported).

selected attack/anomaly detection approaches (O: not supported; ©: partially supported; @:

Category ‘ Approach Year Goal of Analysis Feature Method Osv); itlf:; d R::;g 'S':;e l]f:i?lﬂ?izl:
Amoli et al. 2016  Mail-bomb, SSH-process- ~ Flow-level traffic  feature = DBSCAN Medium O (~10 mins) O
Intrusion table, botmaster, etc. such as duration, number of
Detection packets, smallest packet size,
largest packet size, etc.
Tang et al. [110] 2016  R2L, U2R, Probe, DoS Duration, protocol type, src  DNN High © (~1-5 mins) @]
bytes, dst bytes, count, srv
count
Shone et al. | 2018  R2L, U2R, Probe, DoS, guess  Features extracted with NDAE ~ NDAE for unsupervised fea- High © (~1-5 mins) O
password, portsweep, buffer ture learning, stacked NDAEs
overflow, etc. for detection
Mirsky et al. 2018  Video injection, ARP MitM, Damped incremental statistics  Kitsune’s core algorithm (Kit- High @ (0.1-10 secs) [ ]
OS scan, etc. and 23 other features from  NET), a type of autoencoders
packet-level data
Han et al. | 2023  Normality shift detection. Features appeared in the Detect shift  statistically High [ ] [ ]
Unauthenticated OSPFE, P2P  datasets through hypothesis testing;
traffic, MS SQL Stack BO, log tackle normality shifts by
anomaly, advanced persistent optimizations and restricting
threat (APT), etc. model parameter updating.
Ullah et al. |16 2024  Infiltration, brute force, DoS, Features extracted from net-  Transformer-based transfer High © (~1-5 mins) O
etc. work packets and selected by  learning, Synthetic Minority
the CNN model. Oversampling Technique
(SMOT), convolutional neural
network (CNN), and LSTM.
Feng et al. 2024  Explainable and adaptive  Different feature sets for dif- KNN with k-dimensional tree Low @ (<10 secs) [ ]
DDoS detection ferent types of DDoS, mainly  and grid optimization
statistical features.
Shabtai et al. 2014  Malicious attacks or mas- 2 best feature subsets selected  Linear regression, decision Medium © (mostly <10 mins) ©
Malware querading/injected mobile ap-  from 20 manually defined fea-  table, SVM for regression,
Detection plications ture subsets of various sizes Gaussian processes for
regression, isotonic regression,
and decision/regression tree
Wang et al. | 2016  Android malware such Six TCP flow features and four ~ C4.5 decision tree Low [ ] O
as  plankton, Fakelnstall, HTTP request features
FakeRun, MobileTx, etc.
Lashkari et al 2017 Malicious and masquerading 24 features extracted from Random forest, KNN, decision Medium © (~1-5 mins) ©
applications such as Airpush, both packet and flow-level tree, random tree, and regres-
Kemoge, AVpass, FakeAV, etc. traffic sion
Anderson et al. 2017  Detecting malicious, encrypted 22 and 319 data features in  Linear regression, logistic re- High © (<5 mins) [ ]
malware network traffic the standard and enhanced fea-  gression, decision tree, random
ture set extracted from Net-  forest, SVM, and MLP
Flow and IPFIX data
Piskozub et al. 2021 Malware detection and classifi-  Flow duration, round-trip time, A combination of denoising High © (~1-5 mins) ©
cation, including adware, ran-  IP protocol used, connection  autoencoders and DNN classi-
somware, trojan, virus, and towards local or public IP, fiers
worm. destination port, packets sent,
bytes sent, packets received,
bytes received, sent packet
payload entropy, and received
packet payload entropy.
Data Ren et al. [170 2016  Cross-platform information ~ Raw network packets with  Decision tree, AdaBoost, bag- Medium ® (<1 min) ()
Exfiltration leak identification payload ging, blending, and Naive
Detection Bayes
Continella et al. 2017  PII leakage detection, even in  Raw network packets with ~ Behavior modeling and differ- Low O (~98 mins) ©
the presence of obfuscation  payload ential analysis
techniques
Rosner et al. 2019  Information leaks in TLS- A feature space that includes Trace alignment, phase detec- Low © O
encrypted network traffic observations about individual tion, feature selection, feature
packets and sequences of  probability distribution estima-
packets; additional features  tion and entropy computation
from the phase detection and
the full original traces.
Willems et al. 2023  Data exfiltration as occurring  Average packet count and re- The anomaly detector is High © O
in ransomware attacks quest entropy per session, av-  composed of an ensemble
erage session duration, pay- layer with multiple
load size, time between se-  autoencoders and a Threshold
quential sessions, and weights. ~ Checker.
Feng et al. 2021  Online social network bot de-  Traffic fingerprint images con-  DBSCAN, CNN High © (~1-5 mins) [
Others tection verted from NetFlow data
Coulter et al. 2019 A data-driven cyber security  Statistical features extracted A variety of classification ap- High [ ]
system that can identify high-  from the network traffic and  proaches
level application-layer attacks  content (optional)
or anomalies such as Twitter
spam
Feng et al. 2022 Cryptojacking activity Packet size, timing, direction, LSTM High © (=5 mins) O
and protocol from sFlow data




quick and accurate intrusion detection on labeled datasets
(i.e., KDD Cup ’99 and NSL-KDD). Mirsky et al. [[155]
monitored the statistical patterns of network traffic and de-
signed an ensemble of neural networks called autoencoders to
collectively differentiate between normal and abnormal traffic
patterns. Their approach is able to detect various attacks (e.g.,
video injection, ARP MitM, OS scan, etc.). Besides, unlike
many other approaches that are only evaluated in closed-world
environments, this approach was tested with a real-world test
bed.

2) Malware detection: Today’s malware is becoming more
and more challenging to be detected by traditional TA due to
traffic hiding and the increasing adoption of traffic encryption.
FGTA could be an ideal tool to detect such malware.

Shabtai et al. [166] proposed a framework for malware
detection on Android platforms. It can identify attacks or
masquerading applications installed on a mobile device and
injected applications with malicious code by semi-supervised
machine-learning methods. Wang et al. [[167] leveraged a
machine learning algorithm (i.e., C4.5 decision tree) in ana-
lyzing mobile traffic, which is capable of identifying Android
malware with high accuracy—more than 98%.

Later, some researchers collectively evaluated the efficacy
of different machine learning models in detecting malware.
Lashkari et al. [|168] detected malicious and masquerading ap-
plications with five different classifiers—random forest, KNN,
decision tree, random tree, and regression. They found that
these models can achieve similar performances in malware de-
tection. Besides, they published a labeled dataset that contains
both benign Android applications and injected applications’
network traffic. Anderson et al. [23|] designed and carried out
experiments that show how six machine learning algorithms
(e.g., linear regression, logistic regression, decision tree, ran-
dom forest, SVM, and MLP) perform when confronted with
real network data. They found the random forest ensemble
classifier to be the most robust for the domain of malware
detection.

3) Data exfiltration detection: FGTA can also be used in
detecting data exfiltration, thereby protecting personal sen-
sitive data from leakage. Different from directly detecting
anomalies or attacks, approaches in this domain usually profile
user behaviors or model normal application usage to identify
abnormal data transfer.

Wei et al. [176] proposed ProfileDroid, which is the first
approach to profile mobile application at four layers: (a) static,
or application specification, (b) user interaction, (c) operating
system, and (d) network. At network-layer, this approach can
capture essential characteristics of application communica-
tions, including but not limited to the ratio of incoming traffic
and outgoing traffic, number of distinct traffic sources, traffic
intensity, the percentage of HTTP and HTTPS traffic, etc.
The profiling information can help identify inconsistencies
and surprising behaviors, thereby detecting data exfiltration.
A similar work is TaintDroid [[177]]. It leverages dynamic
information-flow tracking to identify private data leaks of
Android applications. The authors indicated that network
traffic is useful to help monitor the behavior of popular third-
party Android applications and discover potential misuse cases

16

of user private information across applications. These two
approaches do not only leverage network traffic, but their ideas
inspired a lot of subsequent work in this domain.

Later, researchers began to investigate purely using network
traffic to profile application usage and report possible data
exfiltration. Razaghpanah et al. [|178]] monitored network com-
munications on mobile phones from user-space. The proposed
approach facilitates user-friendly, large-scale deployment of
mobile traffic measurements and services to illuminate mo-
bile application performance, privacy and security. Song et
al. [[179] proposed a VPN-based approach to detect sensitive
information leakage Le et al. [180] proposed AntMonitor,
which passively monitors and collects packet-level measure-
ments from Android devices to provide a fine-grained analysis.
By inspecting the network traffic data, it can provide users
with control over how their data is shared by applications.
Ren et al. [170] proposed ReCon, a cross-platform system
that reveals personally identifiable information (PII) leaks by
inspecting network packets and gives users control over them
without requiring any special privileges or custom operating
system (OS). The authors leveraged the Weka data mining
tool [181] to train classifiers that predict PII leaks. Continella
et al. [[171] proposed an approach to privacy leak detection
that is resilient to obfuscation techniques (e.g., encoding,
formatting, encryption). To achieve the goal, the authors first
established a baseline of the network behavior of applications,
and then utilized black-box differential analysis on application
usages.

However, the aforementioned approaches still require in-
spections on traffic content to detect data exfiltration. The ideal
FGTA-based solution should be content-agnostic. In 2019,
Rosner et al. [[156] presented a black-box approach for detect-
ing and quantifying side-channel information leaks in TLS-
encrypted network traffic. Given a user-supplied profiling-
input suite in which some aspect of the inputs is marked as
secret, it combines network trace alignment, phase detection,
feature selection, feature probability distribution estimation
and entropy computation to quantify the amount of informa-
tion leakage that is due to network traffic.

4) Others: A few research works have been focusing on us-
ing FGTA to detect other types of application-layer anomalies.
By harnessing the power of machine learning on big data, such
approaches can model fine-grained application-layer anomalies
only with flow-level traffic or packet headers. For example,
BotFlowMon [21]], [103] detects online social network bot
traffic by converting NetFlow records to images and training a
CNN-based classification model; Coulter et al. [173] proposed
a data-driven cyber security system that can detect Twitter
spam or other high-level application-layer anomalies through
machine-learning-based flow analysis; Feng et al. [[113]], [[182]]
detects cryptojacking traffic by inferring the hash rate stability
with cryptomining traffic in sFlow format. Table [V1|lists their
analysis features and methodologies.

B. Fine-Grained Quality of Experience Investigation

Fine-grained quality of experience (QoE) measures how the
specific web service is experienced by individual users at the



edge of the network [183]], thereby providing a more user-
centric perspective on network performance for network trou-
bleshooting, configuration, and optimization. It is an essential
approach for internet service provider (ISP)s to provide high-
quality services to the network users.

In traditional TA, three techniques servers similar purposes:
quality of service (QoS) [[184]]-[[186], network traffic predic-
tion [28]], [30], [139]], and traditional QoE. However, they
address the network performance issue from different angles.
QoS refers to the network parameter settings configured by
service providers to deliver various levels of service to their
customers, which focuses on the network service quality from
the perspectives of overall network rather than individual
users. Network traffic predictions aim to predict the future net-
work traffic flow based on historical data, thereby helping net-
work administrators to allocate network resources efficiently or
configure the network in a more suitable way. Network traffic
predictions can be achieved through machine learning [[187]—
[189], statistical models [190]], SARIMA models [191], etc.
We can see that both QoS and network traffic prediction are
more network-centric and focus on aggregated user traffic,
while fine-grained QoE emphasizes individual users’ detailed
network experiences, focusing on user-centric, application-
layer information extraction.

On the other hand, plenty of works have been proposed to
conduct QoE investigations with traditional TA (e.g., [183],
[192], [193]]). They can roughly classify network traffic into
several groups (e.g., video, voice, data transfer, etc.) using
statistical, DPI-based, or rule-based approaches and measure
the service experience according to some metrics. However,
such approaches may not be able to tackle today’s increasingly
complicated network traffic, since different types of traffic may
be encrypted by different protocols (e.g., HTTPS, Quick UDP
Internet Connection (QUIC)) and sent from different devices
(e.g., IoT, smartphone, server) by different applications. Be-
sides, service providers may want to conduct more granular
management of network traffic. For example, residential areas’
network administrators may want to increase the priority of
video streaming traffic related to YouTube for certain users;
network administrators of companies may want to ensure the
quality of online meeting traffic for some offices. Therefore,
over the past ten years, researchers have started leveraging
FGTA to infer detailed user information at or above the
application layer, enabling QoE investigations with greater
precision and finer granularity.

Usually, fine-grained QoE investigations are performed in
two steps:

1) Extract the target traffic using traffic classification.

2) Measure the extracted traffic to check if it meets certain

criteria.
Some approaches may combine these two steps into one and
directly identify potential QoS/QoE problems. Table shows
a comparison of some selected QoE methods.

In 2016, Dimopoulos et al. [194] proposed a random-
forest-based detection model to identify QoE issues related to
YouTube video streaming. By selecting three sets of features
with information gain, the proposed model is able to directly
detect different levels of QoE degradation that is caused by

TABLE VII: Comparisons of selected fine-grained QoE inves-
tigation approaches.

Approach \ Goal Method Feature
1194 Identify QoE degra- Random forest Three feature sets se-
dation in YouTube lected by informa-
tion gain.
[195] Estimate QOoE in Random forest, J48, Five hand-crafted
YouTube Naive Bayes, OneR,  feature sets
and SMO
1196] Estimate video Decision tree A packet-level
streaming QoE over feature set extracted
HTTPS and QUIC from network and
protocols transport-layers
1157] Estimate QoE in Random forest and Three feature sets
YouTube linear regression (inbound, outbound,
and inbound + out-
bound)
[24] Estimate mobile  Traffic fingerprinting  Packet size and tim-
ABR video  with chunk sizes ing
adaptation behavior
over HTTPS and
QUIC protocols

three key influence factors (i.e., stalling, the average video
quality, and the quality variations). The authors demonstrated
that it can detect QoE problems with an accuracy of 92% by
evaluating this approach using collected traffic At the same
year, Orsolic et al. [[195]] also studied using different machine
learning algorithms (i.e., random forest, J48, Naive Bayes,
OneR, and Sequential Minimal Optimization (SMO)) to detect
YouTube QOoE issues under different bandwidth scenarios. In
2019, Khokhar et al. [157]] proposed the first work that not only
can identify YouTube QOE issues related to objective factors
(e.g., startup delay, stalling, resolution change, etc.), but also
can identify QoE issues related to the subjective Mean Opinion
Score (MOS).

Mazhar et al. [[196]] further extends QoE investigation to all
encrypted video streaming traffic (transferred over HTTPS or
QUIC) by using a classification model trained by a decision
tree. They demonstrated that their approach is able to achieve a
90% classification accuracy for HTTPS and an 85% classifica-
tion accuracy for QUIC Xu et al. [24] infers mobile Adaptive
Bitrate (ABR) video adaptation behavior using packet size and
timing information in encrypted environments.

C. Website Fingerprinting

Website fingerprinting (WFP) is used to identify what web
page the user is visiting, even in the presence of traffic en-
cryption or encrypted tunnels established by Tor [197], [[198]],
Shadowsocks (i.e., a popular secure socksS proxy) [199],
VPN, etc. It is a FGTA technique that widely-used by at-
tackers to eavesdrop on user activities or content online. In
this subsection, we survey and compare well-known WFP
approaches (Table [VIII), elaborating on the history of WFP
and investigating its capability.

1) Early development of WFP: WFP has a long history. The
early WFP attacks simply focused on using data sizes to infer
the URL the user is visiting through encrypted SSL connec-
tions. Back in 1998, Mistry et al. [200] demonstrated that the
size of HTML files is a critical feature to specific web pages.



TABLE VIII: Comparisons of selected WFP approaches (O: not supported; ©: partially supported; @: supported).

Approach ‘ Year Method Feature OSV)(; srt;::l d R:::la'ir 1sril;e Effectiveness
| v HTTP/L1 VPN Tor Multi-tab
Mistry et al. [200 1998  Size matching Size of HTML file Low @ (few milliseconds) O O O O
Sun et al. [201 2002  Similarity score calculation (Jac- HTTP object count, sizes, etc. Low @ (few milliseconds) © O @) @)
card’s coefficient)
Bissias et al. [115 2005 Cross correlation of two value se- Packet size and inter-arrival time Low © () © @) O
quences distributions
Liberatore et al. [202 2006 Similarity score calculation (Jac- Direction and length for each Low () () © @) O
card’s coefficient) packet
Herrmann et al. [203 2009  Multinomial Naive Bayes Frequency distribution of the IP Low @ (~10 secs) [ ) [ ] O O
packet size
Panchenko et al. [204 2011  SVM Volume, time, and direction of the Medium @ (few milliseconds) [ ] [ ] © O
traffic
Cai et al. [116 2012  Damerau-Levenshtein distance and  Packet size, time, and direction Medium [ ) [ ] [ ] [ ] @]
Hidden Markov Model
Wang et al. [205 2014 KNN A large feature set generated from Medium ® (~0.1 secs) [ ) [ O
packet-level traffic
Hayes et al. [206 2016  Random decision forests Features selected by gini coeffi- Low ® (~0.1 secs) [ ) [ ©
cient
Rimmer et al. [207 2017 SDAE, CNN, and LSTM Automatically learned feature sets High @ (<5 secs) [ () [ @)
from packet-level network traffic
Sirinam et al. [208 2018 CNN Packet-level traffic data High [ [ [ [ @)
Sirinam et al. [209 2019  N-shot learning with triplet net- Selected by a neural-network- High [ [ J [ [ O
works based feature selector
Yin et al. [25 2021 Split point finding and  Packet size, time, and direction Low @ (~2-6 secs) [ () [ [
BalanceCascade-XGBoost
Wang et al. [210 2022  DNN ensemble Total number of packet, incoming High © (~5 mins) [ ) [ @)
packets, outgoing packets, and the
ratio of quintuplets, along with the
DAE feature vector.
Deng et al. [211] 2023 A multi-classifier framework based CNN-based local feature extraction High @ (0.26-0.42 secs) [ ] [ ) [ ) [ )
on a novel transformer model

They proposed an attack that simply uses the transmitted data
volumes to identify certain websites. Although this attack is
not feasible anymore after the launch of connection pipelining
and connection parallelization by HTTP 1.1 (RFC 2616 [212]),
this research inspired many other WFP studies in the next two
decades. In 2002, Hintz [213] defined “fingerprints” of web-
sites as the histograms of transferred files’ sizes. He recorded
some website fingerprints and successfully recognize some
websites transferred through HTTPS with these fingerprints.
However, Hintz’s WFP attack only works for a small number
of websites. Later, Sun et al. [201] extends size-based WFP
to thousands of websites. They proposed a WFP approach
based on Jaccard’s coefficient, which can correctly identify
75% of the websites in their collected dataset. However, a
common drawback of file-based attacks is that they cannot
tackle traffic hidden in encrypted tunneling protocols (e.g.,
VPN, OpenSSH), not to mention Tor.

2) Defeat encrypted tunnel: To extend WFP to handle
encrypted tunneling protocols, multiple “more advanced” WFP
approaches had been proposed. Both Bissias et al. [115] and
Liberatore et al. [202] proposed improved forms of WFP.
Rather than using the data size as the feature, they extract
sets of traffic patterns from encrypted IP packet headers, such
as packet inter-arrival time, size, etc. These approaches have
some efficacy in identifying websites transferred by encrypted
tunneling services. However, the accuracies of page identifi-
cation is still not ideal in reality. In 2009, by using packet-
level features, Herrmann et al. [203] proposed a multinomial
Naive Bayes classifier that can identify up to 97% of web
requests on a sample of 775 sites and over 300,000 real-
world traffic dumps recorded over a two-month period. The
authors demonstrate that this approach is effective in tackling
website traffic in encrypted tunnels. Lu et al. [214]] pointed
out that packet ordering information, though noisy, can be

Tor Network

A

H Entry OR ‘-' 1 L.
Tor User - WFP  Onion Relay
1 Attack (OR) Internet
: Middle
l : I OR
e’y Encrypted Traffic

Adversary

== == == == =3 Unencrypted Traffic

Fig. 9: Threat model for WFP attacks over Tor network.

utilized to enhance website fingerprinting. In addition, the
ordering information is effective for WFP even under traffic
morphing. By calculating the Levenshtein distance between
different network traffic, their approach can perform WFP
over OpenSSH for 2,000 profiled websites. The identification
accuracy of the proposed scheme reaches 81%, which is 11%
better than the approach proposed by Liberatore et al. [202].

3) WFP in Tor era: To safeguard personal information and
avoid Internet censorship in an increasingly dangerous network
environment, many people began to use The Onion Router
(Tor), a free and open-source software for enabling anonymous
communication, to visit the Internet. Different from traditional
encrypted tunneling protocols, Tor reroutes Internet traffic
through a worldwide, volunteer overlay network, consisting of
more than six thousand relays [215]], for concealing a user’s
actual location and Internet usage from anyone conducting
network surveillance or TA.

Figure [] illustrates the operation model of Tor. To protect
user’s identity, each Tor user creates an encrypted virtual



tunnel to its destination through a chain of several volunteer
nodes—onion relays (ORs). According to their positions in
the virtual tunnel, ORs can be classified into entry OR, middle
OR, and exit OR. Each of the ORs only knows its predecessor
and its successor [216]. When forwarding network traffic, the
user’s network packets will be encrypted in multiple layers
and each of the ORs can only decrypt one layer of encryption.
Thus, Tor ensures that none of the ORs in the circuit knows the
user and its destination at the same time. Besides, to prevent
TA, the user data is encapsulated in chunks of a fixed size,
called cells, before transmission [[217]]. The WFP attacks above
are thus ineffective against Tor network, as they rely heavily
on packet-size-related features.

Indeed, it is almost impossible to find any useful knowledge
inside a Tor network. However, the virtual tunnel between the
Tor user and the entry OR does provide attackers with an
interface and makes WEFP possible (illustrated in Figure ).

In 2011, Panchenko et al. [204] are the first to demonstrate
that it is feasible to use WFP to identify web pages visited
by Tor users. They trained a SVM classifier with features
extracted from volume, time, and direction of network packets,
with a classification accuracy of 55% when testing with their
web page dataset. Panchenko et al. are also the first to evaluate
their WFP attack in a real-world setting. The result shows
that their approach is able to achieve a true positive rate
of up to 73% and a false positive rate of 0.05%. Based on
this work, a significant amount of improved WFP approaches
were proposed to use different algorithms and features (e.g.,
VNG++ [218], Hidden Markov Models [116], Levenshtein-
like distance [219], etc.) to tackle web page identification
in Tor. In 2014, Wang et al. [205] proposed a KNN WFP
classifier and applied it on a large feature set with weight
adjustment. Their approach achieved an accuracy of 91% in
a closed-world setting and a true positive rate of 85% for a
false positive rate of 0.6% when testing with more than 5,000
background pages in a real-world setting.

Nevertheless, these WFP approaches still have some ob-
vious flaws according to an evaluation made by Juarez et
al. [220]:

o Previous WFP attacks assume single-tab browsing behav-
ior of users. However, multi-tab browsing is widely used
in reality.

o WEFP attacks highly depend on the coverage of training
dataset, but existing datasets cannot include web page
traffic from all versions of Tor browser, user habits, or
user locations.

o Previous WFP attacks cannot detect dynamic or per-
sonalized web pages, as they traffic of these pages is
polytropic.

e Many countermeasures for WFP have been proposed
(which will be discussed later in Section [VII), making
many of the previous WFP attacks non-effective.

To further increase the success rate of WFP attacks and
defeat countermeasures, researchers began to collect more
comprehensive training datasets, use more complicated feature
sets, and apply more sophisticated classification algorithms for
WEFP.

Wang et al. [219] described how they collect the training
dataset in a much more thorough manner than previous works.
They gathered the data in different Tor settings and with
different defense approaches. Later, Panchenko et al. [221]]
collected the first Internet-scale WFP dataset to develop and
evaluate WFP comprehensively. Based on the dataset, they
proposed CUMUL, a web page classifier that has a higher
recognition rate and a smaller computational overhead than
previous approaches. They also demonstrated that although
CUMUL is more efficient and superior in terms of detection
accuracy, still, it cannot scale when applied in realistic settings.
As for WFP feature set, Cai et al. [222] systematically ana-
lyzed previous WFP approaches to understand which traffic
features convey the most information; Hayes et al. [206]
utilized the gini coefficient index to select a feature set and
designed a random decision forests classifier based upon them;
Wang et al. [223] evaluated the classification accuracy of each
feature category by using KNN.

In the recent five years, the development of WFP has been
focusing on conducting attacks in the presence of effective
countermeasures, with little encrypted data, or under com-
plicated circumstances [25], [210]], [211]. Many of recent
approaches also investigated the applicability of deep learning
techniques in WFP. Rimmer et al. [207] trained three classi-
fication model with Stacked Denoising Autoencoder (SDAE),
CNN, and Long Short-Term Memory (LSTM) respectively.
These deep learning models are capable of automatically
learning the best features to conduct WFP. The authors
further demonstrated that automatically-created features are
more effective especially in tackling constantly changing web
content. In 2018, Sirinam et al. [208] presents a very powerful
WFEFP attack—Deep Fingerprinting (DF). By employing a CNN
model with a sophisticated architecture design, the authors
claim that this attack can defeat many WFP countermeasures
(e.g., WTF-PAD [224] and Walkie-Talkie [223[]) and works
well in very complicated real-world scenarios (95% accuracy
for 20,000 URLs in a real-world setting). Sirinam et al. [209]]
further proposed an approach based on N-shot learning with
triplet networks in 2019, which can achieve decent efficacy
with relatively small training data. Besides these approaches,
Abe et al. [225] also applied SDAE in WFP; Bhat et al. [226]]
leveraged ResNets [227], a CNN architecture, to reach high
success rates in WFP; Oh et al. [228]] used unsupervised DNN
to generate low-dimensional features and trained different
machine learning classification models based upon them. In
2021, Wang et al. [229]] leveraged adversarial domain adaption
(a transfer learning technique) to achieve high WFP accuracy
with little encrypted data; Yin et al. [25] proposed a WFP at-
tack that is able to identify websites in multi-tab environments,
which means it can achieve usable accuracies regardless of
the number of simultaneously opened web pages; Hoang et
al. [230] found that even in the presence of domain name
encryption technologies or content delivery network (CDN),
WEFP based on IP addresses is still feasible. They exploited
the complex structure of most websites, which load resources
from several domains besides their primary one, and further
applied the generated domain fingerprints to conduct WFP at
large.



Observation Point
For Location
Inference

ANZA VISTA

User A

San Francisco

Grove St Fell St ® % {50]
Haight St

AIGHT % 2

e 1013 3

Fig. 10: Operation model for geographical location inference.

D. Location Inference

Location inference is a widely studied topic by computer
scientists. We have seen myriad works focusing on using social
network information [231f], [232]], smartphone accelerome-
ter [233]], image content [234], etc. to infer users’ locations.
Over the past decade, some researchers have begun utilizing
FGTA for location inference, which involves extracting and
analyzing location-related features from network traffic gen-
erated by relevant applications. The location we discuss here
can be either a geographical location or a contextual location,
the later one means the type of location the user is sending
packets from, such as an airport, a campus, or a residential
building. This subsection examines inference approaches for
these two types of locations.

1) Contextual location inference: The intuition behind con-
textual location inference with FGTA is straightforward—
users from different types of locations tend to generate differ-
ent traffic because they need to use different web applications
at different locations. Besides, different locations (e.g., cam-
pus, company, residential area) may process network traffic in
different manners. Contextual location inference using FGTA
aims to measure and analyze sets of network traffic and infer
where these sets of traffic are coming from.

Back in 2009, Trestian et al. [235]] conducted a detailed
study on applications accessed by users at different locations.
They demonstrated that users are more likely to show interest
in a particular class of applications than others at certain
locations, which is irrespective of the time of day. They
indicated that we can further use the traffic generated by these
applications to identify the type of locations (e.g., work versus
home). In 2014, Das et al. [[154]], [236] collected around 100
GBs of real-world network traffic from more 1700 users at dif-
ferent types of locations (e.g., cafeteria/restaurant, university
campus, airport/travel, etc.). By measuring and analyzing this
dataset, Das et al. selected sets of features for packet-level,
flow-level traffic and built a decision-tree-based classification
model to predict contextual location with an overall accuracy
of 87%. Later, a few similar works also demonstrated that
mobile traffic from different cellular towers [237]]-[239]] tends
to have different characteristics.

The drawback of contextual location inference is that it
only works on a group of network traffic sending from many
endpoints. It cannot infer a device’s contextual location by
only analyzing its own network traffic.

2) Geographical location inference: Purely using network
traffic to infer a user’s geographical location seems impossible.

20

However, in 2015, Ateniese et al. [27] demonstrated that it is
actually feasible under certain assumptions.

Nowadays, location-based applications (LBA), such as
Facebook, Yelp, Google Map, etc., are widely used. These
LBAs obtain user locations through location-based services
(LBS). LBS providers usually use a base transceiver station
(BTS) to locate a user and send real-time location information
to the user. Ateniese et al. proposed an approach (illustrated
in Figure [I0) that simply monitors the traffic between the
BTS and the LBS to identify user locations. They found that
different locations will trigger LBS packets of different sizes.
An adversary can potentially create a location knowledge base
of different locations’ packet sizes and their corresponding
timestamps to conduct geographical location inference. Still,
this approach has many limitations (e.g., low accuracy, difficult
to build the location knowledge base at large, etc.). This work
is more about demonstrating the feasibility of geographical
location inference with FGTA than launching a full-fledged,
ready-to-use approach.

E. Device/OS Identification

Traditional TA has long been employed to identify user
devices or the OSes running on them. For instance, in 2003,
Lippmann et al. [240] focused on analyzing TCP and IP
packet metadata to distinguish different OSes. However, these
traditional approaches typically provided identification at a
coarse granularity, such as determining the device type (e.g.,
smartphone, PC, server) or OS type (e.g., Windows, Linux,
Android). As the variety and complexity of user devices and
OSes have grown, the demand for more precise device and
OS identification has significantly increased. Achieving this
level of precision is challenging, as it often requires inferring
subtle application-layer details from network traffic to identify
specific device or OS models. To address these challenges,
researchers have turned to FGTA, exploring whether specific
traffic patterns can be correlated with particular OSes’ or de-
vices’ application behaviors. This approach not only identifies
broad device or OS types but also enables the pinpointing of
specific device models or OS versions, particularly for diverse
IoT and mobile devices. In this subsection, we introduce such
FGTA approaches that deal with device/OS identification.

1) OS identification: Chen et al. [241] perform OS iden-
tification and detection of NAT and tethering (i.e., multiple
devices sharing the Internet connection of a mobile device,
which can lead to multiple OSes sharing a single IP address)
by inspecting TCP/IP headers of packet traffic. They leverage
a probability-based method by applying the Naive Bayes
classifier to effectively combine multiple features (e.g., TTL
value, IP ID monotonicity, TCP timestamp, clock frequency,
etc.), thereby fingerprinting and recognizing different OSes in
different environments. LaStovicka et al. [242] also proposed
an OS identification method by constructing a decision tree
with the TLS handshake, HTTP headers, and TCP/IP features.
However, these approaches cannot distinguish between minor
versions of the same OS. To tackle this problem, Ruffing et
al. [243] identify different versions of smartphone OSes by
using the frequency spectrum of packet timing from encrypted



traffic. By identification through correlations of the feature-
extracted spectra, the authors demonstrate that even a network
traffic input of 30 seconds can be enough for high-accuracy
identification results.

2) IoT device identification: Compared with OS identifica-
tion, IoT device identification can be more challenging due to
the complexity of their network environments and the devices’
wide variety. Lopez-Martin et al. [244] extract a time-series
feature vectors from network traffic, where each element of the
time-series vector contains the features of a packet in the flow.
They then proposed a classifier that is based on both a RNN
model and a CNN model to separate heterogeneous IoT traffic
using the features. Meidan et al. [245] collected and labeled
network traffic from nine distinct IoT devices (e.g., baby
monitor, motion sensor, printer, security camera, etc.), PCs,
and smartphones. They then utilized a multi-stage machine-
learning-based classifier to classify traffic of IoT devices in
two phases. In the first stage, the classifier can distinguish
traffic between IoT and non-IoT devices. In the second stage,
the classifier can further identify traffic from different IoT
devices. The authors demonstrate that their approach is able
to classify IoT traffic with an accuracy of 99.281%.

However, these two researches do not consider complicated
network environments (e.g., smart homes, enterprises, and
cities) of IoT devices. Sivanathan et al. [246] addressed this
challenge by developing a robust framework for IoT device
traffic classification with a multi-stage machine-learning-based
algorithm. The authors instrumented a smart environment with
28 different IoT devices that consist of spanning cameras,
lights, plugs, motion sensors, appliances, and health-monitors.
They then collected and synthesized network traffic traces
from this infrastructure for a period of six months. By extract-
ing statistical features such as activity cycles, port numbers,
signaling patterns, and cipher suites from the traffic and using
Naive Bayes and random forest as the identification models,
they are able to classify heterogeneous IoT devices with an
accuracy over 99%. Yao et al. [247] further proposed an end-
to-end IoT traffic classification method that eliminates the
multi-stage classification for high accuracy and efficiency. It
relies on a deep-learning-aided capsule network to construct
an efficient classification mechanism that integrates feature
extraction, feature selection, and classification model. One
drawback of these approaches is that their evaluations are all
based on closed-world datasets, which may not be able to
precisely reflect their true efficacy in the real world.

F. Application Identification

Using the network traffic from a device to identify the ap-
plications that are running on the device, even in the presence
of traffic encryption, is one of the most classic use cases of
TA. Decades ago, people have investigated using traditional
TA approaches to coarsely classify traffic from different ap-
plications or application types. Before 2000, many researchers
simply used traffic ports to identify some popular applications
that have well-established ports (e.g., port 443 for HTTPS, port
110 for POP3). Port-based approaches fail for most emerging
applications such as gaming, streaming, and messaging [248§]].

21

Later, Karagiannis et al. proposed BLINC [249], which not
only looks at port-based features, but also inspects the host’s
social behavior and its community behavior to determine the
applications. Bernaille et al. [250] observe the sizes of the
first few packets of an SSL connection to identify the web
application, which can achieve an accuracy of more than 85%.
There are also many machine-learning-based traditional TA
approaches [[15], [251]]-[253]] that classify application traffic
according to protocol-level traffic patterns.

However, application identification using traditional TA
struggles to adapt to the modern network environment and
distinguish between applications with similar purposes due to
the following reasons:

 Traditional TA can primarily identify high-level protocols
(e.g., HTTP, HTTPS, SMTP, POP3) and a limited set of
commonly used applications with distinct traffic patterns
(e.g., MySQL, BitTorrent, MSN). However, many modern
applications, such as payment apps, share similar oper-
ational protocols and appear indistinguishable based on
transport-layer features alone.

o Traditional TA lacks application-layer awareness, which
is crucial for large-scale and fine-grained application
identification.

Today’s network environments are far more complex, and
application ecosystems have become increasingly diverse and
intricate. To address these challenges, researchers and devel-
opers have begun utilizing FGTA to analyze distinctions at
or above the application layer, enabling precise identification
of specific applications amidst diverse traffic from various
devices. In this subsection, we collectively introduce FGTA
approaches that serve the purpose of application identification
(Table |LX| shows an overview).

1) Application identification for general-purpose devices:
General-purpose devices, such as personal computers and
servers, support the operation of countless web applications.
Recently, FGTA-based application identification for general-
purpose devices focuses on identifying more specific applica-
tions in more complicated network environments.

Chen et al. proposed Seq2img [254], an application traffic
classification framework based on an online CNN model.
Seq2img employs a data fusion method based on Reproducing
Kernel Hilbert Space (RKHS) to convert flow sequences into
images, which can fully capture the static and dynamic behav-
iors of different applications. Then, Seq2img utilizes a CNN
model to recognize network traffic of popular applications,
such as Facebook, Instagram, Wechat, etc.

Rezaei et al. [111] investigated using a few labeled, sampled
packet-level datasets to train a comprehensive application
identification model. They first pre-train a CNN-based model
on a large unlabeled dataset, where the input is the time series
features of a few sampled packets. Then, the learned weights
are transferred to a new CNN model that is re-trained on
a small labeled dataset. They demonstrated that this semi-
supervised approach achieves almost the same accuracy as
a fully-supervised method with a large labeled dataset. The
proposed approach is able to identify applications like Google
Drive, Google Doc, Google Search, Google Music, etc.



22

TABLE IX: Comparisons of selected FGTA approaches for application identification (O: not supported; ©: partially supported;

@®: supported).

Category Approach Year Target Application Traffic Feature Method Oiiitlf;: d R:zla'i; lsli];e l:je‘zﬁg;l:
App Identification | Chen et al. 2017 Instagram, Skype, Images converted from flow ~ RKHS-based data fusion High © O
for [254] Facebook, Wechat,  sequences and CNN
General-Purpose Youtube, etc.
Devices Rezaei et al. 2018  Google Drive, Youtube, Time series features ex-  Semi-supervised CNN High © @)
[111] Google  Docs,  Google tracted from sampled pack-
Search, Google Music, etc. ets
Lotfollahi et al. 2020  Vimeo, YouTube, Normalized features CNN and SAE High () @)
[120] VoipBuster, Spotify, Netflix, —extracted from  packet
Hangouts, Facebook, etc. headers
(with or without VPN)
Zhao et al. 2024 Google Home, email, Protocol-agnostic per-  Random convolution kernel High @ (few seconds) O
[255] streaming, P2P, Tor, etc. (in  packet feature sequences transformations and meta-
complicated environments) learning
Wang et al. 2015 Snapchat, Tencent QQ, Statistical features from Random forest Low © (~300 secs) ©
[256] Mint, Tinder, YouTube, etc.  packets (e.g., STD time,
Mobile App average size, STD size,
Identification etc.)
Alan et al. 2016 1595 applications on four  Features from TCP/IP head- Jaccard’s coefficient and Medium @ (~2-16 secs) ©
[109] different devices ers (e.g., packet size, timing, ~ Naive Bayes
direction)
Taylor et al. 2016 110 most popular applica- Two sets of features from SVM and random forest Medium @ (2 secs-2 hours) ©
1257} tions in Google Play Store flow-level traffic-flow vec-
tor and statistical features
Aceto et al. 2018 49 mobile applications (i.e.,  Statistical features (e.g., A multi-classification (viz. Medium @ (~5 secs) O
[258] QQ, SayHi, eBay, 6Rooms,  packet length, percentiles, fusion) model consists of
NetTalk, PureVPN, etc.) deviation, etc.) for  Naive Bayes, random forest,
incoming, outgoing, and  SVM, and decision tree
bidirectional packets
Aceto et al. 2019 Facebook, Facebook Mes-  Automatically-extracted Multiple machine learning High @ (few seconds) O
[119] senger, and other 49 apps on  features using neural  models (e.g., CNN, LSTM,
both Android and IOS networks MLP, etc.)
Van et al. [20] 2020 More than IM apps from Packet and flow-level fea- A semi-supervised finger- High © (~300 secs) O
three datasets tures selected by adjusted  printing with destination-
mutual information based clustering, browser
isolation, and pattern recog-
nition
Pham et al. 2021 101 popular Android apps 63 features extracted from  Deep graph convolution High © (<5 mins) ©
[259] packets and flows, including  neural network
aggregate, statistical, tem-
poral, categorical features.
Decentralized App Shen et al 2019  Aragon, Bancor, Canwork, 57 features of packet KNN, SVM, and random Medium © (few minutes) ©
Identification [104] Chainy, Cryptopepes,  lengths, 72 features of  forest
Eth_town, Etheremon, etc. bursts, and 54 features of
time series, fused by kernel
functions
Aiolli et al. 2019  BTC.com. BitPay, Bread, Vectors of statistical ~SVM and random forest Medium [)) ©
260} Wirex, Copay, etc. features about the packet
length from traffic flow
Shen et al. 2021  Closed-World setting:  Traffic Interaction Graph, Graph neural  network High © ©
[261] the top 40 DApps on which is capable of re- (GNN) with MLP
Ethereum; Open-World  serving information such as
setting: randomly selected  packet direction, length, or-
1,260 DApps on Ethereum.  dering, and bursts.

In 2020, Lotfollahi et al. [120] proposed an application
identification method that can work in both VPN and non-
VPN networks. After extracting features from packet headers,
they used both CNN and stacked autoencoder (SAE) to train
the classification models. Evaluation results show that this
approach can achieve a recall score of 0.98 in application
identification tasks.

2) Mobile application identification: With the raising of
mobile network, mobile application identification becomes
an emerging research topic in recent years. Unlike general-
purpose devices, mobile devices are less regularized in port
usage. In addition, a wide variety of mobile applications may
utilize some common libraries in communication, generating
similar network traffic patterns. Thus, mobile application iden-
tification can be more challenging.

Wang et al. [256] use random forest algorithm to analyze
packet-level traffic in wireless networks. Their approach is able
to detect the usage of 13 selected popular mobile applications
on IOS platform, such as Snapchat, Tencent QQ, Mint, Tinder,

YouTube, etc., with an accuracy of more than 87.23%. They
demonstrate that by using the mobile applications the privacy
of the user is more at risk compared to using online services
through browsers on mobile devices.

Many researchers also studied application identification on
Android platform. Inspired by some WFP approaches (Sec-
tion[V=C)), Alan et al. [109] use Jaccard’s coefficient and Naive
Bayes to analyze features (e.g., packet size, timing, direction)
from TCP/IP headers to identify 1595 applications on four
different devices. Taylor et al. [257] proposed AppScanner,
a framework that can automatically fingerprint and identify
Android applications from their encrypted network traffic.
The authors extracted two sets of features (i.e., flow vector
and statistical features) from flow-level network traffic and
implemented this approach using both SVM and random
forest algorithms. The evaluations show that AppScanner can
identify the 110 most popular applications in Google Play
Store with more than 99% accuracy. In the next year, Taylor et
al. further extended AppScanner in a follow-up research [262].



They investigated how application fingerprints change over
time, across different devices, and across different application
versions.

Recently, many similar works (e.g., [20], [119], [258],
[263]) have been proposed to enhance the efficacy, efficiency,
and coverage of mobile application identifications.

3) Application identification on other platforms: A few
researches have been focusing on identifying decentralized
applications on blockchain systems. Shen et al. [[104] proposed
an encrypted traffic classification of decentralized applications
(e.g., Cryptopepes, Matchpool, Lordless, etc.) on Ethereum
with features like packet lengths, bursts, and time series. Aiolli
et al. [260] focused on identifying user activities on Bitcoin
wallet applications (e.g., BTC.com, Bitcoin Wallet, Coinbase,
etc.). The authors used SVM and random forest models to
conduct the identification.

We also studied the application identification approaches for
IoT devices. However, as each IoT device is usually bundled
with an IoT application, the identification of IoT application
is equal to the identification of IoT devices in most cases.
Therefore, we introduce these approaches in Section (IoT
device identification).

G. Application Usage Inference

Application usage inference aims to analyze encrypted
network traffic to identify certain application events, infer user
behaviors, and measure specific service usage. It is one of
the most challenging FGTA tasks, as it not only classifies the
network traffic that is associated with different applications,
device, or web pages, but also leverages the traffic patterns to
recognize the application-layer activities that users conducted
with the applications, devices, or web pages. Therefore, many
application usage inference approaches may take extra steps
(e.g., clustering, pre-filtering, etc.) to narrow down the scope
before the final traffic classification. Besides, they need to
perform traffic segmentation to locate different traffic bursts,
where each burst represents a group of adjacent packets that
support an application event.

In this subsection, we introduce representative application
usage inference approaches, demonstrating their applicable
scenarios and methodologies (Table |X| shows a comparison).

1) Messager/Online social network usage inference: User
activities on messaging or OSN applications are very private
and sensitive. However, although being encrypted, a third party
can still infer the rough messaging/OSN activities that users
have performed only through content-agnostic network traffic
data.

Back in 2009, Schneider et al. [270] investigated OSN
usages from the perspective of network traffic for four dif-
ferent platforms—Facebook, LinkedIn, Hi5, and StudiVZ.
The authors studied how users actually interact with OSNs
by extracting clickstreams from passively monitored network
traffic. They found that different OSN operations (e.g., login,
open friend list, logout, select profile, etc.) will trigger statis-
tically different network traffic. This research later led many
researchers to dig deeper into using the traffic differences to
classify different user actions on OSNs. Coull et al. [264]]

23

analyzed the network traffic of encrypted messaging services
such as Apple iMessage. The authors demonstrated that an
eavesdropper can learn information about user actions (e.g.,
control, read, start, stop, image, and text), the language of
messages, and even the length of those messages with greater
than 96% accuracy simply by observing the sizes of encrypted
packets. They used three algorithms to perform the inference—
linear regression, Naive Bayes, and rule lookup table. How-
ever, they only evaluated their approach in closed-world en-
vironments with a small dataset. Fu et al. [117]] extended the
inference to more messaging applications (i.e., Wechat and
WhatsApp) and more activities (e.g., stream video call, news
feed, location sharing, etc.). By segmenting Internet traffic into
sessions with a number of dialogs, extracting discriminative
features from the perspectives of packet length and time delay,
and leveraging multiple machine learning models to conduct
the classification, the proposed approach can achieve 96% and
97% accuracy in WeChat and WhatsApp respectively. Liu
et al. [26] further extended the inference coverage to more
OSN applications (e.g., Facebook, Wechat, and WhatsApp)
and evaluated their approach in a real-world environment
with real-time traffic data streaming. Real-world evaluation
is essential to reveal the true performance and efficacy of
application usage approaches, but many approaches were only
evaluated through closed-world off-line cases, leaving the
inference throughput and abilities to handle noise mysteries.
Feng et al. [[103]], [271] developed and evaluated their OSN
usage inference approach in a larger network environment—a
campus network. Although their approach is mainly built for
social bot detection, it can identify some commonly seen user
activities (i.e., posting, reading, liking, etc.) on Twitter and
Facebook.

2) Streaming service usage inference: There are a few
works focusing on leveraging FGTA to extract behavioral
information from network traffic of streaming service (e.g.,
VoIP, audio streaming, and video streaming). Researchers have
demonstrated the feasibility of revealing voice information
from encrypted VoIP conversations or identifying encrypted
video streams [6].

Wright et al. [265] demonstrated that when the audio is
encoded using variable bit rate codecs, the lengths of encrypted
VoIP packets can be used to identify the phrases spoken within
a call. By leveraging a HMM, the authors indicated that an
eavesdropper can identify phrases from a standard speech
corpus within encrypted calls with an average accuracy of
50%, and with accuracy greater than 90% for some phrases.
Schuster et al. [22] demonstrated that many video streams are
uniquely characterized by their burst patterns, and classifiers
based on CNN models can accurately identify these patterns
given very coarse network measurements. The authors only ex-
tracted features from flow attributes, such as inbound/outbound
bytes per second, inbound/outbound packet per second, and
inbound/outbound average packet length. They have examined
this approach on Netflix, YouTube, Amazon, and Vimeo.

3) General-purpose application usage inference: The ap-
proaches discussed in this subsection aim at inferring all types
of application-layer events rather than only recognizing certain
event categories.



24

TABLE X: Comparisons of selected application usage inference approaches (O: not supported; ©: partially supported; @:

supported).
Category ‘ Approach Year Analysis Object Feature Method Osv};itl::; d R::;; ls?;e ll;?:l-::ril::
Coull et al. [264] 2014  Apple iMessage:  Payload length and the Linear regression, Naive Medium @ (few seconds) O
Messager/OSN language, co_mrol, read, message length; a binary  Bayes, and rule lookup ta-
start, stop, image, text, feature vector of packet ble
etc. length and direction pairs
Fu et al. [117] 2016  Wechat and WhatsApp:  Discriminative  features  Traffic segmentation with Medium © (few minutes) ©
stream video call, news from the perspectives of hierarchical clustering and
feed, location sharing, etc.  packet length and time thresholdingheuristics;
delay HMM-based classifier.
Liu et al. [26 2017  Facebook, Wechat, and A selected feature set ex- A recursive time continu- Medium © [
WhatsApp: short video, tracted from traffic packet ity constrained K-means
video call, text, picture, sequences by a Maximiz-  clustering algorithm for
etc. ing Inner activity similar-  traffic flow segmentation
ity and Minimizing Dif- and a random forest clas-
ferent activity similarity sifier for segmented traffic
measurements. classification.
Feng et al. [103] 2021  Facebook and Twitter: Images converted from  Clustering-based traffic High © (~1-5 mins) [ ]
post, chat, read, etc. NetFlow records segmentation; CNN
Streaming Service Wright et al. [265] 2008 ]I(denlify Fhe phrases spo-  The lengths of encrypted HMM Medium [ ] O
en within a call from a  VoIP packets
standard speech corpus.
Schuster et al. |22 2017  Identify the videos Time series data of the Time-based burst; CNN High © (few minutes) O
streamed by YouTube, following flow attributes:
Netflix, Amazon, and down/up/all bytes per
Vimeo. second, down/up/all
packet per second, and
down/up/all average
packet length.
Conti et al. [266] 2015  User activities in Gmail, Features from TCP/IP  Dynamic time warping, Medium @ (~5 secs) O
General-Purpose Facebook, Twitter, Tum-  packet fields (e.g., IP  random forest, and a hi-
blr, Dropbox, etc. address, port number, erarchical clustering algo-
packet size, direction, and  rithm called agglomera-
timing) tive
Saltaformaggio et al. [267 2016  User activities on Android  Features extracted from IP A K-means clustering Medium @ (0.25-1.5 secs) ©
and IOS platforms packet headers, divided by model and an SVM
behavior measurements (a  model
small time window)
Papadogiannaki et al. [19] 2018  User  activities (e.g., Customizable A pattern language Low @ (few seconds) [ ]
voice call, video call, to identify application
messaging, etc.) in events, rule mining
popular Over-The-Top
mobile applications (e.g.,
‘WhatsApp, Skype, Viber,
etc.)
Yan et al. [268] 2018 Red packet transactions Overall statistics, packet Threshold-based  traffic Medium @ (~6 secs) O
Others and fund transfers in  length, number of TCP  segmentation, random
Wechat handshakes, inbound and  forest
outbound statistics
Wang et al. [269] 2019  Classify specific actions  Overall statistics of the  Threshold-based  traffic Medium © (~1 min) O
(e.g., transfer payment, packet length, range statis-  segmentation, hierarchical
transfer receipt, QR code tics of the packet length, identification with random
payment, etc.) on the mo-  flow statistics, incoming  forest, AdaBoost, GBDT,
bile payment application,  and outgoing statistics. and XGBoost
and then detect the de-
tailed steps (e.g., click the
button, receive the fund,
open the red packet, etc.)
within the action
Jiang et al. [114] 2019  Application usage  Statistic features of flow  Threshold-based  traffic Medium © O
information (e.g., reading  burst segmentation, logistic
documents, surfing webs, regression, SVM, GBDT,
editing documents, etc.) random forest
on remote desktop
Wang et al. [118] 2020  Identify DApp (e.g., Selected DApps features, Random forest, decision Low @ (few seconds) O

Superrare, Editional, John
Orion Young, etc.) user
behaviors  (e.g., open
DApps, open market,
view detail, etc.)

behavior-sensitive
features, and improved
inter-arrival time series

tree, and GBDT

Conti et al. [266]], [272]] analyzed encrypted mobile traffic
to infer user actions on Android devices, such as email
exchange, posting a photo online, publishing a tweet, etc.
They extracted features from TCP/IP packet fields (e.g., IP
address, port number, packet size, direction, and timing) and
use a random forest to perform the inference. They trained
and evaluated their approach using a dataset that is associated
with several Android applications with diverse functionalities,
such as Gmail, Facebook, Twitter, Tumblr and Dropbox.
The evaluation results demonstrate that it can achieve more
than 95% of accuracy and precision for most of the actions

within the dataset. However,
ated in real-world environments. In 2016, Saltaformaggio et
al. [267] proposed NetScope, a framework that can perform
robust inferences of user activities for both Android and
IOS devices by only inspecting IP packet headers. NetScope
leverages a K-means model and an SVM model to learn
and detect network traffic generated by different application
behaviors. By testing the approach in a lab environment, the
authors demonstrated that despite the widespread use of fully
encrypted communication, NetScope can distinguish subtle
traffic behavioral differences between user activities (e.g.,

this approach was not evalu-



/ All the websites around the world \

Monitored
(several thousand) O

Unmonitored
(over 1 billion)

facebook.com
twitter.com

ccsp.uoregon.edu
uoregon.edu

A

Fig. 11: Training data coverage for WFP.

Instagram browse versus post, Yelp browse versus search,
Facebook feed versus post, etc.). Papadogiannaki et al. [[19]]
further pushed application usage inference to a much larger
scale. They proposed OTTer, a highly scalable engine that
identifies fine-grained user actions (e.g., voice call, video call,
messaging, etc.) in popular Over-The-Top mobile applications,
such as WhatsApp, Skype, Viber, and Facebook Messenger
with encrypted network traffic connections. By evaluating
OTTer is a real-world test bed, the authors demonstrated that
it can operate at traffic loads with an average of 109 Gbps.

4) Others: There are a few application usage inference
approaches tackling different problems. For instance, Yan et
al. [268] segmented the network traffic into several bursts
and trained a random forest model to identify red packet
transactions and fund transfers in Wechat; Wang et al. [269]]
proposed an approach to identify the mobile payment appli-
cations from traffic data, then classify specific actions (e.g.,
transfer payment, transfer receipt, QR code payment, etc.)
on the mobile payment application, and finally, detect the
detailed steps (e.g., click the button, receive the fund, open
the red packet, etc.) within the action; Jiang et al. [114]]
studied encrypted remote desktop traffic and found that an
eavesdropper can reveal application usage information (e.g.,
reading documents, surfing webs, editing documents, etc.) due
to side-channel privacy leakage; Wang et al. [118] aimed
at identifying DApp (e.g., Superrare, Editional, John Orion
Young, etc.) user behaviors (e.g., open DApps, open market,
view detail, etc.) on Ethereum by using random forest, decision
tree, and gradient boosting decision tree (GBDT).

VI. LIMITATIONS

While FGTA approaches appear potent in deducing diverse
high-level, nuanced behaviors, it is important to acknowledge
their limitations. In practice, many FGTA approaches often
fall short of their theoretical promises, with their effectiveness
contingent on a multitude of conditions. This section is ded-
icated to a thorough discussion of the inherent limitations of
FGTA.

A. Coverage of Training Data

As most FGTA approaches are based on machine learning
algorithms or prior knowledge about specific traffic, the effi-
cacy of such approaches is highly dependent on the coverage
of training datasets or rules learned beforehand. Unfortunately,
existing datasets or rules can only represent a small fraction

25

of real-world scenarios. It is actually impossible to collect
a dataset to cover all possible scenarios. Take the WFP
attack discussed in Section as an example, as shown in
Figure[T1] state-of-the-art datasets from public repositories can
only cover less than 0.001% of all websites around the world.
FGTA approaches built upon such datasets then have little
effect in practice. Furthermore, network traffic of websites,
applications, or OSes is dynamic. For instance, the layouts
of Facebook websites have been changed for several times
since its birth, and so has the network traffic associated
with Facebook. Therefore, a FGTA approach that worked
before may no longer be effective, if we do not update its
classification model with the latest training datasets.

B. Uncertainties in Real-world Environments

As can be seen from our previous discussion (Section
and Section [V), many approaches were only evaluated in
closed-world environments, which means they were only
tested with a small amount of labeled traffic, with a little
noise or without noise. Such closed-world evaluations cannot
objectively reveal the efficacy of proposed approaches in the
real world. Network traffic in real-world environments can be
very quite different from traffic in laboratory environments:

« Real-world network configurations can be complicated,
with traffic going through network address translation
(NAT)s, Wi-Fi connections, or special middle boxes. All
these factors can significantly change the original traffic
characteristics.

o Edge users have different habits of using web applica-
tions. Some may send traffic with VPN, Shadowsocks,
or Tor. Although many FGTA approaches claim to be
effective even with traffic tunneling techniques, many
researchers found their efficacy will actually be reduced
under such circumstances [273]].

o The ratio of different network traffic in the real world is
different from that in the laboratory environment, making
accuracies obtained from closed-world evaluations hardly
representative.

Therefore, real-world evaluations or large-scale pilot studies
are essential for developing and polishing a usable FGTA
approach.

C. False Alarms

FGTA aims to identify specific types of user activities from
network traffic. Usually, the analysis object only occupies a
very tiny proportion of the whole traffic (e.g., less than 0.01%).
Thus, a very small false positive rate can be amplified in
deployment when facing massive traffic, making the proposed
FGTA approach hardly usable. For example, if a packet-level
FGTA approach has a false positive rate of 0.1%, then it will
generate around 100 false alarms for every 100,000 negative
packets. Even for a small ISP, its traffic volume can easily
reach 100,000 packets in less than 1 second. Therefore, the
FGTA approach will generate around 100 false alarms every
second, which is unacceptable for most network administra-
tors. In real-world scenarios, an excess of false alarms can



either cause too many collateral damages or force network
administrators to ignore all alarms, which will make the FGTA
approach useless.

D. Integrity of Network Traffic

As discussed in Section guaranteeing the integrity of
real-world network traffic data presents significant challenges.
Various factors contribute to this uncertainty. For instance, traf-
fic routing often exhibits asymmetry, resulting in the collected
data representing predominantly one-directional information.
Furthermore, traffic data is frequently sampled, driven by
performance optimization or storage constraints. Additionally,
packet loss, which can occur due to network congestion or
other factors, further compromises the reliability of the traffic
data. This compromised data integrity inevitably diminishes
the effectiveness of current FGTA methodologies. In many
cases, it can render them ineffective, as they are typically
trained and tested on the assumption of complete and unaltered
traffic data. Such a limitation is especially severe for FGTA
approaches that are based on deep learning algorithms as they
are very sensitive to the integrity of training data.

E. Traffic Obfuscation

The previous subsection explored the impact of network
traffic data integrity and correctness on the efficacy of FGTA
approaches. This vulnerability can be exploited by adversaries
to camouflage their network activities and circumvent FGTA
screening. Adversaries might employ various obfuscation tech-
niques, such as introducing noise (e.g., dummy packets) into
their traffic, deliberately delaying packets, or manipulating
packet aggregation. These tactics are not only straightforward
for adversaries to implement, but they also tend to be highly
effective in evading detection [205], [223]], [274].

We delve into these traffic obfuscation strategies in greater
detail in Section [VIIl offering a comprehensive analysis of
their implementation and effectiveness.

F. Performance Overhead

In our exploration of various FGTA approaches, particu-
larly those leveraging advanced techniques such as machine
learning and high-dimensional clustering, we have identified
significant computational overhead as a primary limitation.
This overhead arises from the complexity and computational
demands of these methods, which can be attributed to the
following factors:

o The traffic capture engine introduces considerable over-
head to the network infrastructure, particularly in systems
lacking hardware acceleration support.

« Sophisticated analysis techniques, such as deep learning
algorithms, impose substantial computational demands.

o The memory and storage requirements for storing, buffer-
ing, and processing large volumes of network traffic data
are often significant.

To mitigate these performance overheads, the following opti-
mization directions can be employed:

26

o Upgrading the network infrastructure to support high-
speed traffic capture and processing. Employing hardware
acceleration, such as GPUs, FPGAs, or programmable
switches, to enhance the computational efficiency of the
analysis engine.

o Optimizing the analysis algorithms to reduce computa-
tional complexity and memory requirements.

o Separating the traffic collection and analysis processes to
distribute the computational load. For example, network
service providers can outsource the traffic analysis to
cloud-based services, such as AWS or Kentik, to deploy
FGTA solutions without upgrading their infrastructure.

Additionally, the nature of the input traffic data, in terms of
granularity or volume, plays a crucial role in the performance
of FGTA approaches. For instance, analyzing packet-level
input typically demands more computational resources com-
pared to processing flow-level data, given the same throughput.
This is because packet-level analysis entails a more detailed
examination of each data packet. While adopting flow-level
input for analysis can mitigate some of this computational bur-
den, it comes with trade-offs. Primarily, it tends to diminish the
accuracy of FGTA methodologies. Moreover, certain FGTA
tasks are infeasible at the flow level due to the less granular
nature of the data. This reduction in granularity potentially
limits the scope of analysis and the depth of insights that
can be derived. Therefore, the choice of input data granularity
is a trade-off between computational overhead and analysis
granularity.

G. Scalability

As network traffic continues to grow exponentially, scala-
bility emerges as a significant challenge for FGTA method-
ologies. The task of analyzing and processing such immense
volumes of data can overburden computational resources,
thereby impeding the ability to conduct real-time analysis. This
challenge is particularly acute for FGTA strategies reliant on
deep learning algorithms, known for their intensive computa-
tional demands. Consequently, deploying FGTA at an internet-
wide scale remains unfeasible. Presently, only organizations
with substantial computational capabilities and budgets can
afford to implement FGTA for analyzing segments of their
network traffic, serving specific objectives. Looking ahead, it’s
an unresolved question whether the scalability of FGTA will
be able to keep pace with the relentless growth of network
traffic.

VII. COUNTERMEASURES

The growing capabilities of FGTA have brought about
significant advancements in network monitoring, intrusion
detection, and user behavior analysis. However, these same
capabilities pose severe privacy risks if misused. Attackers
can exploit FGTA to infer sensitive user activities, preferences,
and even identities, undermining both individual privacy and
organizational security. The increasing prevalence of encrypted
traffic further exacerbates these concerns, as FGTA techniques
can bypass traditional privacy-preserving measures by ana-
lyzing metadata and traffic patterns. Given these risks, it is



27

TABLE XI: Comparisons of selected well-known FGTA countermeasures (None: 0; Low: 0-30%; Medium: 30%-60%; High:

more than 60%).

Category \ Approach Usage Scenarios Time Overhead Bandwidth Overhead Additional Requirements
Pinheiro et al. [275] All web applications None Medium Middlebox and SDN controller
FRONT and GLUE [276] Tor None Low None
Traffic morphing [277] All web applications None Low Knowledge about other traffic classes
Network- Walkie-Talkie [223]] Web browsing Medium Low Knowledge about some web traffic
Layer WTE-PAD [224] Web browsing None Low None
Liberatore et al. [202] All web applications None High None
BuFLO [218] Web browsing High High Network Transfer with fixed rates
TrafficSliver [216] . .
(network-layer Thode) Tor None None Multiple entry ORs in Tor network
Application- HTTPOS [278] Web browsing None Low None
laver | TraffieSliver 216] T N N Multiple entry ORs in Tor network
N (L7 mode) or one one ultiple entry ORs in Tor networl
Server-side: Server-side:
Medium; Medium;
LLaMA and ALPaCA [279] Tor Client-side: Client-side: None
Low Low

imperative to explore and implement effective countermea-
sures to prevent the misuse of FGTA. This section offers an
in-depth analysis of such countermeasures, evaluating their
effectiveness and exploring diverse application scenarios.

In Section we delved into the limitations of FGTA
approaches. It became evident that the integrity and accuracy
of network traffic data play crucial roles in determining the
effectiveness of FGTA strategies. Based on this idea, internet
users, whether with legitimate or illegitimate intentions, can
employ a variety of data modification tactics to evade the
screening by FGTA systems. Illegitimate users might use these
methods to remain undetected while engaging in malicious
activities, whereas legitimate users might adopt them to disrupt
FGTA and safeguard their privacy.

Naive countermeasures send individual or aggregated traf-
fic through encrypted channels to escape the inferences of
traditional TA approaches, such as VPN, Shadowsocks, and
Tor. However, these approaches are proven to be vulnerable
to many FGTA approaches [280]-[283]. Therefore, people
began to modify the features of traffic flows to perturb FGTA
approaches’ classification models. Such perturbations can be
conducted from either network layer or application layer [216].
Table [XI| shows a comparison of some well-known counter-
measure approaches, where the time overhead and bandwidth
overhead are assessed based on the results reported in the
original papers as well as our analysis of the methodological
details of these approaches.

A. Network-layer Countermeasures

Network-layer FGTA countermeasures directly modifying
the network traffic by adding padding packets, changing
packet bytes, or delaying existing packets, thereby obfuscating
specific features that FGTA approaches rely on, making the
current traffic look like other activities’, or regularizing the
traffic patterns of different applications [[276]]. Such approaches
usually come with some side effects. They might increase the
overheads of the network system, including time overhead,
bandwidth overhead, and potentially computational overhead.

Among all the network-layer countermeasures, traffic obfus-
cation is the most classic approach. Back in 2006, Liberatore
et al. [202] leveraged per-packet padding (i.e., increasing
the bytes of packets) in an attempt to defeat host profiling
system. They found that per-packet padding is reasonably
effective, which can lower predictive accuracy to less than
8% with a cost of increasing traffic volume by 145%. How-
ever, per-packet padding cannot defend against many WFP
attacks [200], [218] because this approach still preserves some
key traffic features that can help classify the traffic. To fix the
drawbacks, WTF-PAD [224] extends per-packet padding to
link-based padding to modify more traffic features. It detects
large time gaps between packets and covers them by adding
dummy packets. Further, to obscure traffic bursts, it also adds
delays between packets to make them statistically different.
Due to its low computational overhead and time overhead,
WFP-PAD has been used in many real-world FGTA defense
systems [284]], [285]. Still, WTF-PAD leaks a portion of
information in transmission and can be broken by some FGTA
approaches [208]], [286]. Gong et al. [276] proposed FRONT
and GLUE. FRONT focuses on obfuscating the trace front
with dummy packets. It also randomizes the number and dis-
tribution of dummy packets to impede the attacker’s inferring
process. GLUE adds dummy packets between separate traces
so that they appear to the attacker as a long consecutive trace,
making the attacker unable to find the start or end points.

Compared with traffic obfuscation that freely modifies traf-
fic features, traffic confusion mimic other groups of traffic
to let FGTA approaches generate wrong outputs, which is
sometimes more effective, especially when defending against
WEFP attacks. Wright et al. proposed traffic morphing [277].
It can thwart statistical TA approaches by morphing one
class of traffic to look like another class using convex op-
timizations. Although it cannot defend against some types
of FGTA approaches [206], [218], this approach inspired
many subsequent countermeasure approaches. For example,
Glove [274] first leverages a clustering algorithm to group
web pages with similar traffic, and then inserts only a small
amount of dummy traffic to hide the web page traffic in a close



group; Supersequence [205] also clusters network traffic traces
of different web pages and extracts the shortest common su-
persequence to cover current web traffic; Walkie-Talkie [223]]
modifies the browser to communicate in half-duplex mode
(buffer traffic and send in bursts) rather than the usual full-
duplex mode (immediately send available data). By combining
with dummy packets, Walkie-Talkie can modify the traffic of
monitored sensitive pages and benign non-sensitive pages, so
that each page’s packet sequences are exactly the same (each
packet has the same timing, length, direction and sequence
number). However, a traffic-confusion-based approach requires
a priori knowledge about popular web pages’ network traffic.
It cannot tackle traffic of dynamic content or unpredictable
activities. Moreover, such approaches can lead to noticeable
computational overhead.

Another obfuscation direction is to regularize the network
traffic, making different groups of traffic have relatively uni-
form patterns. For instance, Buffered Fixed-Length Obfusca-
tion (BuFLO) [218]] obfuscates page transmissions by sending
packets of a fixed size at a fixed interval and using dummy
packets to both fill in and potentially extend the transmission.
Thus, the traffic generated by different websites has a similar
continuous traffic flow. However, BuFLO can cause very high
time and bandwidth overhead, sometimes can even bring con-
gestion problems to the network [116]. To alleviate the prob-
lem, Congestion-Sensitive BuFLO (CS-BuFLO) [287] was
proposed to vary the packet transmission rate. Tamaraw [222]
achieves a better security/bandwidth trade-off by using smaller
fixed packet sizes and treating incoming and outgoing packets
differently to avoid unnecessary padding and dummy traffic.
DynaFlow [288]] morphs packets into fixed bursts, dynamically
changes packet inter-arrival times to generate constant traffic
flows, and pads the number of bursts. Theoretically, DynaFlow
leads to less network overhead compared with BuFLO, CS-
BuFLO, and Tamaraw.

The recent development of FGTA countermeasures mainly
focuses on two aspects:

1) The countermeasure should lead to nearly zero overhead
to both the data plane and the endpoints.

2) The countermeasure should be applicable to various web
applications (e.g., web page visiting, video streaming,
VoIP, etc.) and scenarios.

For instance, Henri et al. [289] split traffic exchanged between
the user and Tor nodes over two different, unrelated network
connections (e.g., DSL, Wi-Fi, or cellular networks) to protect
against FGTA by a malicious ISP; TrafficSliver [216f limits
the data a single observation point can observe and distorts
repeatable traffic patterns exploited by FGTAs with user-
controlled splitting of traffic over multiple Tor entry nodes.
TrafficSliver also offers an application-layer solution, which
will be discussed in Section Wang [290] points out that
an attacker may only need to successfully identify a single web
page (which they define as the one-page setting) in reality, and
a WFP countermeasure must still thwart that attempt. Based
on this assumption, Wang fortifies WFP countermeasures by
exploring randomness and regularization options for several
existing countermeasures. To protect IoT networks, Pinheiro

28

et al. [275] implement a middlebox to modify the outbound
and inbound traffic’s packet size. They also leverage an SDN
application to obtain information of network traffic from
both sides (source and destination) to manage the size-based
padding mechanism.

B. Application-layer Countermeasures

Unlike network-layer countermeasures that directly mod-
ify network traffic to cover user activities, application-layer
countermeasures use dummy applications to generate unnec-
essary traffic, thereby indirectly perturbing FGTA approaches.
However, most application-layer countermeasures are limited
in covering traffic of web pages being visited.

Panchenko et al. [204]] proposed a browser plug-in that
adds traffic noise by loading another random web page in
parallel. However, it may fail to defend against some WFP
attacks if users lower the page loading frequency to decrease
the bandwidth overhead [205]. Another Tor-based counter-
measures approach [291] randomizes the order of requests
for embedded website content and the pipeline size (i.e., the
number of requests processed in parallel) to perturb WFPs.
Cherubin et al. [279] propose LLaMA and ALPaCA, defenses
for client side and server side. LLaMA reorders outgoing
HTTP requests by randomly delaying them and adding dummy
HTTP requests. On the server side, ALPaCA conducts traffic
morphing by padding web objects of a page and inserting
invisible dummy web objects. The three methods above only
work in Tor environments.

HTTP Obfuscation (HTTPOS) [278] is countermeasure that
can be used in environments other than Tor. By modifying
HTTP requests and basic TCP features, it manipulates four
fundamental network flow features, including packet size, web
object size, flow size, and timing of packets. It can also modify
and reorder HTTP headers and insert dummy HTTP requests.
Another general countermeasure is TrafficSliver’s application-
layer defense [216]. This approach is on the client side. By
sending single HTTP requests for different web objects over
distinct Tor entry nodes, this application-layer defense can
reduce the detection rate of WFP classifiers by almost 50
percentage points.

VIII. FUTURE RESEARCH DIRECTION

Despite decades of development, FGTA continues to offer
substantial opportunities for further advancement, enhance-
ment, and exploration. In this section, we outline potential
research directions based on our analysis of recent trends, ex-
isting literature, industry implementations, and key challenges
that remain unaddressed in this domain.

A. Improvement of Analysis Efficacy and Coverage

FGTA has been used in many subfields of computer net-
work, including attack detection, traffic measurement, side-
channel attack, network management, etc. Researchers have
constructed myriad analysis models and collected plenty of
datasets specifically for different categories of tasks. But there
are still many use cases or scenarios that have not been



comprehensively covered by existing approaches. For instance,
with the rise of Unmanned Aerial Vehicle (UAV) and au-
tonomous vehicles, there have been initiatives to adapt FGTA
for unique applications like UAV anomaly detection [292],
[293] and the protection of autonomous vehicles [294]], [295].
However, this area of research is still in its infancy, charac-
terized by a limited number of studies. Furthermore, as new
applications, attack vectors, and communication protocols con-
tinue to emerge, the capacity of existing FGTA methodologies
to effectively manage contemporary traffic challenges may be
limited. Therefore, researchers can gather more updated traffic
datasets to enhance the coverage of existing FGTA approaches,
so that they can be used in more types of tasks and scenarios.

In addition, the efficacy of many current FGTA approaches
are not ideal for real-world deployments. Depending on the
observation points, FGTA approaches may easily see millions
of traffic flows over a short time period in the real world.
Under such circumstances, an FGTA approach could generate
large numbers of false positives or false negatives, even if
it achieves more than 95% accuracies in closed-world eval-
uations. Thus, increasing the efficacy of FGTA is a timeless
topic for researchers and developers.

B. Evaluation Enhancement

As we elaborate in Section current closed-world evalua-
tion methods are far away from revealing an FGTA approach’s
real capability and many open-world evaluations are not very
standardized and effective [273]. It is therefore suitable to
propose a new, operable, and effective evaluation paradigm for
FGTA. Such an evaluation paradigm should contain a testing
dataset similar to a real-world test case in terms of volume,
environment, and data distribution. Simultaneously, the dataset
should have comprehensive labels for almost all traffic flows,
not only for analysis targets. This can be achieved by either
constructing a large scale sandbox to simulate and collect all
types of traffic from a white box view, or collect a large-scale,
real-world traffic dataset and carefully label it using knowledge
of endpoints from all perspectives. Besides, the testing data
portion that is visible to the observation point should be
consistent with the real-world deployment conditions.

C. Dealing with Complex Network Environments

In real-world deployments, the network environments and
configurations can be different from researchers’ assumptions.
The following factors were not widely discussed in previous
papers, but can be common for network service providers.

e Many observation points can only see asymmetric net-

work traffic, which can challenge most FGTA approaches.

« Some networks are composed of multiple subnets, includ-

ing but not limited to wireless network, optical network,
or radio frequency network. Traffic flows collected from
such a network can have different delays and congestion
control mechanisms. Tackling this type of traffic can be
challenging.

o Due to deployments of modern traffic engineering ap-

proaches, traffic captured from some observation points is
dynamic [52]], posing difficulties to many FGTA methods.

29

We believe designing and implementing new FGTA ap-
proaches that can work under these circumstances are direc-
tions worthy of future research.

D. Integrating FGTA into Other Analytical Systems

Information contained in network traffic is essentially lim-
ited. Even though FGTA can already reveal considerable
amount of information, the detailed behavior models of end-
points are still hidden behind the curtain. To more comprehen-
sively investigate the network situation, researchers can try
to combine FGTA with information from other dimensions
(e.g., application-layer activities, server specifics, hardware
conditions, etc.), which can provide a better situational aware-
ness. So far, there are a few researches that combine TA
with information from other layers for more accurate at-
tack/anomaly detection and timely threat response (e.g., [296]—
[298]). Researchers can push this idea forward by further
integrating FGTA into this idea.

Furthermore, cyber threat intelligence (CTI) [299], allow-
ing entities to share attack/anomaly information with trusted
partners and peers, is becoming a powerful tool to quickly
and accurately tackle intractable attacks. By embedding results
from FGTA into CTI systems, participating entities can raise
awareness of the current situation, thereby more quickly
responding to incoming attacks. Designing attack defense
systems with both FGTA and CTTI is thus a promising research
direction.

E. Cutting Edge Technologies for FGTA

With advancements in cutting-edge technologies, FGTA
has the potential for significant enhancements across vari-
ous dimensions. For instance, ET-BERT [137] utilizes con-
cepts from natural language processing (NLP) to process
TA. This approach involves pre-training deeply contextualized
datagram-level representations using extensive unlabeled data
sets. Subsequently, the pre-trained model can be fine-tuned
with a minimal set of task-specific labeled data, catering
to specific FGTA tasks. The recent surge in popularity of
large language models, exemplified by ChatGPT [300]], has
opened up new avenues for enhancing FGTA. By fine-tuning
these advanced models with specialized TA datasets, we can
systematically decode and understand the narratives embedded
within network traffic data.

In the future, we anticipate the emergence of more sophisti-
cated technologies geared towards understanding, processing,
and integrating knowledge. Researchers are encouraged to ap-
ply these advancements to FGTA, with the aim of broadening
the scope of this domain. Such integration is expected to not
only enhance performance but also significantly improve the
explainability and adaptability of FGTA methodologies.

F. Enhancing the Explainability of FGTA

Explainability plays a pivotal role in the practical im-
plementation of FGTA [301]. An FGTA method that offers
clear explainability greatly assists network administrators by
enabling them to: (1) grasp the underlying analysis procedure



and its logic; (2) efficiently verify the analysis outcomes,
which aids in reducing false alarms and bolstering confidence
in the results; and (3) gain a deeper understanding of the
network’s situation, leading to more informed and effective
network management decisions.

Although some rule-based and statistical FGTA approaches
demonstrate satisfactory performance in terms of explainabil-
ity [19], [114], the majority of FGTA techniques heavily rely
on machine learning, with only a limited number emphasizing
explainability [[152], [164], [302]. On the other hand, a range
of general explainable machine learning techniques have been
proposed, as documented in several studies [303]-[307]]. In
theory, these techniques could be adapted for use in various
machine learning-based solutions. However, the specific ex-
plainability requirements in FGTA often differ from those in
other fields, which can make the direct application of these
existing techniques challenging. Additionally, their adoption
in FGTA has been limited, possibly due to issues related to
algorithmic suitability, performance, scalability, among other
factors.

It is therefore essential to develop novel explainable ma-
chine learning techniques that are specifically tailored for
FGTA. Such techniques should be designed to address the
unique challenges and requirements of FGTA, while also offer-
ing satisfactory performance in terms of accuracy, efficiency,
and scalability.

IX. CONCLUSION

With the increasing complexity of network transmission
technology, FGTA is becoming a crucial tool to gain a finer
granularity of visibility on or above the application layer
from the network traffic. From the perspective of attackers,
FGTA approaches can be used to analyze the content-agnostic
metadata and statistical information of network traffic to infer
the website visited by users, estimate locations of traffic
sender, or decode the video content streamed in the link.
As for the network administrators, FGTA approaches can
be used to detect application-layer threats even with layer
3 or layer 4 data, investigate quality of experience without
collecting sensitive user data, or perform fine-grained traffic
measurement to better configure the network.

In this paper, we analyze literature that deal with FGTA to
help researchers and developers learn the latest developments
in this area. After comparing different FGTA approaches by
their methodologies and use cases, we found that most existing
approaches are based on deep learning or high-dimensional
clustering. They are effective in capturing the subtle differ-
ences between network traffic generated by different activities.
However, many FGTA approaches still come with limitations
related to training data coverage, traffic data availability, high
false positive rates, real-world usability, etc. In addition, edge
users of the network can adopt a variety of countermeasures
to defend against FGTA, with some overheads regarding
network bandwidth and delay. Researchers can further research
and develop this domain to increase the coverage of FGTA,
make FGTA more practical in complex real-world network
environments, enhance the robustness of FGTA, and reduce
the overheads of FGTA approaches.

30

ACRONYMS

ABR Adaptive Bitrate

ACC accuracy

APT advanced persistent threat

AUC area under the curve

BTS base transceiver station

CCPA California Consumer Privacy Act
CDN content delivery network

CNN convolutional neural network
CTI cyber threat intelligence

DNN deep neural network

DPI  deep packet inspection

F1 F1 score

FDR false discovery rate

FGTA fine-grained traffic analysis

FNR false negative rate

FOR false omission rate

FPR false positive rate

GBDT gradient boosting decision tree
GDPR General Data Protection Regulation
GNN graph neural network

HMM hidden Markov model

IoT Internet of things

ISP  internet service provider

KNN k-nearest neighbor

LBA location-based applications

LBS location-based services

LSTM long short-term memory

MLP multi-layer perceptron

NAT network address translation
NDAEnonsymmetric deep autoencoder
NLP natural language processing
NPV negative predictive value

OS  operating system

OSN online social network

PCA principal component analysis

PII  personally identifiable information
PPV positive predictive value

QoE quality of experience

QoS quality of service

QUIC Quick UDP Internet Connection
RKHS Reproducing Kernel Hilbert Space
RNN recurrent neural network

ROC receiver operating characteristic
SAE stacked autoencoder

SMO Sequential Minimal Optimization
SMOT Synthetic Minority Oversampling Technique
SVM Support Vector Machine

TA  traffic analysis

TNR true negative rate

TPR true positive rate

TTL time to live

UAV  Unmanned Aerial Vehicle

WFP website fingerprinting



ACKNOWLEDGMENTS

The authors would like to thank Zhangxiang Hu, Lei Jiao,
Yingjiu Li, and Thanh Nguyen from the University of Oregon
for their constructive suggestions on this work.

This research / project is partially supported by the Na-
tional Research Foundation, Singapore, and the Cyber Security
Agency under its National Cybersecurity R&D Programme
(NCRP25-P04-TAICeN). Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of National
Research Foundation, Singapore and Cyber Security Agency
of Singapore.

This work is also partially supported by the Natural Sci-
ence Foundation of Sichuan Province (Grant No. 2024NS-
FSC1450).

This material is also based upon work partially supported
by Ripple under the University Blockchain Research Initiative
(UBRI) [308]]. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of Ripple.

REFERENCES

[1] C. A. Sunshine, Computer network architectures and protocols.
Springer Science & Business Media, 2013.

[2] Wikipedia, “Internet protocol suite,” https://en.wikipedia.org/wiki/
Internet_protocol_suite, date of visit: 2021-10-05.

[3] J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues,
and open problems,” in Designing Privacy Enhancing Technologies.
Springer, 2001, pp. 10-29.

[4] C. So-In, “A survey of network traffic monitoring and analysis tools,”
Cse 576m computer system analysis project, Washington University in
St. Louis, 2009.

[S] A. D’Alconzo, 1. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3, pp.
800-813, 2019.

[6] E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network
traffic analysis applications, techniques, and countermeasures,” ACM
Computing Surveys (CSUR), vol. 54, no. 6, pp. 1-35, 2021.

[7]1 E. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar,
“Towards the deployment of machine learning solutions in network
traffic classification: A systematic survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 2, pp. 1988-2014, 2018.

[8] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435-2463, 1999.

[9] H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and

K. Lee, “Internet traffic classification demystified: myths, caveats,

and the best practices,” in Proceedings of the 2008 ACM CoNEXT

conference, 2008, pp. 1-12.

J. C. Guevara, R. da S. Torres, and N. L. da Fonseca, “On the

classification of fog computing applications: A machine learning

perspective,” Journal of Network and Computer Applications, vol.

159, p. 102596, 2020. [Online]. Available: https://www.sciencedirect.

com/science/article/p1i/S1084804520300709

A. Sang and S.-q. Li, “A predictability analysis of network traffic,”

Computer networks, vol. 39, no. 4, pp. 329-345, 2002.

A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk, and

N. Taft, “Structural analysis of network traffic flows,” in Proceedings

of the joint international conference on Measurement and modeling of

computer systems, 2004, pp. 61-72.

J. Mirkovic, Y. Feng, and J. Li, “Measuring changes in regional

network traffic due to covid-19 stay-at-home measures,” arXiv preprint

arXiv:2203.00742, 2022.

P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of

network traffic anomalies,” in Proceedings of the 2nd ACM SIGCOMM

Workshop on Internet measurement, 2002, pp. 71-82.

J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using clus-

tering algorithms,” in Proceedings of the 2006 SIGCOMM workshop

on Mining network data, 2006, pp. 281-286.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[35]

[36]

31

S. Li, L. Luo, D. Guo, Q. Zhang, and P. Fu, “A survey of sketches in
traffic measurement: Design, optimization, application and implemen-
tation,” arXiv preprint arXiv:2012.07214, 2020.

Z. Zeng, L. Cui, M. Qian, Z. Zhang, and K. Wei, “A survey on sliding
window sketch for network measurement,” Computer Networks, vol.
226, p. 109696, 2023.

M. Shen, K. Ye, X. Liu, L. Zhu, J. Kang, S. Yu, Q. Li, and
K. Xu, “Machine learning-powered encrypted network traffic analysis:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
pp. 1-1, 2022.

E. Papadogiannaki, C. Halevidis, P. Akritidis, and L. Koromilas, “Otter:
A scalable high-resolution encrypted traffic identification engine,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2018, pp. 315-334.

T. van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,
M. Lindorfer, D. Choffnes, M. van Steen, and A. Peter, “Flowprint:
Semi-supervised mobile-app fingerprinting on encrypted network traf-
fic,” in Network and Distributed System Security Symposium (NDSS),
vol. 27, 2020.

Y. Feng, J. Li, L. Jiao, and X. Wu, “BotFlowMon: Learning-based,
content-agnostic identification of social bot traffic flows,” in 2019 IEEE
Conference on Communications and Network Security (CNS), June
2019, pp. 169-1717.

R. Schuster, V. Shmatikov, and E. Tromer, “Beauty and the burst:
Remote identification of encrypted video streams,” in 26th { USENIX}
Security Symposium ({USENIX} Security 17), 2017, pp. 1357-1374.
B. Anderson and D. McGrew, “Machine learning for encrypted
malware traffic classification: accounting for noisy labels and non-
stationarity,” in Proceedings of the 23rd ACM SIGKDD International
Conference on knowledge discovery and data mining, 2017, pp. 1723—
1732.

S. Xu, S. Sen, and Z. M. Mao, “Csi: Inferring mobile abr video
adaptation behavior under https and quic,” in Proceedings of the
Fifteenth European Conference on Computer Systems, 2020, pp. 1-16.
Q. Yin, Z. Liu, Q. Li, T. Wang, Q. Wang, C. Shen, and Y. Xu, “Auto-
mated multi-tab website fingerprinting attack,” IEEE Transactions on
Dependable and Secure Computing, 2021.

J. Liu, Y. Fu, J. Ming, Y. Ren, L. Sun, and H. Xiong, “Effective and
real-time in-app activity analysis in encrypted internet traffic streams,”
in Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, 2017, pp. 335-344.

G. Ateniese, B. Hitaj, L. V. Mancini, N. V. Verde, and A. Villani,
“No place to hide that bytes won’t reveal: Sniffing location-based
encrypted traffic to track a user’s position,” in International Conference
on Network and System Security. Springer, 2015, pp. 46-59.

G. O. Ferreira, C. Ravazzi, F. Dabbene, G. C. Calafiore, and M. Fiore,
“Forecasting network traffic: A survey and tutorial with open-source
comparative evaluation,” IEEE Access, vol. 11, pp. 6018-6044, 2023.
H. Jmila, G. Blanc, M. R. Shahid, and M. Lazrag, “A survey of smart
home iot device classification using machine learning-based network
traffic analysis,” IEEE Access, vol. 10, pp. 97 117-97 141, 2022.

D. A. Tedjopurnomo, Z. Bao, B. Zheng, F. M. Choudhury, and A. K.
Qin, “A survey on modern deep neural network for traffic prediction:
Trends, methods and challenges,” IEEE Transactions on Knowledge
and Data Engineering, vol. 34, no. 4, pp. 1544-1561, 2022.

T. Wu, F. Breitinger, and S. Niemann, “Iot network traffic analysis:
Opportunities and challenges for forensic investigators?” Forensic
Science International: Digital Investigation, vol. 38, p. 301123, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/!
52666281721000214

H. Tahaei, F. Afifi, A. Asemi, F. Zaki, and N. B. Anuar, “The rise of
traffic classification in iot networks: A survey,” Journal of Network and
Computer Applications, vol. 154, p. 102538, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pi1/S1084804520300126
M. Conti, Q. Q. Li, A. Maragno, and R. Spolaor, “The dark side(-
channel) of mobile devices: A survey on network traffic analysis,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2658-2713,
2018.

D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “Large-scale mobile
traffic analysis: A survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 124-161, 2016.

P. Velan, M. Cermz’lk, P. éeleda, and M. Drasar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal
of Network Management, vol. 25, no. 5, pp. 355-374, 2015.

M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,” IEEE


https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://www.sciencedirect.com/science/article/pii/S1084804520300709
https://www.sciencedirect.com/science/article/pii/S1084804520300709
https://www.sciencedirect.com/science/article/pii/S2666281721000214
https://www.sciencedirect.com/science/article/pii/S2666281721000214
https://www.sciencedirect.com/science/article/pii/S1084804520300126

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Communications Surveys & Tutorials, vol. 16, no. 2, pp. 1135-1156,
2014.

J. a. V. Gomes, P. R. M. Inacio, M. Pereira, M. M. Freire, and
P. P. Monteiro, “Detection and classification of peer-to-peer traffic:
A survey,” ACM Comput. Surv., vol. 45, no. 3, jul 2013. [Online].
Available: https://doi.org/10.1145/2480741.2480747

A. Callado, C. Kamienski, G. Szabo, B. P. Gero, J. Kelner, S. Fernan-
des, and D. Sadok, “A survey on internet traffic identification,” IEEE
Communications Surveys & Tutorials, vol. 11, no. 3, pp. 37-52, 2009.
B. Chandrasekaran, “Survey of network traffic models,” Waschington
University in St. Louis CSE, vol. 567, 2009.

A. Erramilli, M. Roughan, D. Veitch, and W. Willinger, “Self-similar
traffic and network dynamics,” Proceedings of the IEEE, vol. 90, no. 5,
pp- 800-819, 2002.

A. Cecil, “A summary of network traffic monitoring and analysis
techniques,” Computer systems analysis, pp. 4-7, 2006.

V. Mohan, Y. J. Reddy, K. Kalpana et al., “Active and passive network
measurements: a survey,” International Journal of Computer Science
and Information Technologies, vol. 2, no. 4, pp. 1372-1385, 2011.
M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for
network traffic monitoring and analysis (ntma): A survey,” Computer
Communications, vol. 170, pp. 1941, 2021.

A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler,
“Detecting co-residency with active traffic analysis techniques,” in
Proceedings of the 2012 ACM Workshop on Cloud computing security
workshop, 2012, pp. 1-12.

A. Tacovazzi, S. Sarda, and Y. Elovici, “Inflow: Inverse network flow
watermarking for detecting hidden servers,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. 1EEE, 2018, pp.
747-755.

M. Gregorczyk, P. Zé6rawski, P. Nowakowski, K. Cabaj, and W. Mazur-
czyk, “Sniffing detection based on network traffic probing and machine
learning,” IEEE Access, vol. 8, pp. 149255-149 269, 2020.

X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking attack
on low-latency anonymous communication systems,” in 2007 IEEE
Symposium on Security and Privacy (SP’07). 1EEE, 2007, pp. 116—
130.

A. Tacovazzi and Y. Elovici, “Network flow watermarking: A survey,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 512—
530, 2016.

L. Zhang, Y. Kong, Y. Guo, J. Yan, and Z. Wang, “Survey on network
flow watermarking: model, interferences, applications, technologies and
security,” IET Communications, vol. 12, no. 14, pp. 1639-1648, 2018.
X. Fu, B. Graham, R. Bettati, and W. Zhao, “Active traffic analysis
attacks and countermeasures,” in 2003 International Conference on
Computer Networks and Mobile Computing, 2003. ICCNMC 2003.
IEEE, 2003, pp. 31-39.

Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker, “On routing
asymmetry in the internet,” in GLOBECOM’05. IEEE Global Telecom-
munications Conference, 2005., vol. 2. IEEE, 2005, pp. 6—pp.

N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of
routing optimization for internet traffic engineering,” IEEE Communi-
cations Surveys & Tutorials, vol. 10, no. 1, pp. 36-56, 2008.

I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in sdn-openflow networks,” Computer Networks,
vol. 71, pp. 1-30, 2014.

B. Trammell and E. Boschi, “An introduction to ip flow information
export (ipfix),” IEEE Communications Magazine, vol. 49, no. 4, pp.
89-95, 2011.

Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic
monitoring in software defined networks,” in Proceedings of the third
workshop on Hot topics in software defined networking, 2014, pp. 85—
90.

D. Fernandez, X. M. da Silva, F. J. Névoa, F. Cacheda, and V. Carneiro,
“Using collaborative filtering in a new domain: traffic analysis,” in
Proceedings of the 4th Spanish Conference on Information Retrieval,
2016, pp. 1-8.

L. Lu, Z. Huan, X. Zhang, L. Qi, S. Chen, and Y. Wu, “Collaborative
network traffic analysis via alternating direction method of multipliers,”
in 2018 IEEE 22nd International Conference on Computer Supported
Cooperative Work in Design ((CSCWD)). 1EEE, 2018, pp. 547-552.
M. Burkhart, Enabling collaborative network security with privacy-
preserving data aggregation. ETH Zurich, 2011, vol. 125.

Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multi-task network
anomaly detection using federated learning,” in Proceedings of the 10th
international symposium on information and communication technol-
ogy, 2019, pp. 273-279.

[60]

[61]

[62]

[63]
[64]
[65]

[66]

[67]
[68]

[69]

[70]
[71]

[72]

[73]

[74]
[75]

[76]
[77]
[78]
[79]

[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

32

Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving
traffic flow prediction: A federated learning approach,” IEEE Internet
of Things Journal, vol. 7, no. 8, pp. 7751-7763, 2020.

J. Pei, K. Zhong, M. A. Jan, and J. Li, “Retracted: Personalized
federated learning framework for network traffic anomaly detection,”
2022.

V. Perifanis, N. Pavlidis, R.-A. Koutsiamanis, and P. S. Efraimidis,
“Federated learning for 5g base station traffic forecasting,” Computer
Networks, vol. 235, p. 109950, 2023.

“Solaris snoop packet sniffer,” http://www.softpanorama.org/Net/
Sniffers/snoop.shtml, accessed: 2022-02-10.

A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal network
protocol analyzer toolkit. Elsevier, 2006.
“Data sheet of sniffer infinistream,”
InfiniStream.pdf, accessed: 2022-02-10.
M. Bagnulo, P. Matthews, and I. van Beijnum, “Stateful nat64: Network
address and protocol translation from ipv6 clients to ipv4 servers,”
Tech. Rep., 2011.

N. Brownlee, C. Mills, and G. Ruth, “Traffic flow measurement:
Architecture,” RFC 2722, Tech. Rep., 1999.

J. Rajahalme, A. Conta, B. Carpenter, and S. Deering, “Ipv6 flow label
specification,” RFC3697, 2004.

J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for ip
flow information export (ipfix),” RFC 3917 (informational), Tech. Rep.,
2004.

D. W. McRobb, “Cflowd design,” CAIDA, Sept, 1998.

R. Hofstede, P. éeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037-2064, 2014.

J. Lee, “Calculating netflow volume,” https://www.plixer.com/blog/
calculating-netflow-volume/, posted: 2013-03-26.

B.-Y. Choi and S. Bhattacharyya, “On the accuracy and overhead
of cisco sampled netflow,” in Proceedings of ACM SIGMETRICS
Workshop on Large Scale Network Inference (LSNI), 2005, pp. 1-6.
C. Hare, “Simple network management protocol (snmp).” 2011.

B. Claise, B. Trammell, and P. Aitken, “Specification of the ip flow in-
formation export (ipfix) protocol for the exchange of flow information,”
pp. 2070-1721, 2013.

B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes, “Cisco systems
netflow services export version 9,” 2004.

“Netflow v5 formats,” https://www.ibm.com/docs/en/npi/1.3.0?topic=
versions-netflow-v5-formats, accessed: 2022-03-14.

“Argus project,” https://openargus.org/, date of visit: 2021-11-25.

P. Phaal, S. Panchen, and N. McKee, “Rfc3176: Inmon corporation’s
sflow: A method for monitoring traffic in switched and routed net-
works,” 2001.

“Tepdump & libpeap,” https://www.tcpdump.org/, accessed: 2022-02-
10.

ntop, “Pf_ring documentation,” https://www.ntop.org/guides/pf_ring/,
accessed: 2022-02-12.

L. Rizzo, “netmap: a novel framework for fast packet i/o,” in 21st
USENIX Security Symposium (USENIX Security 12), 2012, pp. 101-
112.

J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, “Planck: Millisecond-scale monitoring and
control for commodity networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 44, no. 4, pp. 407418, 2014.

J. Svoboda, I. Ghafir, V. Prenosil et al., “Network monitoring ap-
proaches: An overview,” Int J Adv Comput Netw Secur, vol. 5, no. 2,
pp. 88-93, 2015.

L.-M. Wang, T. Miskell, J. Morgan, and E. Verplanke, “Design of a
real-time traffic mirroring system,” in 2021 IFIP/IEEE International

http://mavin.com/pictures/

Symposium on Integrated Network Management (IM). 1EEE, 2021,
pp. 793-796.
“ProfiShark Network TAPs,” https://www.profitap.com/

profishark-network-taps/, 2019, accessed: 2022-02-11.

Wikipedia, “Argus — audit record generation and utilization system,”
https://en.wikipedia.org/wiki/Argus_%E2%80%93_Audit_Record_
Generation_and_Utilization_System, accessed: 2022-02-11.

1. Cunha, F. Silveira, R. Oliveira, R. Teixeira, and C. Diot, “Uncovering
artifacts of flow measurement tools,” in International Conference on
Passive and Active Network Measurement. Springer, 2009, pp. 187—
196.

Huawei, “Configuration guide - network management and monitor-
ing,” |https://support.huawei.com/enterprise/en/doc/EDOC1000178174/
986bf1 le/overview-of-netstream, accessed: 2022-02-11.


https://doi.org/10.1145/2480741.2480747
http://www.softpanorama.org/Net/Sniffers/snoop.shtml
http://www.softpanorama.org/Net/Sniffers/snoop.shtml
http://mavin.com/pictures/InfiniStream.pdf
http://mavin.com/pictures/InfiniStream.pdf
https://www.plixer.com/blog/calculating-netflow-volume/
https://www.plixer.com/blog/calculating-netflow-volume/
https://www.ibm.com/docs/en/npi/1.3.0?topic=versions-netflow-v5-formats
https://www.ibm.com/docs/en/npi/1.3.0?topic=versions-netflow-v5-formats
https://openargus.org/
https://www.tcpdump.org/
https://www.ntop.org/guides/pf_ring/
https://www.profitap.com/profishark-network-taps/
https://www.profitap.com/profishark-network-taps/
https://en.wikipedia.org/wiki/Argus_%E2%80%93_Audit_Record_Generation_and_Utilization_System
https://en.wikipedia.org/wiki/Argus_%E2%80%93_Audit_Record_Generation_and_Utilization_System
https://support.huawei.com/enterprise/en/doc/EDOC1000178174/986bf11e/overview-of-netstream
https://support.huawei.com/enterprise/en/doc/EDOC1000178174/986bf11e/overview-of-netstream

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

S. Waldbusser, R. Cole, C. Kalbfleisch, and D. Romascanu, “Intro-
duction to the remote monitoring (rmon) family of mib modules,”
RFC3577, Network Working Group, 2003.

T. Hgiland-Jgrgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast
programmable packet processing in the operating system kernel,” in
Proceedings of the 14th international conference on emerging network-
ing experiments and technologies, 2018, pp. 54-66.

M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano,
G. Bianchi, A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco,
“{hXDP}: Efficient software packet processing on {FPGA}{NICs},”
in 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), 2020, pp. 973-990.

Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng,
L. Zhu, Z. Shen, Y. Xi et al., “Flow event telemetry on programmable
data plane,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 76-89.

D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR),
vol. 11, no. 2, pp. 121-137, 1979.

P. Voigt and A. Von dem Bussche, “The eu general data protection
regulation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer Inter-
national Publishing, vol. 10, no. 3152676, pp. 10-5555, 2017.

Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and
G. Zhang, “Sketchvisor: Robust network measurement for software
packet processing,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, 2017, pp. 113-126.
T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 561-575.
Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
sketch families for network traffic measurement,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 3,
no. 3, pp. 1-34, 2019.

K. Yang, S. Long, Q. Shi, Y. Li, Z. Liu, Y. Wu, T. Yang, and Z. Jia,
“Sketchint: Empowering int with towersketch for per-flow per-switch
measurement,” IEEE Transactions on Parallel and Distributed Systems,
2023.

R. Miao, Y. Zhang, Z. Zheng, R. Wang, R. Zhang, T. Yang, Z. Liu,
and J. Jiang, “Cocosketch: High-performance sketch-based measure-
ment over arbitrary partial key query,” IEEE/ACM Transactions on
Networking, vol. 31, no. 6, pp. 2653-2668, 2023.

H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste,
“Sketchovsky: Enabling ensembles of sketches on programmable
switches,” in 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), 2023, pp. 1273-1292.

Y. Feng, J. Luo, C. Ma, T. Li, and L. Hui, “I can still observe
you: Flow-level behavior fingerprinting for online social network,” in
GLOBECOM 2022-2022 IEEE Global Communications Conference.
IEEE, 2022, pp. 6427-6432.

Y. Feng, J. Li, L. Jiao, and X. Wu, “Towards learning-based, content-
agnostic detection of social bot traffic,” IEEE Transactions on Depend-
able and Secure Computing, vol. 18, no. 5, pp. 2149-2163, 2021.

M. Shen, J. Zhang, L. Zhu, K. Xu, X. Du, and Y. Liu, “Encrypted
traffic classification of decentralized applications on ethereum using
feature fusion,” in 2019 IEEE/ACM 27th International Symposium on
Quality of Service (IWQoS). IEEE, 2019, pp. 1-10.

I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extraction:
foundations and applications. Springer, 2008, vol. 207.

S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and
feature extraction techniques in machine learning,” in 2014 science and
information conference. 1EEE, 2014, pp. 372-378.

R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed,
“A comprehensive review of dimensionality reduction techniques for
feature selection and feature extraction,” Journal of Applied Science
and Technology Trends, vol. 1, no. 2, pp. 5670, 2020.

P. Dhal and C. Azad, “A comprehensive survey on feature selection in
the various fields of machine learning,” Applied Intelligence, pp. 1-39,
2022.

H. F. Alan and J. Kaur, “Can android applications be identified using
only tcp/ip headers of their launch time traffic?” in Proceedings of
the 9th ACM conference on security & privacy in wireless and mobile
networks, 2016, pp. 61-66.

T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]
[128]
[129]
[130]
[131]

[132]

[133]

33

defined networking,” in 2016 international conference on wireless
networks and mobile communications (WINCOM). 1EEE, 2016, pp.
258-263.

S. Rezaei and X. Liu, “How to achieve high classification accuracy with
just a few labels: A semi-supervised approach using sampled packets,”
arXiv preprint arXiv:1812.09761, 2018.

F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and
K. Clafty, “Gt: picking up the truth from the ground for internet traffic,”
ACM SIGCOMM Computer Communication Review, vol. 39, no. 5, pp.
12-18, 2009.

Y. Feng, J. Li, and D. Sisodia, “Cj-sniffer: Measurement and content-
agnostic detection of cryptojacking traffic,” in Proceedings of the
25th International Symposium on Research in Attacks, Intrusions and
Defenses, 2022, pp. 482-494.

M. Jiang, G. Gou, J. Shi, and G. Xiong, “I know what you are doing
with remote desktop,” in 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC). IEEE, 2019,
pp. 1-7.

G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine, “Privacy
vulnerabilities in encrypted http streams,” in International Workshop
on Privacy Enhancing Technologies. Springer, 2005, pp. 1-11.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a dis-
tance: Website fingerprinting attacks and defenses,” in Proceedings of
the 2012 ACM conference on Computer and communications security,
2012, pp. 605-616.

Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, “Service usage
classification with encrypted internet traffic in mobile messaging apps,”
IEEE Transactions on Mobile Computing, vol. 15, no. 11, pp. 2851—
2864, 2016.

Y. Wang, Z. Li, G. Gou, G. Xiong, C. Wang, and Z. Li, “Identifying
dapps and user behaviors on ethereum via encrypted traffic,” in
International Conference on Security and Privacy in Communication
Systems. Springer, 2020, pp. 62-83.

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, “Mimetic: Mo-
bile encrypted traffic classification using multimodal deep learning,”
Computer networks, vol. 165, p. 106944, 2019.

M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Computing, vol. 24, no. 3, pp.
1999-2012, 2020.

P. V. Amoli, T. Hamalainen, G. David, M. Zolotukhin, and
M. Mirzamohammad, “Unsupervised network intrusion detection sys-
tems for zero-day fast-spreading attacks and botnets,” JDCTA (Inter-
national Journal of Digital Content Technology and its Applications,
vol. 10, no. 2, pp. 1-13, 2016.

N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning ap-
proach to network intrusion detection,” IEEE transactions on emerging
topics in computational intelligence, vol. 2, no. 1, pp. 41-50, 2018.
K. Park and W. Willinger, “Self-similar network traffic: An overview,”
Self-Similar Network Traffic and Performance Evaluation, pp. 1-38,
2000.

W. Duch, R. Setiono, and J. M. Zurada, “Computational intelligence
methods for rule-based data understanding,” Proceedings of the IEEE,
vol. 92, no. 5, pp. 771-805, 2004.

N. Alon and J. H. Spencer, The probabilistic method.
Sons, 2016.

I. Rish et al., “An empirical study of the naive bayes classifier,” in
IJCAI 2001 workshop on empirical methods in artificial intelligence,
vol. 3, no. 22, 2001, pp. 41-46.

M. H. Davis, Markov models & optimization.
vol. 49.

L. Rabiner and B. Juang, “An introduction to hidden markov models,”
ieee assp magazine, vol. 3, no. 1, pp. 4-16, 1986.

M. L. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255-260, 2015.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436-444, 2015.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
press, 2016.

Q. Zhou, L. Wang, H. Zhu, and T. Lu, “Few-shot website fingerprinting
attack with cluster adaptation,” Computer Networks, vol. 229, p.
109780, 2023.

H. Zou, J. Su, Z. Wei, S. Chen, and B. Zhao, “An efficient cross-
domain few-shot website fingerprinting attack with brownian distance
covariance,” Computer Networks, vol. 219, p. 109461, 2022.

John Wiley &

CRC Press, 1993,

MIT



[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]
[149]

[150]

[151]

[152]

[153]

[154]

[155]

M. Chen, Y. Wang, and X. Zhu, “Few-shot website fingerprinting attack
with meta-bias learning,” Pattern Recognition, vol. 130, p. 108739,
2022.

P. Liu, L. He, and Z. Li, “A survey on deep learning for website
fingerprinting attacks and defenses,” IEEE Access, vol. 11, pp. 26 033—
26047, 2023.

M. Li, D. Han, D. Li, H. Liu, and C.-C. Chang, “Mfvt: an anomaly
traffic detection method merging feature fusion network and vision
transformer architecture,” EURASIP Journal on Wireless Communica-
tions and Networking, vol. 2022, no. 1, p. 39, 2022.

X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “Et-bert: A
contextualized datagram representation with pre-training transformers
for encrypted traffic classification,” in Proceedings of the ACM Web
Conference 2022, ser. WWW ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 633—-642. [Online]. Available:
https://doi.org/10.1145/3485447.3512217

D. A. Bierbrauer, M. J. De Lucia, K. Reddy, P. Maxwell, and N. D.
Bastian, “Transfer learning for raw network traffic detection,” Expert
Systems with Applications, vol. 211, p. 118641, 2023.

C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. Zhang, “Deep transfer
learning for intelligent cellular traffic prediction based on cross-domain
big data,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1389-1401, 2019.

A. Shahraki, M. Abbasi, A. Taherkordi, and A. D. Jurcut, “A compar-
ative study on online machine learning techniques for network traffic
streams analysis,” Computer Networks, vol. 207, p. 108836, 2022.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning.” in Osdi, vol. 16, no. 2016. Savannah,
GA, USA, 2016, pp. 265-283.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675-678.

M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J.
Aljaaf, “A systematic review on supervised and unsupervised machine
learning algorithms for data science,” Supervised and unsupervised
learning for data science, pp. 3-21, 2020.

M. Usama, J. Qadir, A. Raza, H. Arif, K.-L. A. Yau, Y. Elkhatib,
A. Hussain, and A. Al-Fugaha, “Unsupervised machine learning for
networking: Techniques, applications and research challenges,” IEEE
access, vol. 7, pp. 65579-65615, 2019.

L. Van Der Maaten, E. Postma, J. Van den Herik et al., “Dimensionality
reduction: a comparative,” J Mach Learn Res, vol. 10, no. 66-71, p. 13,
2009.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the royal statistical society. series
¢ (applied statistics), vol. 28, no. 1, pp. 100-108, 1979.

G. H. Dunteman, Principal components analysis. Sage, 1989, no. 69.
F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, vol. 2, no. 1, pp. 86-97, 2012.

J. Lever, “Classification evaluation: It is important to understand both
what a classification metric expresses and what it hides,” Nature
methods, vol. 13, no. 8, pp. 603-605, 2016.

D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification for
ml-based network security applications,” in Proceedings of the 28th
Network and Distributed System Security Symposium (San Diego, CA,
USA, 2021.

Y. Feng, J. Li, D. Sisodia, and P. Reiher, “On explainable and adaptable
detection of distributed denial-of-service traffic,” IEEE Transactions
on Dependable and Secure Computing, vol. 21, no. 4, pp. 2211-2226,
2024.

P. Bukaty, The california consumer privacy act (ccpa): An implemen-
tation guide. 1T Governance Ltd, 2019.

A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Privacy-
aware contextual localization using network traffic analysis,” Computer
Networks, vol. 118, pp. 24-36, 2017.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
Network and Distributed Systems Security (NDSS) Symposium, 2018.

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

34

N. Rosner, I. B. Kadron, L. Bang, and T. Bultan, “Profit: Detecting and
quantifying side channels in networked applications.” in NDSS, 2019.
M. J. Khokhar, T. Ehlinger, and C. Barakat, “From network traffic
measurements to qoe for internet video,” in 2019 IFIP Networking
Conference (IFIP Networking). 1EEE, 2019, pp. 1-9.

Kentik, “Kentik—the network observability platform,” https://www.
kentik.com/, accessed: 2023-12-05.

P. A. Networks, “Hunt down and stop tomorrow’s threats,
today—analyze network traffic with  best-in-class machine
learning and analytics,” |https://www.paloaltonetworks.com/cortex/
network-traffic-analysis, accessed: 2023-12-05.

Z. M. Fadlullah, T. Taleb, N. Ansari, K. Hashimoto, Y. Miyake,
Y. Nemoto, and N. Kato, “Combating against attacks on encrypted pro-
tocols,” in 2007 IEEE International Conference on Communications.
IEEE, 2007, pp. 1211-1216.

T. Taleb, Z. M. Fadlullah, K. Hashimoto, Y. Nemoto, and N. Kato,
“Tracing back attacks against encrypted protocols,” in Proceedings of
the 2007 international conference on Wireless communications and
mobile computing, 2007, pp. 121-126.

Y. Feng and J. Li, “Toward explainable and adaptable detection and
classification of distributed denial-of-service attacks,” in International
Workshop on Deployable Machine Learning for Security Defense.
Springer, 2020, pp. 105-121.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1-58,
2009.

D. Han, Z. Wang, W. Chen, K. Wang, R. Yu, S. Wang, H. Zhang,
Z. Wang, M. Jin, J. Yang et al., “Anomaly detection in the open world:
Normality shift detection, explanation, and adaptation,” in 30th Annual
Network and Distributed System Security Symposium (NDSS), 2023.
F. Ullah, S. Ullah, G. Srivastava, and J. C.-W. Lin, “Ids-int: Intrusion
detection system using transformer-based transfer learning for imbal-
anced network traffic,” Digital Communications and Networks, vol. 10,
no. 1, pp. 190-204, 2024.

A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,
and Y. Elovici, “Mobile malware detection through analysis of devia-
tions in application network behavior,” Computers & Security, vol. 43,
pp. 1-18, 2014.

S. Wang, Z. Chen, L. Zhang, Q. Yan, B. Yang, L. Peng, and Z. Jia,
“Trafficav: An effective and explainable detection of mobile malware
behavior using network traffic,” in 2016 IEEE/ACM 24th International
Symposium on Quality of Service (IWQoS). IEEE, 2016, pp. 1-6.
A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and A. A.
Ghorbani, “Towards a network-based framework for android malware
detection and characterization,” in 2017 15th Annual conference on
privacy, security and trust (PST). 1EEE, 2017, pp. 233-23 309.

M. Piskozub, F. De Gaspari, F. Barr-Smith, L. Mancini, and
I. Martinovic, “Malphase: Fine-grained malware detection using
network flow data,” in Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, ser. ASIA CCS ’21.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 774-786. [Online]. Available: https://doi.org/10.1145/3433210.
3453101

J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon:
Revealing and controlling pii leaks in mobile network traffic,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, 2016, pp. 361-374.

A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, and G. Vigna, “Obfuscation-resilient privacy leak detection
for mobile apps through differential analysis.” in NDSS, 2017.

D. Willems, K. Kohls, B. van der Kamp, and H. Vranken,
“Data exfiltration detection on network metadata with autoencoders,”
Electronics, vol. 12, no. 12, 2023. [Online]. Available: https:
/Iwww.mdpi.com/2079-9292/12/12/2584

R. Coulter, Q.-L. Han, L. Pan, J. Zhang, and Y. Xiang, “Data-
driven cyber security in perspective—intelligent traffic analysis,” IEEE
transactions on cybernetics, vol. 50, no. 7, pp. 3081-3093, 2019.

E. Papadogiannaki and S. Ioannidis, “Acceleration of intrusion de-
tection in encrypted network traffic using heterogeneous hardware,”
Sensors, vol. 21, no. 4, p. 1140, 2021.

R. Moustafa and J. Slay, “A comprehensive data set for network
intrusion detection systems,” School of Engineering and Information
Technology University of New South Wales at the Australian Defense
Force Academy Canberra, Australia, UNSW-NB15, 2015.

X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: Multi-
layer profiling of android applications,” in Proceedings of the 18th


https://doi.org/10.1145/3485447.3512217
https://www.kentik.com/
https://www.kentik.com/
https://www.paloaltonetworks.com/cortex/network-traffic-analysis
https://www.paloaltonetworks.com/cortex/network-traffic-analysis
https://doi.org/10.1145/3433210.3453101
https://doi.org/10.1145/3433210.3453101
https://www.mdpi.com/2079-9292/12/12/2584
https://www.mdpi.com/2079-9292/12/12/2584

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

annual international conference on Mobile computing and networking,
2012, pp. 137-148.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp.
1-29, 2014.

A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,
P. Gill, M. Allman, and V. Paxson, “Haystack: In situ mobile traffic
analysis in user space,” arXiv preprint arXiv:1510.01419, pp. 1-13,
2015.

Y. Song and U. Hengartner, “Privacyguard: A vpn-based platform
to detect information leakage on android devices,” in Proceedings
of the 5th Annual ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, 2015, pp. 15-26.

A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopoulou, “Antmonitor: A system for monitoring from mobile
devices,” in Proceedings of the 2015 ACM SIGCOMM Workshop on
Crowdsourcing and Crowdsharing of Big (Internet) Data, 2015, pp.
15-20.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and 1. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009.

Y. Feng, D. Sisodia, and J. Li, “Poster: Content-agnostic identification
of cryptojacking in network traffic,” in Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security, 2020, pp.
907-909.

S. Khirman and P. Henriksen, “Relationship between quality-of-service
and quality-of-experience for public internet service,” in In Proc. of the
3rd Workshop on Passive and Active Measurement, vol. 1, 2002.

X. Xiao and L. M. Ni, “Internet qos: A big picture,” IEEE network,
vol. 13, no. 2, pp. 8-18, 1999.

M. Karakus and A. Durresi, “Quality of service (qos) in software
defined networking (sdn): A survey,” Journal of Network and Computer
Applications, vol. 80, pp. 200-218, 2017.

S. K. Keshari, V. Kansal, and S. Kumar, “A systematic review of
quality of services (qos) in software defined networking (sdn),” Wireless
Personal Communications, vol. 116, no. 3, pp. 2593-2614, 2021.

J. Bi, X. Zhang, H. Yuan, J. Zhang, and M. Zhou, “A hybrid predic-
tion method for realistic network traffic with temporal convolutional
network and Istm,” IEEE Transactions on Automation Science and
Engineering, vol. 19, no. 3, pp. 1869-1879, 2021.

A. Montieri, G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and
A. Pescape, “Packet-level prediction of mobile-app traffic using mul-
titask deep learning,” Computer Networks, vol. 200, p. 108529, 2021.
D. Andreoletti, S. Troia, F. Musumeci, S. Giordano, G. Maier, and
M. Tornatore, “Network traffic prediction based on diffusion convolu-
tional recurrent neural networks,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2019, pp. 246-251.

I. Lohrasbinasab, A. Shahraki, A. Taherkordi, and A. Delia Jurcut,
“From statistical-to machine learning-based network traffic prediction,”
Transactions on Emerging Telecommunications Technologies, vol. 33,
no. 4, p. e4394, 2022.

L. Tang, J. Li, H. Du, L. Li, J. Wu, and S. Wang, “Big data in
forecasting research: a literature review,” Big Data Research, vol. 27,
p. 100289, 2022.

T. HoBfeld and A. Binzenhofer, “Analysis of skype voip traffic in umts:
End-to-end qos and qoe measurements,” Computer Networks, vol. 52,
no. 3, pp. 650-666, 2008.

F. Agboma, M. Smy, and A. Liotta, “Qoe analysis of a peer-to-peer
television system,” in Proceedings of IADISInt. Conf. on Telecommu-
nications, Networks and Systems, 2008, pp. 365-382.

G. Dimopoulos, 1. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring video qoe from encrypted traffic,” in Proceedings of the
2016 Internet Measurement Conference, 2016, pp. 513-526.

I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “Youtube
qoe estimation based on the analysis of encrypted network traffic using
machine learning,” in 2016 IEEE Globecom Workshops (GC Wkshps).
IEEE, 2016, pp. 1-6.

M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience
monitoring for https and quic,” in /[EEE INFOCOM 2018-1EEE Con-
ference on Computer Communications. 1EEE, 2018, pp. 1331-1339.
D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining
light in dark places: Understanding the tor network,” in International
symposium on privacy enhancing technologies symposium. Springer,
2008, pp. 63-76.

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

35

M. Perry, “Experimental defense for website
traffic fingerprinting,” https://blog.torproject.org/
experimental-defense- website-traffic-fingerprinting/, posted: 2011-09-
05.

“Shadowsocks - a fast tunnel proxy that helps you bypass firewalls,”
https://shadowsocks.org/, accessed: 2022-02-11.

S. Mistry and B. Raman, “Quantifying traffic analysis of encrypted
web-browsing.” 1998, project paper.

Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu, “Statistical identification of encrypted web browsing traffic,” in
Proceedings 2002 IEEE Symposium on Security and Privacy. 1EEE,
2002, pp. 19-30.

M. Liberatore and B. N. Levine, “Inferring the source of encrypted http
connections,” in Proceedings of the 13th ACM conference on Computer
and communications security, 2006, pp. 255-263.

D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial
naive-bayes classifier,” in Proceedings of the 2009 ACM workshop on
Cloud computing security, 2009, pp. 31-42.

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proceed-
ings of the 10th annual ACM workshop on Privacy in the electronic
society, 2011, pp. 103-114.

T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Ef-
fective attacks and provable defenses for website fingerprinting,” in
23rd USENIX Security Symposium (USENIX Security 14), 2014, pp.
143-157.

J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 1187-1203.

V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” 2017.

P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 1928-1943.

P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting with
n-shot learning,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 1131-1148.

Y. Wang, H. Xu, Z. Guo, Z. Qin, and K. Ren, “Snwf: website
fingerprinting attack by ensembling the snapshot of deep learning,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
1214-1226, 2022.

X. Deng, Q. Yin, Z. Liu, X. Zhao, Q. Li, M. Xu, K. Xu, and J. Wu,
“Robust multi-tab website fingerprinting attacks in the wild,” in 2023
IEEE Symposium on Security and Privacy (SP). 1EEE, 2023, pp.
1005-1022.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Rfc2616: Hypertext transfer protocol-http/1.1,” 1999.
A. Hintz, “Fingerprinting websites using traffic analysis,” in Interna-
tional workshop on privacy enhancing technologies. Springer, 2002,
pp- 171-178.

L. Lu, E.-C. Chang, and M. C. Chan, “Website fingerprinting and iden-
tification using ordered feature sequences,” in European Symposium on
Research in Computer Security. Springer, 2010, pp. 199-214.

S. J. Murdoch and R. N. Watson, “Metrics for security and performance
in low-latency anonymity systems,” in International Symposium on
Privacy Enhancing Technologies Symposium. Springer, 2008, pp. 115—
132.

W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Fil-
ter, T. Engel, K. Wehrle, and A. Panchenko, “Trafficsliver: Fighting
website fingerprinting attacks with traffic splitting,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1971-1985.

R. Dingledine and N. Mathewson, “Tor protocol specification,” https:
//gitweb.torproject.org/torspec.git/tree/tor-spec.txt, date of visit: 2021-
10-05.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
i still see you: Why efficient traffic analysis countermeasures fail,” in
2012 IEEE symposium on security and privacy. 1EEE, 2012, pp.
332-346.

T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in
Proceedings of the 12th ACM workshop on Workshop on privacy in
the electronic society, 2013, pp. 201-212.

M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in Proceedings of the 2014


https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting/
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting/
https://shadowsocks.org/
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

ACM SIGSAC Conference on Computer and Communications Security,
2014, pp. 263-274.

A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale.” in NDSS,
2016.

X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A sys-
tematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 227-238.

T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 1375-1390.

M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an
efficient website fingerprinting defense,” in European Symposium on
Research in Computer Security. Springer, 2016, pp. 27-46.

K. Abe and S. Goto, “Fingerprinting attack on tor anonymity using deep
learning,” Proceedings of the Asia-Pacific Advanced Network, vol. 42,
pp. 15-20, 2016.

S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-cnn: A data-efficient
website fingerprinting attack based on deep learning,” Proceedings on
Privacy Enhancing Technologies, vol. 1, p. 19.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

S. E. Oh, S. Sunkam, and N. Hopper, “-fp: Extraction, classification,
and prediction of website fingerprints with deep learning,” Proceedings
on Privacy Enhancing Technologies, vol. 2019, no. 3, pp. 191-209,
2019.

C. Wang, J. Dani, X. Li, X. Jia, and B. Wang, “Adaptive fingerprinting:
website fingerprinting over few encrypted traffic,” in Proceedings of
the Eleventh ACM Conference on Data and Application Security and
Privacy, 2021, pp. 149-160.

N. P. Hoang, A. A. Niaki, P. Gill, and M. Polychronakis, “Domain
name encryption is not enough: privacy leakage via ip-based website
fingerprinting,” Proceedings on Privacy Enhancing Technologies, vol.
2021, no. 4, pp. 420-440, 2021.

O. Ajao, J. Hong, and W. Liu, “A survey of location inference
techniques on twitter,” Journal of Information Science, vol. 41, no. 6,
pp. 855-864, 2015.

Y. Ikawa, M. Enoki, and M. Tatsubori, “Location inference using mi-
croblog messages,” in Proceedings of the 21st international conference
on world wide web, 2012, pp. 687-690.

J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accom-
plice: Location inference using accelerometers on smartphones,” in
2012 Fourth International Conference on Communication Systems and
Networks (COMSNETS 2012). 1EEE, 2012, pp. 1-9.

A. Gallagher, D. Joshi, J. Yu, and J. Luo, “Geo-location inference
from image content and user tags,” in 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops.
IEEE, 2009, pp. 55-62.

I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Measuring
serendipity: connecting people, locations and interests in a mobile 3g
network,” in Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement, 2009, pp. 267-279.

A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Contextual
localization through network traffic analysis,” in I[EEE INFOCOM
2014-1EEE Conference on Computer Communications. 1EEE, 2014,
pp. 925-933.

F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding mobile
traffic patterns of large scale cellular towers in urban environment,”
IEEE/ACM transactions on networking, vol. 25, no. 2, pp. 1147-1161,
2016.

H. Wang, F. Xu, Y. Li, P. Zhang, and D. Jin, “Understanding mobile
traffic patterns of large scale cellular towers in urban environment,” in
Proceedings of the 2015 Internet Measurement Conference, 2015, pp.
225-238.

F. Xu, Y. Lin, J. Huang, D. Wu, H. Shi, J. Song, and Y. Li, “Big
data driven mobile traffic understanding and forecasting: A time series
approach,” IEEE transactions on services computing, vol. 9, no. 5, pp.
796-805, 2016.

R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein, “Passive op-
erating system identification from tcp/ip packet headers,” in Workshop
on Data Mining for Computer Security, vol. 40, 2003.

Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu, “Os fingerprinting
and tethering detection in mobile networks,” in Proceedings of the 2014
Conference on Internet Measurement Conference, 2014, pp. 173-180.

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

36

M. Lastovicka, S. §paéek, P. Velan, and P. Celeda, “Using tls finger-
prints for os identification in encrypted traffic,” in NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium. 1EEE,
2020, pp. 1-6.

N. Ruffing, Y. Zhu, R. Libertini, Y. Guan, and R. Bettati, “Smart-
phone reconnaissance: Operating system identification,” in 2016 13th
IEEE Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 2016, pp. 1086-1091.

M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Network traffic classifier with convolutional and recurrent neural
networks for internet of things,” IEEE access, vol. 5, pp. 18 042—18 050,
2017.

Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.
Tippenhauer, and Y. Elovici, “Profiliot: a machine learning approach
for iot device identification based on network traffic analysis,” in
Proceedings of the symposium on applied computing, 2017, pp. 506—
509.

A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745-1759, 2018.

H. Yao, P. Gao, J. Wang, P. Zhang, C. Jiang, and Z. Han, “Capsule
network assisted iot traffic classification mechanism for smart cities,”
IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7515-7525, 2019.
L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
“Traffic classification on the fly,” ACM SIGCOMM Computer Commu-
nication Review, vol. 36, no. 2, pp. 23-26, 2006.

T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel
traffic classification in the dark,” in Proceedings of the 2005 confer-
ence on Applications, technologies, architectures, and protocols for
computer communications, 2005, pp. 229-240.

L. Bernaille and R. Teixeira, “Early recognition of encrypted appli-
cations,” in International Conference on Passive and Active Network
Measurement. Springer, 2007, pp. 165-175.

L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identi-
fication,” in Proceedings of the 2006 ACM CoNEXT conference, 2006,
pp. 1-12.

A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering
using machine learning techniques,” in International workshop on
passive and active network measurement. Springer, 2004, pp. 205—
214.

A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, 2005, pp. 50-60.

Z. Chen, K. He, J. Li, and Y. Geng, “Seq2img: A sequence-to-image
based approach towards ip traffic classification using convolutional
neural networks,” in 2017 IEEE International conference on big data
(big data). 1EEE, 2017, pp. 1271-1276.

J. Zhao, Q. Li, Y. Hong, and M. Shen, “Metarocketc: Adaptive
encrypted traffic classification in complex network environments via
time series analysis and meta-learning,” IEEE Transactions on Network
and Service Management, vol. 21, no. 2, pp. 2460-2476, 2024.

Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you did on
your smartphone: Inferring app usage over encrypted data traffic,” in
2015 IEEE conference on communications and network security (CNS).
IEEE, 2015, pp. 433-441.

V. F. Taylor, R. Spolaor, M. Conti, and 1. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016, pp. 439-454.

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Multi-
classification approaches for classifying mobile app traffic,” Journal
of Network and Computer Applications, vol. 103, pp. 131-145, 2018.
T.-D. Pham, T.-L. Ho, T. Truong-Huu, T.-D. Cao, and H.-L. Truong,
“Mappgraph: Mobile-app classification on encrypted network traffic
using deep graph convolution neural networks,” in Proceedings of the
37th Annual Computer Security Applications Conference, 2021, pp.
1025-1038.

F. Aiolli, M. Conti, A. Gangwal, and M. Polato, “Mind your wallet’s
privacy: identifying bitcoin wallet apps and user’s actions through
network traffic analysis,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, 2019, pp. 1484-1491.

M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate decentralized
application identification via encrypted traffic analysis using graph
neural networks,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 2367-2380, 2021.



[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smart-
phone app identification via encrypted network traffic analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 1, pp.
63-78, 2017.

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning: Experimental evaluation,
lessons learned, and challenges,” IEEE Transactions on Network and
Service Management, vol. 16, no. 2, pp. 445458, 2019.

S. E. Coull and K. P. Dyer, “Traffic analysis of encrypted messaging
services: Apple imessage and beyond,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 5-11, 2014.

C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson,
“Spot me if you can: Uncovering spoken phrases in encrypted voip
conversations,” in 2008 IEEE Symposium on Security and Privacy (sp
2008). IEEE, 2008, pp. 35-49.

M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
android encrypted network traffic to identify user actions,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 1,
pp. 114-125, 2015.

B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, “Eavesdropping on fine-grained user activities
within smartphone apps over encrypted network traffic,” in 70th
{USENIX} Workshop on Offensive Technologies ({WOOT} 16), 2016.
F. Yan, M. Xu, T. Qiao, T. Wu, X. Yang, N. Zheng, and K.-K. R.
Choo, “Identifying wechat red packets and fund transfers via analyzing
encrypted network traffic,” in 2018 17th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications/12th
IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE). 1EEE, 2018, pp. 1426-1432.

Y. Wang, N. Zheng, M. Xu, T. Qiao, Q. Zhang, F. Yan, and J. Xu,
“Hierarchical identifier: Application to user privacy eavesdropping on
mobile payment app,” Sensors, vol. 19, no. 14, p. 3052, 2019.

F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding online social network usage from a network perspective,”
in Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement, 2009, pp. 35-48.

Y. Feng, “Botflowmon: Identify social bot traffic with netflow and
machine learning,” 2018.

M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Can’t you
hear me knocking: Identification of user actions on android apps via
traffic analysis,” in Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy, 2015, pp. 297-304.

Y. Zhao, X. Ma, J. Li, S. Yu, and W. Li, “Revisiting website fingerprint-
ing attacks in real-world scenarios: A case study of shadowsocks,” in
International Conference on Network and System Security. Springer,
2018, pp. 319-336.

R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website
fingerprinting defense,” in Proceedings of the 13th Workshop on
Privacy in the Electronic Society, 2014, pp. 131-134.

A. J. Pinheiro, P. Freitas de Araujo-Filho, J. de M. Bezerra, and
D. R. Campelo, “Adaptive packet padding approach for smart home
networks: A tradeoff between privacy and performance,” IEEE Internet
of Things Journal, vol. 8, no. 5, pp. 3930-3938, 2021.

J. Gong and T. Wang, “Zero-delay lightweight defenses against website
fingerprinting,” in 29th USENIX Security Symposium (USENIX Security
20), 2020, pp. 717-734.

C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An
efficient defense against statistical traffic analysis.” in NDSS, vol. 9.
Citeseer, 2009.

X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, R. Perdisci et al.,
“Httpos: Sealing information leaks with browser-side obfuscation of
encrypted flows.” in NDSS, vol. 11, 2011.

G. Cherubin, J. Hayes, and M. Judrez, “Website fingerprinting defenses
at the application layer.” Proc. Priv. Enhancing Technol., vol. 2017,
no. 2, pp. 186-203, 2017.

Z. Deng, Z. Liu, Z. Chen, and Y. Guo, “The random forest based detec-
tion of shadowsock’s traffic,” in 2017 9th International Conference on
Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 2.
IEEE, 2017, pp. 75-78.

J. Beznazwy and A. Houmansadr, “How china detects and blocks
shadowsocks,” in Proceedings of the ACM Internet Measurement
Conference, 2020, pp. 111-124.

G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related,” in
Proceedings of the 2nd international conference on information systems
security and privacy (ICISSP). sn, 2016, pp. 407—414.

[283]

[284]

[285]

[286]

[287]

[288]

[289]

[290]

[291]

[292]

[293]

[294]

[295]

[296]

[297]

[298]

[299]

[300]

[301]

[302]

[303]

[304]

37

P. Choorod and G. Weir, “Tor traffic classification based on encrypted
payload characteristics,” in 2021 National Computing Colleges Con-
ference (NCCC). IEEE, 2021, pp. 1-6.

I. Goldberg and C. A. Wood, “Network-based website fingerprinting,”
https://datatracker.ietf.org/doc/html/draft- wood- privsec- wfattacks-00,
2019.

“New tor release: Tor 0.4.0.5” |https://blog.torproject.org/
new-release-tor-0405/, 2019, accessed: 2022-02-15.

S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 1977-1992.

X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society, 2014, pp. 121-130.
D. Lu, S. Bhat, A. Kwon, and S. Devadas, “Dynaflow: An efficient
website fingerprinting defense based on dynamically-adjusting flows,”
in Proceedings of the 2018 Workshop on Privacy in the Electronic
Society, 2018, pp. 109-113.

S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran, “Pro-
tecting against website fingerprinting with multihoming,” Proceedings
on Privacy Enhancing Technologies, vol. 2020, no. 2, pp. 89-110,
2020.

T. Wang, “The one-page setting: A higher standard for evaluating
website fingerprinting defenses,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021,
pp. 2794-2806.

mikeperry, “Experimental defense for website
traffic fingerprinting,” https://blog.torproject.org/
experimental-defense- website-traffic-fingerprinting/, 2011, accessed:
2022-02-11.

A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-
Rodriguez, and J. Yuan, “Survey on uav cellular communications: Prac-
tical aspects, standardization advancements, regulation, and security
challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4,
pp. 3417-3442, 2019.

J. Whelan, A. Almehmadi, and K. El-Khatib, “Artificial intelligence for
intrusion detection systems in unmanned aerial vehicles,” Computers
and Electrical Engineering, vol. 99, p. 107784, 2022.

K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity
for autonomous vehicles: Review of attacks and defense,” Computers
& Security, vol. 103, p. 102150, 2021.

K. M. Ali Alheeti and K. McDonald-Maier, “Intelligent intrusion
detection in external communication systems for autonomous vehicles,”
Systems Science & Control Engineering, vol. 6, no. 1, pp. 48-56, 2018.
Y. Feng, J. Li, and T. Nguyen, “Application-layer ddos defense with
reinforcement learning,” in 2020 IEEE/ACM 28th International Sym-
posium on Quality of Service (IWQoS). 1EEE, 2020, pp. 1-10.

W. Wang, Y. Shang, Y. He, Y. Li, and J. Liu, “Botmark: Automated
botnet detection with hybrid analysis of flow-based and graph-based
traffic behaviors,” Information Sciences, vol. 511, pp. 284-296, 2020.
M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
anomaly detection: methods, systems and tools,” leee communications
surveys & tutorials, vol. 16, no. 1, pp. 303-336, 2013.

S. Barnum, “Standardizing cyber threat intelligence information with
the structured threat information expression (stix),” Mitre Corporation,
vol. 11, pp. 1-22, 2012.

OpenAl, “Chatgpt,” 2023, [Online]. Available: https://openai.com/
chatgptl

A. Nascita, G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “A survey on explainable artificial intelligence for internet
traffic classification and prediction, and intrusion detection,” IEEE
Communications Surveys & Tutorials, 2024.

D. Han, Z. Wang, W. Chen, Y. Zhong, S. Wang, H. Zhang, J. Yang,
X. Shi, and X. Yin, “Deepaid: Interpreting and improving deep
learning-based anomaly detection in security applications,” in Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 3197-3217.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” Advances in neural information processing systems,
vol. 30, 2017.

M. T. Ribeiro, S. Singh, and C. Guestrin, “”’ why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135-1144.


https://datatracker.ietf.org/doc/html/draft-wood-privsec-wfattacks-00
https://blog.torproject.org/new-release-tor-0405/
https://blog.torproject.org/new-release-tor-0405/
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting/
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting/
https://openai.com/chatgpt
https://openai.com/chatgpt

[305] G. Plumb, D. Molitor, and A. S. Talwalkar, “Model agnostic super-
vised local explanations,” Advances in neural information processing
systems, vol. 31, 2018.

V. Belle and 1. Papantonis, “Principles and practice of explainable
machine learning,” Frontiers in big Data, p. 39, 2021.

U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh,
R. Puri, J. M. Moura, and P. Eckersley, “Explainable machine learning
in deployment,” in Proceedings of the 2020 conference on fairness,
accountability, and transparency, 2020, pp. 648-657.

Y. Feng, J. Xu, and L. Weymouth, “University blockchain research
initiative (ubri): Boosting blockchain education and research,” IEEE
Potentials, vol. 41, no. 6, pp. 19-25, 2022.

[306]

[307]

[308]

Yebo Feng is a research fellow in the College of
Computing and Data Science (CCDS) at Nanyang
Technological University (NTU). He received his
Ph.D. degree in Computer Science from the Univer-
sity of Oregon (UO) in 2023. His research interests
include network security, blockchain security, and
anomaly detection. He is the recipient of the Best
Paper Award of 2019 IEEE CNS, Gurdeep Pall
Graduate Student Fellowship of UO, and Ripple
Research Fellowship. He has served as the reviewer
of IEEE TDSC, IEEE TIFS, ACM TKDD, IEEE
JSAC, IEEE COMST, etc. Furthermore, he has been a member of the
program committees for international conferences including SDM, CIKM,
and CYBER, and has also served on the Artifact Evaluation (AE) committees
for USENIX OSDI and USENIX ATC.

Jun Li is a professor in the Department of Computer
Science and director of the Network and Security
Research Laboratory at the University of Oregon. He
was also a Ripple Fellow, Narus Research Fellow,
and founding director of the Center for Cyber Secu-
rity and Privacy at the University of Oregon. He has
received the CAREER Award from the US National
Science Foundation, the Faculty Excellence Award
from the University of Oregon, and the Recognition
of Service Award from ACM. He received his Ph.D.
with honors from UCLA in 2002. His research in-
terests include networking, distributed systems, cybersecurity, and blockchain.
He has published more than 100 peer-reviewed papers, including several Best
Paper awards.

Jelena Mirkovic is Research Team Leader at USC
Information Sciences Institute and Research Asso-
ciate Professor of Computer Science at USC. During
her professional career she published more than 100
conference and journal papers, and the first book on
the denial-of-service attacks. She also pioneered use
of testbeds in cybersecurity education. Her research
interests span cybersecurity, networking and educa-
tion.

38

Cong Wu is currently a research fellow at School of
Computer Science and Engineering, Nanyang Tech-
nological University, Singapore. He received Ph.D.
degree at School of Cyber Science and Engineering,
Wuhan University in 2022. His research interests
include AI system security and Web3 security. His
research outcomes have appeared in USENIX Secu-
rity, ACM CCS, IEEE TDSC, TIFS.

Chong Wang received the bachelor’s and PhD
degrees from Fudan University, in 2018. He is
currently a research fellow at Cyber Security Lab-
oratory, Nanyang Technologicai University. His re-
search interests lie in the crossroads between artifi-
cial intelligence and software engineering. His over-
arching research mission revolves around enhancing
both productivity and security within the realm of
software development. He has published multiple
papers in international journals and conferences,
such as the IEEE Transactions on Software Engi-
neering (TSE), ACM Transactions on Software Engineering and Methodology
(TOSEM), ACM Symposium on the Foundations of Software Engineering
(FSE), IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) and IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER).

Hao Ren was a Research Fellow at Nanyang Tech-
nological University, Singapore. He received his

l . ¥ Ph.D. degree in Dec. 2020 from the University of
E Electronic Science and Technology of China. He
-“'\"'L‘" F was a visiting Ph.D. student at the University of
- Waterloo from Dec. 2018 to Jan. 2020. He has

A

published papers in major conferences/journals, in-
cluding ACM ASIACCS, ACSAC, IEEE TCC, and
IEEE Network. He won the Best Paper Award from
IEEE BigDataSecurity 2023. His research interests
include applied cryptography and privacy-preserving

b o
N

machine learning.

Jiahua Xu is Associate Professor in Financial
Computing, and Programme Director of the MSc
Emerging Digital Technologies at UCL. She is also
affiliated to the UCL Centre for Blockchain Tech-
nologies. Her research focuses on blockchain eco-
nomics and decentralized finance. She has published
in Usenix Security, ACM IMC, FC, IEEE ICDCS
and IEEE ICBC. She has reviewed for Advances
in Complex Systems, Computer Networks, Transac-
tions on the Web and Cities.




Yang Liu is currently a full professor and the
director of the cyber security lab in Nanyang Tech-
nological University, Singapore. He specializes in
software security, verification, software engineering
and artificial intelligence. His research has bridged
the gap between the theory and practical usage of
formal methods and program analysis to evaluate
the design and implementation of software for high
assurance and security. His work led to the devel-
opment of state-of-the-art model checker, Process
Analysis Toolkit (PAT). By now, he has more than
200 publications and 6 best paper awards in top tier conferences and journals.
With more than 50 million Singapore dollar funding support, he is leading a
large research team working on state-of-the-art software engineering and cyber
security problems and currently serving as an associated editor of TIFS.

39



	Introduction
	Related Work
	Traffic Input
	Passive and Active TA
	Network Observation Point
	Traffic Data Acquiring
	Packet-level capture
	Flow-level capture

	Widely used traffic capture engines
	Packet-level traffic capture engines
	Flow-level traffic capture engines


	Methodology
	Pipeline
	Feature extraction
	Classification and prediction approach
	Traditional statistical approach
	Rule-based approach
	Probabilistic approach
	Supervised machine learning
	Unsupervised machine learning
	Hybrid approach

	Evaluation metrics
	Classification efficacy
	Efficiency
	Other metrics


	Use Cases and Representative Approaches
	Attack/Anomaly Detection
	Intrusion detection
	Malware detection
	Data exfiltration detection
	Others

	Fine-Grained Quality of Experience Investigation
	Website Fingerprinting
	Early development of WFP
	Defeat encrypted tunnel
	WFP in Tor era

	Location Inference
	Contextual location inference
	Geographical location inference

	Device/OS Identification
	OS identification
	IoT device identification

	Application Identification
	Application identification for general-purpose devices
	Mobile application identification
	Application identification on other platforms

	Application Usage Inference
	Messager/Online social network usage inference
	Streaming service usage inference
	General-purpose application usage inference
	Others


	Limitations
	Coverage of Training Data
	Uncertainties in Real-world Environments
	False Alarms
	Integrity of Network Traffic
	Traffic Obfuscation
	Performance Overhead
	Scalability

	Countermeasures
	Network-layer Countermeasures
	Application-layer Countermeasures

	Future Research Direction
	Improvement of Analysis Efficacy and Coverage
	Evaluation Enhancement
	Dealing with Complex Network Environments
	Integrating FGTA into Other Analytical Systems
	Cutting Edge Technologies for FGTA
	Enhancing the Explainability of FGTA

	Conclusion
	References
	Biographies
	Yebo Feng
	Jun Li
	Jelena Mirkovic
	Cong Wu
	Chong Wang
	Hao Ren
	Jiahua Xu
	Yang Liu


