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CSIPose: Unveiling Human Poses Using Commodity
WiFi Devices Through the Wall

Yangyang Gu , Jing Chen , Congrui Chen, Kun He , Ju Jia , Yebo Feng , Ruiying Du , and Cong Wu

Abstract—The popularity of WiFi devices and the development
of WiFi sensing have alerted people to the threat of WiFi sensing-
based privacy leakage, especially the privacy of human poses.
Existing work on human pose estimation is deployed in indoor
scenarios or simple occlusion (e.g., a wooden screen) scenarios,
which are less privacy-threatening in attack scenarios. To reveal the
risk of leakage of the pose privacy to users from commodity WiFi
devices, we propose CSIPose, a privacy-acquisition attack that
passively estimates dynamic and static human poses in through-
the-wall scenarios. We design a three-branch network based on
transfer learning, auto-encoder, and self-attention mechanisms to
realize the supervision of video frames over CSI frames to generate
human pose skeleton frames. Notably, we design AveCSI, a unified
framework for preprocessing and feature extraction of CSI data
corresponding to dynamic and static poses. This framework uses
the average of CSI measurements to generate CSI frames to mit-
igate the instability of passively collected CSI data, and utilizes a
self-attention mechanism to enhance key features. We evaluate the
performance of CSIPose across different room layouts, subjects,
devices, subject locations, and device locations. Evaluation results
emphasize the generalizability of CSIPose. Finally, we discuss mea-
sures to mitigate this attack.

Index Terms—Channel state information, human pose
estimation, human privacy, through the wall.

I. INTRODUCTION

W IFI devices, ubiquitous in modern daily life, continue
their growth with global WiFi device shipments pro-

jected to increase at a 20% compound annual growth rate from
2023 to 2028 [1]. Despite its convenience and speed, WiFi raises
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significant privacy concerns [2]. These concerns are amplified
by advances in WiFi sensing, particularly through Channel
State Information (CSI) [2], [3]. A notable privacy risk is the
unauthorized use of WiFi for human sensing. An example is the
see-through attack: exploiting WiFi signals for passive human
pose estimation in Through-The-Wall (TTW) scenarios.

Researches in body pose estimation have seen varied methods,
including the use of custom antennas [4], [5], [6] or multiple
receivers [7], [8], [9], [10]. These methods capitalize on how the
human body reflects WiFi signals, with some employing deep
learning techniques in both Line-of-Sight (LoS) and Non-Line-
of-Sight (NLoS) scenarios [4], [5], [7], [8], [9], [10], [11], [12],
[13]. Of particular interest is the NLoS scenario, which poses
a potential attack scenario where the transmitter and receiver
are situated on opposite sides of an obstruction. Most studies
only consider simple obstructions, such as wooden boards [4],
[8], [13]. GoPose [5] deals with walls yet places the receiver
and the subject on the same side of the wall, which makes CSI
loss less information than when the subject and the transmitter
are on the same side as detailed in Section II-C. Current works
requiring controlled transmitters to emit specific signals (such
as transmitting 1000 packets per second) are less applicable to
real attack scenarios. Manipulating a transmitter or customizing
a receiver is demanding for an attacker. Scenarios with only
a wooden screen or co-location of receiver and subject pose
limited privacy risks.

A fundamental challenge for the practical body pose expos-
ing attack using CSI is realizing the supervision of stabilized
video frames over non-stabilized CSI data during training, and
extracting features from attenuated CSI data through walls for
both dynamic and static body pose estimation. Using body poses
from each frame is feasible due to the fixed video frame rate.
However, passively collected CSI data often contains a variable
number of measurements within a fixed time interval, especially
when the attacker has no control over indoor commercial WiFi
devices. The impact of the same pose on CSI varies in static and
dynamic settings as explained in Section II-B.

To overcome this challenge, we present AveCSI, a novel
framework for preprocessing CSI data and extracting essential
features for static and dynamic human pose estimation. Specif-
ically, inspired by [14], it first purifies CSI data using a com-
binatorial method to amplify the impact of the human body on
CSI. Next, AveCSI splits the CSI sequence into sub-sequences
at a fixed time interval, which is consistent with the frame rate
of the supervised video during training and remains constant
during testing. Notably, AveCSI adopts the strategy of using
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an average CSI measurement of the sub-sequence as the CSI
frame, rather than using the equal-number CSI measurements
as the CSI frame [10], [13]. This strategy can avoid leading
to large differences in the amplitude frames within the same
pose when the difference in the number of CSI measurements
within a fixed duration is too large. And it also provides the
basis to use the same network framework to train dynamic and
static human pose estimation models. Finally, to extract effective
features from CSI data that losses more information in TTW
scenarios, AveCSI incorporates a three-layer network: 1) a Long
Short-Term Memory (LSTM) layer to extract distributional fea-
tures between subcarriers, 2) a convolutional layer to augment
these features, and 3) a Self-Attention (SA) module to extract
representative features from CSI data to improve the accuracy
of the pose estimation.

In this paper, we introduce CSIPose, a privacy-acquisition at-
tack designed to estimate dynamic and static human poses using
the CSI collected via commodity devices in TTW scenarios. To
estimate human poses, we propose an innovative three-branch
network that fuses the principles of transfer learning [15] and
self-attention. Specifically, we first train an Auto-Encoder (AE)
network to learn how to represent and reconstruct skeleton
frames using Ground-Truth (GT) human pose skeleton frames
as input, which are generated by OpenPose [16]. Then, based
on the idea of transfer learning, we inherit the parameters of
this AE network and combine it with CSI data to train human
pose skeleton frame estimation models with CSI as input. The
self-attention layer is embedded into the feature extraction com-
ponents of the network to improve the feature representation.

In the training process, the initial branch employs the GT
skeleton frames as input to an AE network. This branch serves
to pre-train an encoder (i.e., skeleton encoder) and a decoder
(i.e., skeleton reconstruction) to improve the efficiency of sub-
sequent branches. The second branch, building upon skeleton
frames and inheriting initial parameters from the first branch,
consists of an encoder and a decoder. Simultaneously, the third
branch incorporates CSI frames as input, integrating the AveCSI
framework and a shared decoder with the second branch. This
supervision is executed by designing comprehensive loss func-
tions, which contain constraints between the encoder outputs and
constraints between the decoder outputs. In the attack phase, the
trained AveCSI framework and decoder are directly employed
to estimate skeleton frames based on CSI data.

In summary, the core contributions are as follows.
� We discover a new privacy-acquisition attack, CSIPose,

that can passively estimate dynamic and static body poses
in TTW scenarios. This attack reveals that commodity WiFi
devices can be used for passively exposing the privacy of
human poses even in TTW scenarios.

� We design AveCSI, a framework for preprocessing CSI data
and extracting features for human pose estimation. We also
design a three-branch network to train the pose estimation
model based on the ideas of transfer learning and self-
attention.

� We invite ten volunteers to evaluate seven WiFi devices
in six different rooms. Results show the robustness of
our attack on unseen devices and subjects in the training

dataset. In particular, with a concrete thickness of up to 20
centimeters, our attack is still able to estimate dynamic and
static human poses with an average accuracy of 93.27% and
83.22%, respectively. Our dataset and source codes will
be available at https://github.com/luojiazhishu/CSIPose-
code.

II. PRELIMINARIES AND ATTACK MODEL

In this section, we introduce the preliminaries of CSI signal
and CSI affected by dynamic and static poses and discuss the
attack model.

A. CSI Signal

CSI can characterize how a signal travels multiple paths from
the transmitter to the receiver [17], [18]. Specifically, if a signal
with carrier frequency f arrives at the receiver through M
different paths, then the CSI value H(f, t) can be denoted as:

H(f, t) =

M∑
j=1

ωj(t)e
−i2πfτj(t), (1)

where ωj(t) and τj(t) are the amplitude attenuation factor
and the propagation delay of the jth path, respectively. When
a person is in the physical channel, he or she will have an
impact on the CSI even in TTW scenarios [19]. Therefore,
we have an opportunity to decode human poses from the CSI
measurement. In general, CSI can be directly exported from the
network interface card [3], [20], [21], and a CSI measurement
h(t) contains N Orthogonal Frequency Division Multiplexing
(OFDM) subcarriers and can be denoted as:

h(t) = [H(f1, t), H(f2, t), . . . , H(fN , t)] , (2)

where H(fN , t) can also be denoted as H(fN , t) =
|H(fN , t)|ei∠H(fN ,t) with the amplitude |H(fN , t)| and the
phase ∠H(fN , t) [22], [23]. In our work, we use the commodity
mobile device with a single antenna as the detector to demon-
strate the strong applicability of our attack. Therefore, we only
exploit the CSI amplitude, since it is more reliable than the CSI
phase when using a single antenna to collect CSI [14], [17], [24],
[25] and the CSI phase does not show better performance in our
evaluations as shown in Section VI-B. In what follows, the term
CSI measurement generally refers to the amplitude of the CSI
measurement if not otherwise specified.

B. CSI Affected by Dynamic and Static Poses

The impact of the same pose on CSI varies distinctly between
static and dynamic contexts. Consider, for instance, a static
scenario where the subject holds the left arm flat at the side
of the body, compared to a dynamic scenario where the subject
gradually transitions the left arm from hanging down to holding
it flat and then lowering it. Despite both scenarios involving the
pose of holding the left arm flat, the individual CSI measure-
ment patterns differ. Fig. 1(a) and (b) visually represent partial
CSI measurements in dynamic and static contexts, respectively.
The correlation coefficient between the CSI measurements in
Fig. 1(a) and (b) reaches a maximum value of only 0.9304. In
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Fig. 1. (a) Partial CSI measurements when a subject gradually moves the left
arm from hanging down at the side of the body to holding it flat and then lowering
it. (b) Partial CSI measurements when a subject holds the left arm flat at the side
of the body.

Fig. 2. Signal propagation of the moving subject on (a) the receiver side and
on (b) the transmitter side.

contrast, the correlation coefficient between the CSI measure-
ments in Fig. 1(b) has a minimum value of 0.9528, with most
coefficients exceeding 0.98.

While (1) and (2) indicate that the CSI measurement com-
prises values for multiple subcarriers primarily influenced by the
current multipath signal, it’s essential to note that CSI, designed
to enhance communication quality [18], results in the transmit
signal at the current moment being influenced by prior CSI.
Consequently, in both static and dynamic contexts, the CSI
pattern for the same pose exhibits notable differences.

C. CSI Affected by the Relative Location Between the Subject
and the Transceiver

When the body and the transmitter are on the same side of
the wall, more information related to the human pose is lost. We
consider a signal undergoes multiple paths to reach the receiver
Rx from the transmitter Tx. When there is a moving subject in
the path, we can model CSI as a linear superposition of dynamic
and static paths.

H(f, t) = Hd(f, t) +Hs(f, t), (3)

whereHd(f, t) andHs(f, t) are signal components correspond-
ing to dynamic paths and static paths. When the transceiver
is on both sides of a wall, we can model the signal propaga-
tion [26]. As shown in Fig. 2, when the direct propagation path of
the transceiver is perpendicular to the wall, we can represent
the static path as a blue dashed line. We first consider the case
where the moving subject and the receiver are on the same

Fig. 3. (a) Partial CSI measurements when a subject is on the transmitter side.
(b) Partial CSI measurements when a subject is on the receiver side.

side, as shown in Fig. 2(a). The signal arrives at point P0 of
the wall, undergoes refraction from point P ′

0, then reaches the
moving subject A. Signals reflect from different parts of A and
reach the receiver Rx through multiple paths (e.g., A → Rx

and A → P2 → Rx). The propagation paths directly affected
by A are concentrated in Room 1 where Rx is located. There-
fore, Rx can capture all the detailed information affected by
the moving subject. However, when we swap the positions of
the transceivers, the moving subject and the transmitter are
on the same side as shown in Fig. 2(b). Signals pass through
the black straight line to reach the moving object A, undergoes
reflection to reach the wall. The propagation paths directly
affected by A are concentrated in Room 1 where Tx is located.
Some paths can refract into the wall and finally penetrate out of
the wall to reach the receiver Rx (e.g., A → P0 → P ′

0 → Rx).
Others may not penetrate the wall (e.g., A → P1 and A → P2).
Therefore, some paths carrying information of A may not be
captured by Rx. As a result, more information about the human
pose is lost when the subject is on the transmitter side.

To assess the impact of the relative location between the
subject and the transceiver on CSI, we conducted an experiment
where a subject performed the wave action on both the transmit-
ter and receiver sides. This action involved uniformly raising the
right arm from the side of the body and then lowering it. Fig. 3(a)
displays partial CSI measurements collected when the subject
is on the transmitter side, while Fig. 3(b) illustrates partial CSI
measurements collected when the subject is on the receiver side.
Observing Fig. 3, it is evident that when the subject is on the
transmitter side, the changes in CSI measurements are notably
uneven and unstable. Consequently, achieving reliable signal
quality poses a more formidable challenge when the person is
positioned at the transmitter end for human pose estimation.

D. Attack Model

Consider a typical scenario where an individual, situated in his
own room, seeks to surveil his neighbor in the adjoining room.
Furthermore, we assume that both rooms share similar layouts
and wall types, as is common in commercial buildings with
consistent architectural designs between adjacent residences.
Given these premises, we assume specific capabilities for the
attacker as follows.
� The attacker lacks access to the neighbor’s WiFi network

and the ability to compromise the neighbor’s network
devices.
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Fig. 4. Workflow of CSIPose .

� The attacker possesses only commodity WiFi devices,
devoid of specialized and expensive probing equipment
or self-built antenna arrays.

� The attacker is devoid of any prior information regarding
the positions of the neighbor’s network devices (e.g., the
WiFi camera and the router). However, the attacker can
strategically position the detector in his own room using
publicly available information, such as the Received Signal
Strength Indication (RSSI).

Therefore, the attacker can only use his own data to train
human pose estimation models.

III. CSIPOSE DESIGN

In this section, we present the workflow of CSIPose as shown
in Fig. 4. Hereafter, we introduce three modules designed to
generate human skeleton frames from CSI amplitude frames.
The first module is video frame pretraining, which pre-trains
a relatively stable skeleton encoder network and skeleton re-
construction network for skeleton frame generation using real
skeleton frames as input. The second module is video and
CSI amplitude frame training, which is a two-branch network
including a skeleton encoder, an amplitude encoder, and a
sharing skeleton reconstruction network, where the skeleton
encoder and skeleton reconstruction network inherit the model
weights of the same networks in the first module. Based on
the idea of transfer learning [27], these two modules form a
three-branch training network architecture through pre-training
and parameter inheritance. The third module is CSI amplitude
frame testing, which just uses the trained amplitude encoder
and skeleton reconstruction network to generate skeleton frames
using CSI amplitude frames.

A. Video Frame Pretraining

To ensure CSI amplitude frame can accurately reconstruct
the skeleton frame, we first pre-train the skeleton encoder and
the skeleton reconstruction network only using skeleton frames
extracted from videos. Specifically, we use a commodity camera
to obtain the video and then employ OpenPose [16] to get
the Ground Truth (GT) human skeleton frames from the video
frames. Two-Dimensional (2D) human skeleton frames are the

Fig. 5. Skeleton frames of (a) 25 points and (b) 14 points.

input for the pretraining model based on AE to reconstruct
skeleton frames.

Video frame preprocessing. Initially, we use OpenPose to
extract 25-point human skeleton frames from the video. Con-
sidering the erratic body movements at the beginning of the
video and the impact of the CSI receiver’s circuitry on the CSI,
we remove the first five seconds of video frames. To simplify
the calculations and preserve the main information of the human
skeleton frame, we design a conversion method to convert the
25-point human skeleton frame to the 14-point frame, as shown
in Fig. 5. For subsequent calculations, we normalize the hori-
zontal and vertical coordinates of the skeleton map separately
to the interval [0,1] based on the pixel aspect ratio of the video.
Next, we reshape this set into a one-dimensional skeleton frame
v containing 28 values, denoted as:

v = (x1, y1, x2, y2, . . . , x14, y14) , (4)

wherex1 and y1 represent the horizontal and vertical coordinates
of the first point.

Skeleton encoder and skeleton reconstruction: We design a
skeleton encoder network and a skeleton reconstruction network
based on CNN to process GT skeleton frames. As shown in
Fig. 6, the skeleton encoder network contains four Conv2d
layers to extract features, and each layer follows a composite
layer including a BatchNorm2d layer and the LeakyReLU
activation function to reduce the risk of overfitting and introduce
nonlinearity. The skeleton frame v can be converted into a
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Fig. 6. Architecture of the skeleton encoder network and the skeleton recon-
struction network.

64-dimensional skeleton encoding p after the final self-attention
layer. The skeleton reconstruction network takes p as the input
and outputs the reconstructed skeleton frame v′. This network
contains four transposed CNN layers, and each layer follows
a composite layer with the same structure as in the skeleton
encoder. Finally, the Mean Squared Error (MSE) is calculated
between the real skeleton frame v and the reconstructed skeleton
frame v′ as follows:

Lv =
1

K

K∑
i=1

(vi − v′i)
2
, (5)

where K is the number of video frames.

B. Video and Amplitude Frame Training

In this section, we design a two-branch network to generate
skeleton frames using video frames to supervise CSI amplitude
frames. In the video frame processing branch, the skeleton
encoder and the skeleton reconstruction inherit model weights
from those in the video frame pretraining module based on
the idea of transfer learning [28]. The processed video frames
serve as direct inputs to the skeleton encoder. Following the
generation of the skeleton encoding vector, the skeleton frame
reconstruction network utilizes this vector for skeleton frame
reconstruction. As for the CSI amplitude frames processing
branch, we introduce AveCSI, a framework designed to pre-
process CSI amplitude and extract salient features. This model
comprises two key modules: CSI amplitude preprocessing and
amplitude encoder.

CSI amplitude preprocessing: A WiFi camera is used to
acquire supervised video frames in the target room and a com-
modity mobile device (e.g., a smartphone) is used as the detector
in the next room. These two devices are synchronized to collect
data by manual time calibration. Specifically, the collect button
of the detector and the video recording button of the camera
are pressed at the same second while the data is being collected.
Since static human poses are time invariant, time calibration does
not make much sense. For dynamic human poses, this manual
calibration method is sufficient due to the similarity between
CSI measurements and the coherence between dynamic actions.
Moreover, we had the same person operate the data collection

Fig. 7. Time taken by the three cameras to collect 1000 CSI measurements
(a) when the left arm is held flat, and (b) when the right arm is swinging.

each time and only collected one to two minutes of data at a
time, which kept the cumulative error small.

WiFi transmitters are common fixtures in homes with a high
Packet Transmission Rate (PTR) (e.g., cameras and routers). The
collected CSI sequence S can be denoted as:

S = [H1, H2, . . . , HM ]T , (6)

where M is the number of collected CSI measurements and
HM just represents the amplitude of the Mth CSI measurement.
Inspired by [14], we first denoise the sequence based on the
Hampel filter, whose window size is equal to the number of
collected CSI measurements. Next, we apply the 3-level Sym4
wavelet transform with a posterior median threshold rule on the
sequence to enhance the information related to human presence.

To ensure that the video frames better supervise the generation
of skeleton frames from the amplitude frames, we segment
the CSI sequence according to the frame rate of the video.
For example, if the video frame rate is 20 FPS/s, we segment
the CSI sequence at intervals of 0.05 seconds. However, the
camera’s PTR always fluctuates due to the variable bit rate
encoding, which outputs different numbers of packets depending
on the complexity of the image content [29]. Moreover, the
number of CSI measurements collected from different devices
is significantly different over the same period of time as shown
in Fig. 7. When performing CSI amplitude frames synchronized
with video frames, even the amplitude frames corresponding to
video frames of the same pose may contain different numbers of
CSI measurements due to different devices and PTR variations.

To mitigate the effect of this number of CSI measurements
on the amplitude frame, classical method to obtain amplitude
frames [10], [30] is to use linear interpolation to make the same
number of measurement at a fixed time. However, the number of
measurements over a fixed period of time varies greatly in our
scenario, so using linear interpolation to obtain amplitude frames
of the same pose with large differences in the original number
may introduce too much error and lead to large differences in the
amplitude frames within the same pose. Therefore, we apply the
method of taking the average CSI measurement at a fixed time
interval as the amplitude frame, which can avoid introducing
much error. The amplitude frame a can be denoted as:

a =
[
H1, H2, . . . , HN

]
, (7)

where HN represents the average amplitude of the Nth CSI
subcarrier. To facilitate the computation and reduce the influence
of walls on the absolute value of CSI amplitude, we scale each
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Fig. 8. Architecture of the amplitude encoder network.

frame of a to the interval [0,1] based on the global maximum of
this sequence.

Amplitude encoder: As shown in Fig. 8, the amplitude encoder
network contains three layers. The first layer is an LSTM model
with two LSTM layers to extract the distribution characteristics
across subcarriers, where the hidden state of the last time step
is used as the output of this layer. A ReLU activation function
has followed this layer. The second layer is a CNN layer to be
consistent with the output of the skeleton encoder. The third
layer contains a self-attention layer to enhance critical features.
The skeleton frame a can be converted into a 64-dimensional
amplitude encoding q. To make video frames better supervise
amplitude frames, the skeleton reconstruction network of the
amplitude encoder network and the skeleton encoder network
share weights during training.

Loss calculation: To better exploit the supervisory role of
video frames, we design loss constraints from two perspectives.
The first perspective is the output of the two encoder networks.
The skeleton encoder outputs a relatively meaningful encoding p
by inheriting the encoder parameters from the video pretraining
module. This encoding is used to guide the output of the am-
plitude encoder for efficient knowledge transfer. We use MSE
to compute the loss between the skeleton encoding p and the
amplitude encoding q as follows:

MSEpq =
1

K

K∑
i=1

(pi − qi)
2 , (8)

where K is the number of frames. The second perspective is the
output of the skeleton reconstruction network. This network gen-
erates reconstructed skeleton frames (Video) s and reconstructed
skeleton frames (CSI) z with skeleton encoding p and amplitude
encoding q as outputs, respectively. We first calculate the loss
between the two reconstructed skeleton frames (i.e., s and z) to
ensure the stability of the skeleton reconstruction network. Next,
we calculate the loss between the two reconstructed skeleton
frames (i.e., s and z) and the real skeleton frame v separately to
achieve accurate supervision and knowledge transfer from the
real skeleton frames to the reconstructed skeleton frames. We
use MSE to calculate these three losses. Finally, the objective of
the entire video and CSI amplitude frame training module is to
minimize the following loss function:

L =
1

K

K∑
i=1

(
α (pi − qi)

2 + β (si − zi)
2

+ γ (si − vi)
2 + δ (zi − vi)

2
)
, (9)

TABLE I
SPECIFIC DEVICES USED IN OUR EXPERIMENTS

where α, β, γ, and δ are weights adjusting the impact of each
objective to the overall loss function.

C. CSI Amplitude Frame Testing

After the model training, only CSI amplitude frames are
involved in the testing phase, where the amplitude encoder and
the skeleton reconstruction network inherit the corresponding
parameters from the trained model. CSI data collection and
amplitude frame generation are the same as presented in the
previous module. The fixed time interval is consistent with
that during training the model. In addition, as mentioned in
Section II-B, the same pose in static and dynamic contexts has
different impacts on CSI, so we train a skeleton reconstruction
model using static and dynamic data, respectively. As shown in
Fig. 1, there is a strong distinction between the effects of static
and dynamic poses on CSI, which can be recognized simply by
some statistical features (e.g., standard deviation [31]). There-
fore, we can calculate the standard deviation of the CSI sequence
corresponding to the amplitude frame to determine whether the
amplitude frame is an input to the static skeleton reconstruction
model or the dynamic reconstruction model.

IV. EVALUATION

In this section, we report performance evaluation results under
different setups.

A. Experimental Setup

To extract CSI measurements, we utilize the capabilities of the
CSI extraction tool, nexmon_csi [3], known for its versatility on
mobile devices. Our detector is the LG Nexus 5 smartphone.
We activate the monitor mode of the WiFi chip to ensure the
comprehensive capture of all proximate WiFi packets. In our
experimental setup, a CISCO router operating in the 2.4 GHz
band, featuring a 20MHz channel bandwidth, is designated as the
WiFi access point situated within the target room. Our work is to
reveal the privacy risks associated with commodity WiFi devices
commonly found in households. Therefore, we select devices
that are ubiquitous and have relatively high PTRs. A detailed
listing of the specific devices employed in our experiments is
provided in Table I. We use six rooms in our experiments and
some of them are as shown in Fig. 9. As shown in Fig. 10, we
collect data in one pair of adjacent rooms. Room 1 and Room
2 have the same dimensions (i.e., 8.8 m × 5.9 m) and wall
types (i.e., three sides of 20cm concrete and one side of 8cm
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Fig. 9. (a) Room 1, (b) Room 2, (c) Room 4 and (d) Room 6 used in our
experiments.

Fig. 10. Floor plan of Room 1 and Room 2.

double-glazed). Compared with Room 1 and Room 2, Rooms 3
and Room 4 have the same wall types and similar dimensions,
but different room layouts. As shown in Fig. 9(d), Room 5 and
Room 6 are discussion rooms with the size of 14.5 m × 9 m and
the wall type of two sides of 20 cm concrete and two sides of
8 cm double-glazed. In addition, Room 1&2, Room 3&4, and
Room 5&6 represent the three scenarios of our experiments.

Model settings: In the training phase, two models in the
video frame pretraining module and video and CSI ampli-
tude frame training module are trained for 1300 epochs
and 1000 epochs using the Adam optimizer with a learn-
ing rate of 0.001 respectively. The Parameter passing is im-
plemented through the torch.load_state_dict() method. For
example, if the Encoder in model1 and the Encoder in
model2 have the same network structure and model1 has
been trained, then you can use this code model1.Encoder.
load_state_dict(model2.Encoder.state_di ct()) to imple-
ment the Encoder in model2 to directly load the weights of
the Encoder in model1. Moreover, model weights and the
LeakyReLU slope are initialized with the default values. For
four weights used to adjust the overall loss function L, they are
empirically set to 1 for α and γ, to 0.5 for β, and to 0.6 for δ. The
entire network is trained and tested on a computer with Intel(R)
Core(TM) i7-8700 CPU and 16GB of RAM.

Dataset: In this study, we recruit a cohort of 10 participants
who exhibit variations in height, weight, and age to gather
data. According to poses in existing works, we define four

dynamic poses: left/right arm raised and lowered at the side
(Wave_left/right) and left/right leg raised and lowered at the side
(Leg_left/right). We also define four static poses: left/right arm
raised flat at the side (Arm_left/right), standing with the feet apart
(Stand_apart), and standing with feet closed (Stand_closed).
As shown in Fig. 10, the WiFi transmitter is positioned about
2 meters directly in front of the subject, while the detector is
positioned about 1 m away from the wall. We collect a total of
165.6K effective CSI measurements.

Baselines. To evaluate the effectiveness of our network, we
conduct comprehensive evaluations by benchmarking it against
state-of-the-art pose estimation systems. However, existing
works [4], [5], [10], [30], [32] achieve the human pose estimation
using a multi-transceiver system by actively sending custom
WiFi signals in indoor scenarios, which is significantly different
from our work on human pose estimation based on the CSI data
passively collected from one pair of transceiver antennas in TTW
scenarios. Therefore, we can only provide one-channel CSI data
from one pair of antennas for other multi-antenna systems, and
we use replicated interpolation to preprocess the data to meet
the data sampling rate requirement in the comparison works.
Moreover, we does not select some schemes [4], [5] based on
the angle of arrival due to we can not estimate accurate angles of
arrivals using a pair of antennas [31]. Specifically, we select two
representative works on human pose estimation: Avola et al. [10]
employed a two-branch network for supervised human dynamic
pose generation using video information, and Chen et al. [32]
estimated the static human pose based on a spatial encoder and
the attention mechanism.

Evaluation metrics: To evaluate the performance of CSIPose,
we follow the methodology introduced by Guo et al. [13].
Specifically, we calculate the average pixel distance between the
predicted coordinate points in the reconstructed skeleton frame
and the real coordinate points in the skeleton frame generated
by OpenPose. We consider skeleton frames with average pixel
distances below a threshold as correctly predicted skeleton
frames. The ranges of the threshold θ include 25, 30, 40, and
50 to gauge the accuracy of the network’s output according to
the previous work [13]. In our work, we adopt their evaluation
metric known as Percentage of Correct Skeletons (PCS). This
metric is defined as:

PCS(θ) =
1

N

N∑
n=1

L

(∣∣∣∣pni,j − gni,j
∣∣∣∣
2
≤ θ

)
, (10)

where N represents the number of test frames, L is a logical
operation that outputs 1 if True and outputs 0 if False.pni,j andgni,j
are the values for the (i, j)th coordinate points on the prediction
coordinate points and corresponding ground-truth coordinate
points, respectively, where i ∈ 1, 2, . . . , 14, j ∈ 1, 2, . . . , 14.

B. Overall Performance

We first show the overall performance of our system, and also
compare CSIPose with two typical and latest schemes. We only
use the data from the device 6 C in Room 1&2 as training data.
The test data is from the same device and does not include any
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TABLE II
RESULTS OF STATIC AND DYNAMIC POSES FOR DIFFERENT ROOM LAYOUTS

Fig. 11. (a) Different locations of the transmitter (i.e., a camera) and (b)
different locations of the subject in Room 1.

training data. The models that we trained are also used for the
testing of other impact factors in later subsections.

Table II shows the average accuracy of the three schemes for
static and dynamic poses. Specifically, the values of PCS(25)
and PCS(50) of CSIPose for static poses are 70.40% and
85.38%, while those of other two schemes are 16.79% and
32.60%, 66.75% and 84.06%, respectively. Under the evaluation
metrics of PCS(25) and PCS(50), the values of CSIPose are
3.65% and 1.32% higher than the best scheme, respectively.
The values of PCS(25) and PCS(50) of CSIPose for dynamic
poses are 81.74% and 94.02%, while those of other two schemes
are 55.77% and 75.11%, 70.85% and 91.33%, respectively.
Under the evaluation metrics of PCS(25) and PCS(50), the
values of CSIPose are 10.89% and 2.69% higher than the
best scheme, respectively. These results demonstrate that for
static and dynamic poses, CSIPose is superior to the other two
schemes. We think the reasons could be twofold. On the one
hand, it is that our data comes from a strict through-wall scenario
in which the quality of the data is relatively poor. On the other
hand, it is that our data comes from a pair of transceiver antennas,
which do not provide enough spatial information.

To visualize the performance of the system, we show skeleton
frames corresponding to the different poses of the subject. The
first line of Fig. 12 shows the skeleton frames after OpenPose
processing, and the second line shows the estimated skeleton
frames of CSIPose . Specifically, Fig. 12(a) and (c) show four
static poses, while Fig. 12(b) and (d) show four dynamic poses.
From Table II and Fig. 12, we can observe that the estimation
accuracy of the dynamic poses is high, while the estimation
accuracy of the static poses is slightly lower. The reason may be
that the influence of the static poses on CSI are more likely to
be overwhelmed by background noise, while CSI influenced by
the dynamic pose has a higher signal-to-noise ratio. However,
overall, the estimated skeleton frames of CSIPose are still rel-
atively accurate, which is satisfactory in passive through-wall
scenarios.

TABLE III
RESULTS OF STATIC AND DYNAMIC POSES FOR DIFFERENT ROOM LAYOUTS

C. Impact of Different Room Layouts

To evaluate the impact of the different room layouts on the
performance of our proposed system, we conduct experiments
on three sets of different room layouts with varying dimensions
and structural compositions, where each set contains two adja-
cent rooms as shown in Fig. 10. We use the model discussed
in Section IV-B and the training dataset only includes the data
collected from the Room 1&2. For the testing data, we invite
a subject to collect it in three sets of room layouts. As shown
in Table III, most of the values of PCS(25) exceed 70% for
static and dynamic test data collected from Room 1&2 and
Room 3&4 respectively, while the average values of PCS(25)
of Room 5&6 are 69.35% and 32.75% for static and dynamic
test data. The average values ofPCS(50) for static and dynamic
data from these three set of room layouts are 83.22%, 83.71%,
79.85% and 93.27%, 93.53%, 55.36%. The reason is that the
training dataset is collected from Room 1&2, and Room 3&4 has
a more similar layout to Room 1&2 than Room 5&6. This result
suggests that the impact of room layout on CSIPose performance
is significant. However, in our attack model, we assume that the
target room has the same or similar room layouts. Therefore, this
attack of training a good model in one’s room and then going on
to estimate the privacy of the neighbor’s poses in his own home
is feasible.

D. Impact of Different Devices

To evaluate the applicability of CSIPose for different devices,
we invite a subject to collect CSI data from different WiFi
devices as depicted in Table I. We use the model discussed
in Section IV-B and the training dataset only includes the data
collected from the device 6 C. Fig. 13 presents the results of
testing the model with the test data of one static pose (arm_left)
and one dynamic pose (leg_left). The values of PCS(25) and
PCS(50) of most devices for the static pose can achieve more
than 70% and 80%, while that for the dynamic pose can achieve
more than 70% and 90%. The PTRs of our devices are slower
compared to the PTR 1000 in previous works [4], [5], [8], [9],
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Fig. 12. Examples of the constructed skeletons. (a) Ground truth static pose skeletons. (b) Ground truth dynamic pose skeletons. (c) Generated static pose
skeletons. (d) Generated dynamic pose skeletons.

Fig. 13. Accuracy of (a) the arm_left pose and (b) the leg_left pose under
different devices.

[32], but with the processing framework we designed, CSIPose
still achieves a high recognition accuracy. This result indicates
that CSIPose is applicable for different devices and also effective
for unseen devices in the training dataset. The attacker can train
the attack model with the device different from the device in the
target room.

E. Impact of Different Subjects

To verify the effectiveness of the model trained by an attacker
with his own data against an unknown subject, we meticulously
select 10 subjects spanning diverse characteristics, including
age, gender, height, and weight. We use the model discussed
in Section IV-B and the training dataset only includes the data
collected from one subject. For the testing data, we ask 10
subjects to perform static and dynamic poses to collect it. Fig. 14
presents the results of testing the training model with the test data
of one static pose (arm_left) and one dynamic pose (wave_left).
CSIPose is implemented on the basis that the effect of the same
pose on CSI is similar in the same context, so that when body
size differences are large enough to dramatically change the
effect of the same posture on CSI, attack performance declines.
However, the attack performance of CSIPose is acceptable since
the average values ofPCS(25) for static and dynamic poses still
reach 68.49% and 77.07%. This result indicates that the model

Fig. 14. Accuracy of (a) the arm_left pose and (b) the wave_left pose under
different subjects.

is also effective for unseen subjects in the training dataset. The
attacker can train the model just using his own training data,
which increases the viability and stealth of the attack.

F. Impact of Different Transmitter Locations and Subject
Locations

To evaluate the impact of different transmitter locations on the
performance of CSIPose, we invite a subject to collect CSI data at
different transmitter locations as shown in Fig. 11(a). We just ask
the subject to perform a static pose (arm_right) and a dynamic
pose (wave_right), since the difference in accuracy between dif-
ferent poses is little as reported in previous evaluations. Fig. 15
illustrates the accuracy of the arm_right pose and the wave_right
pose at different transmitter locations. We can observe that the
accuracy of PCS(25) and PCS(50) for arm_right remains
about 75% and 82%, while that for wave_right remains over 60%
and 90%. The accuracy for the static pose is not significantly
affected by the different transmitter locations, while the values
of PCS(25) for the dynamic pose is significantly affected by
that. The reason may be that Loc. 1 and Loc. 6 are closer to
location of the training data. This result indicates that CSIPose
is robust to different transmitter locations, and the attacker can
directly implement the see-through attack even without knowing
the transmitter location.
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Fig. 15. Accuracy of (a) the arm_right pose and (b) the wave_right pose under
different transmitter locations.

Fig. 16. Accuracy of (a) the arm_right pose and (b) the wave_right pose under
different user locations.

To investigate the impact of subject locations on the perfor-
mance of our proposed system, we invite a subject to collect
CSI data at four different locations as shown in Fig. 11(b),
respectively. We also ask the subject to perform a static pose
(arm_right) and a dynamic pose (wave_right). The transmitter is
placed at the room’s center as the setup in Fig. 10. From Fig. 16,
we can observe that the performance of four locations has little
difference for the arm_right pose, while for the wave_right pose,
the performance of Loc. 1 and Loc. 4 is significantly better
than the performance of other two locations. Specifically, the
accuracy of PCS(50) for Loc.1 and Loc. 4 can reach 91.50%
and 88.75%, while that for Loc. 2 and Loc. 3 are only 35.01%
and 34.73%. The results show that changes in the user’s position
significantly affect accuracy, with closer proximity generally
resulting in higher accuracy. This result indicates that CSIPose
does not have generalization with different user locations, and
the attacker may need to first estimate the transmitter location,
which can be achieved by collecting RSSI as mentioned in [31].
Therefore, the attacker still can estimate the subject’s body pose
in some areas.

G. Ablation Study

To evaluate the effectiveness of our design framework AveCSI
in CSI processing and feature extraction, we first compare two
methods to convert the CSI frame. We design a method to
compute the mean measurement of a period of CSI measure-
ments as the CSI frame, while classical method is to make the
fixed-number CSI measurement sequence as the CSI frame.
We utilize the training dataset and the testing dataset used
for the impact of different devices in Section IV-D. Using
mentioned two methods, we train two models and present the

TABLE IV
EVALUATION RESULTS OF ABLATION EXPERIMENTS

average accuracy of different devices for each pose. As shown in
Table IV, the average accuracies PCS(25) and PCS(50) of
our method are 76.05% and 89.46%, while those of the classical
method are 64.51% and 83.64%. This result demonstrates that
our method to convert the CSI frame is superior to classical
method. The self-attention layer helps to extract significant
features for human pose estimation. To quantify the gain of the
self-attention layer, we delete the self-attention layer from the
model and train a model. As shown in Table IV, the test results
show that the average accuraciesPCS(25) andPCS(50) of the
method without SA are 61.83% and 80.68%, which are 14.22%
and 8.78% lower than our accuracies, respectively. This result
demonstrates that SA is very helpful for feature extraction. In
summary, These results indicate that AveCSI can improve the
accuracy of the pose estimation.

V. DEFENSE

We now discuss defenses against CSIPose . Defending against
wireless sensing in passive scenarios has been a challenging and
topical research matter [33]. Since detecting passive sensing
attacks is difficult, we can only defend against them on the
transmitter side. Specifically, we can design some encryption
or obfuscation measures in terms of channels and signals on the
transmitter side.

From the channel aspect, we can add additional devices in
the target room to change the channel characteristics or emit
a synthesized signal to confuse the characteristics of the target
signal [31], [34], [35]. For example, Staat et al. [35] designed
a configuration algorithm based on smart reflective surfaces to
confuse the wireless channel. While this work can be carefully
designed to not affect the signal, it is generally more expensive
to synthesize. Therefore, this defense can defend users against
our attack, but it is not universal.

Considering the signaling aspect, we can use suitable obfus-
cation or encryption techniques to modify the signal [36], [37],
[38]. Meng et al. [37] designed an encryption method based on
antenna switching to interfere with passive wireless sensing at
the source. However, this work is not applicable to IoT devices
with only one antenna. Qiao et al. [38] used full-duplex radios
to randomly modify and retransmit physical signals in the en-
vironment, which can obfuscate sensitive physical information.
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However, this work faces the same weakness of high cost. The
defense in [31] is relatively low cost but has the potential to
interfere with normal communication. Therefore, defenses from
a signaling perspective can stop our attacks accompanied by the
risk of affecting the communication performance.

In conclusion, although CSIPose can be defended, defenses
are either costly or have the risk of increasing power consump-
tion or affecting communication performance. An applicable,
low-cost method for defending against passive sensing that does
not affect normal communication is urgently needed.

VI. DISCUSSION

We discuss the limitations of CSIPose and our future work in
this section.

A. Limitations

CSIPose still exhibits certain limitations that require further
improvement.

Platform: CSIPose necessitates acquiring root access to the
phone and relies on nexmon_csi for CSI collection, thereby
constraining the diversity of applicable attack platforms. While
alternative embedded platforms like the Raspberry Pi, offer the
potential for more practical attacks. We are also exploring im-
plementing CSIPose on some embedded platforms. Therefore,
the platform is vulnerable to the limitations of CSIPose.

Number of human poses: In our experimental setup, we just
design four static poses and four dynamic poses. The number of
poses is small compared to some other work, and our scheme is
not currently capable of estimating arbitrary movements. This is
mainly due to the fact that our scheme is pattern-based and in a
TTW scenario, whereas some schemes model the human body in
an indoor environment and with multiple antenna arrangements.
However, our work fills the gap in human pose recognition based
on passively collected CSI in TTW scenarios, which is a huge
guidance for future work. In the future, we will also go further to
explore pattern-based schemes that include more poses as well
as model-based schemes in our attack scenarios.

Subject location: As shown in Section IV-F, the location of the
subject has a significant impact on the performance of CSIPose
. The nature of our system is pattern recognition of human
poses, but CSI is sensitive to location [24], [39]. Therefore, our
system does not have a very robust performance. However, with
simple passive position estimation [31], an attacker can simulate
the corresponding positions for targeted training. Therefore, we
believe that the impact of this weakness on our system is limited.

B. Estimation Using CSI Phase

CSI phase is widely used for WiFi sensing since it can be used
to obtain some advanced phase features (e.g., Arrival-of-Angle).
However, our receiver only have one antenna and is difficult to
obtain advanced features. To evaluate the feasibility of estimat-
ing poses with CSI phase, we extract CSI phase data from the
training dataset and the testing dataset used in Section IV-D
and train a model. The evaluation results show that the average
estimation accuracy PCS(25) and PCS(50) of this model for

human poses are 74.20% and 89.12%, respectively. As shown
in Table IV, the average estimation accuracy PCS(25) and
PCS(50) of our method are 76.05% and 89.46%, respectively.
The CSI phase does not show a better performance than the CSI
amplitude. And the CSI amplitude seems to perform better under
a more stringent evaluation metric (i.e., PCS(25)). Therefore,
we choose the CSI amplitude to estimate human poses. And we
will further explore the applicability of the CSI phase to human
pose estimation.

C. Multi-Subject Pose Estimation

Multi-subject estimation becomes imperative, considering the
frequent presence of more than one person in a domestic room.
Nevertheless, the coexistence of multiple subjects introduces
complexities as their actions superimpose on each other, causing
the CSI patterns to become perplexing and indistinguishable.
This interference is particularly pronounced in our TTW attack
scenario, exacerbating the inherent challenges in deciphering
the CSI data. To address this issue, we posit that modeling
the propagation of CSI in TTW scenarios holds promise as a
viable solution. While Zhang et al. [26] have aimed at devel-
oping a model for estimating CSI in through-wall scenarios, its
performance experiences a significant degradation, especially
in scenarios featuring reinforced concrete. Hence, our subse-
quent focus centers on further exploration and refinement of
CSI estimation models tailored for TTW scenarios, thereby
enhancing the accuracy of the multi-subject pose estimation in
TTW scenarios.

VII. RELATED WORK

Human pose estimation has been more researched in the
fields of smart healthcare, virtual reality, and wireless security.
RF-based methods [40], [41], [42], [43], [44], [45] can achieve
accurate estimation of position, posture, and motion character-
istics due to the superior performance of specialized equipment.
However, our work focuses on revealing the privacy threats
regarding human poses posed by commodity WiFi devices.
Therefore, this section only explores WiFi-based human pose
estimation methods, which can be categorized into methods in
LOS scenarios and methods in NLOS scenarios according to the
location of the transceiver.

Methods in LOS scenarios: The LOS scenario allows the
receiver to obtain more accurate information about the human
body pose from the CSI as discussed in Section II-C. Therefore,
many methods [10], [11], [12] use deep learning networks to
generate human pose maps using CSI as input annotated with
real video frames. Wang et al. [11] proposed a U-Nets-based
deep neural network to map a CSI tensor to a human pose using
a MIMO system. Avola et al. [10] designed a novel two-branch
generative WiFi sensing framework that inherently considered
motion information to synthesize coherent human silhouette and
skeleton videos from CSI measurements. Zhou et al. [12] de-
signed a domain-independent neural network to extract subject-
independent features and convert them into fine-grained human
pose images. Wang et al. [46] designed a self-encoder to estimate
human poses and utilized a diffusion model to fit the human
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poses into avatar poses. However, these methods do not consider
the influence of blocks or walls, and require the transmitter to
actively connect to the receiver to obtain a stable sampling rate.

Methods in NLOS scenarios: Methods in NLOS scenarios
can be categorized into loosely constrained methods and tightly
constrained methods depending on the type of obstacle. Loosely
constrained methods [4], [7], [8], [9], [13] only experimentally
evaluate the system performance in the presence of simple
obstacles (e.g., wooden boards and screens). Jiang et al. [5]
modeled the human skeleton as a tree and used CSI data from
multiple receivers in space to achieve 3D human pose estimation
using a deep learning network. Li et al. [9] was based on the 2D
Fast Fourier Transform of CSI using a conditional adversarial
generative network to segment the boundaries of the object and
the human body. Ren et al. [4] realized 3D pose estimation of
the human body based on spectrograms of CSI and models of
joint movements. Strictly constrained method [5] achieves the
estimation of the human pose under the barrier of the wall.

However, since the subject and the receiver were in the same
room in GoPose [5], the wall only attenuated the strength of the
signal and hardly interfered with the effect of the human body
on the signal. Therefore, GoPose is not suitable for our attack
scenario where the subject and the transmitter are in the same
room. Owing to the spatial resolution provided by the MIMO
system, these methods can achieve human pose estimation in the
presence of occlusions without having to cope with the effects
of occlusions.

Unlike these existing methods, we first use GT skeleton
frames to train a dependable skeleton reconstruction network.
Second, we implement CSI amplitude-based human pose esti-
mation in a novel deep neural network employing well-designed
bounded loss. In particular, we only passively collect WiFi
signals with low and unstable sampling rates instead of signals
with stable and high sampling rates as in other schemes. Our
scheme overcomes the negative impact of low-quality data and
emphasizes the significant threat to human pose privacy posed
by commodity WiFi devices.

VIII. CONCLUSION

This paper presents CSIPose, a privacy-acquisition attack
designed to clandestinely estimate dynamic and static human
privacy poses based on CSI in TTW scenarios. It can directly
and passively collect CSI data from WiFi devices to estimate
the dynamic and static poses of the human body indoors. We
design a three-branch network model to realize the supervision
of ground truth video frames on CSI-generated skeleton frames.
Additionally, AveCSI uses the average of CSI sequences as
CSI frames to address the problem of data instability, which is
caused by the fact that packets emitted by uncontrolled devices
during normal operation are low-rate and unstable. For feature
extraction, AveCSI consists of a three-layer feature extraction
network which contains the LSTM layer, the CNN layer and
the self-attention layer. Finally, we evaluate the performance of
the system in different room layouts, devices, subjects, device
locations and user locations. The evaluation results emphasize

the strong generalization of the system and demonstrate the
privacy risk posed by commodity WiFi devices.
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