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Abstract—Privacy remains a significant challenge in public
blockchain ecosystems. Mainstream add-on privacy solutions,
such as Stealth Address Protocols (SAPs) and Zero-Knowledge
Proof (ZKP)-based mixers, have recently attracted consider-
able attention. However, existing SAPs offer only ephemeral
anonymity for users’ transaction data, and their implementation
and evaluation within the highly concurrent Unspent Transaction
Output (UTXO) model remain largely unexplored. ZKP-based
mixers are limited to native coin transfers with fixed denomina-
tions and require additional security assumptions, employing out-
of-band encrypted channels to transmit notes. To overcome these
challenges, we unify the core principles underlying both SAPs
and ZKP mixers and formally introduce StealthHub, a UTXO-
based SAP. Compared with the widely adopted dual-key-based
Umbra protocol prevalent on Ethereum Virtual Machine (EVM)-
compatible chains, StealthHub reduces computational overhead
for the prepare and scan announcements stages by over 71% and
32%, respectively. Furthermore, by leveraging Merkle Mountain
Range (MMR) commitments and off-chain batch aggregation,
our StealthHub implementation lowers deposit and shielded
transfer transaction costs to approximately 76% of those for
a standard transfer, substantially improving practical usability.

Index Terms—Blockchain, Smart Contract, Decentralised Ap-
plication, Privacy, Stealth Address, Zero-Knowledge Proof

I. INTRODUCTION

Permissionless Distributed Ledger Technologies (DLTs) en-
able decentralised asset transfers but expose transactions to
privacy vulnerabilities [1–3], underscoring the need for effec-
tive add-on privacy solutions. Zero-Knowledge Proof (ZKP)-
based mixers, exemplified by Tornado Cash [4], enhance trans-
action confidentiality using Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK)-based tum-
blers (mixing pools [5–8]), yet exhibit substantial limitations.
Current mixers require that payers and payees are already
acquainted, as payees can only acquire credentials generated
by payers through out-of-band channels. This constraint limits
their application primarily to self-transfers (referred to as
intra-entity transfers, where the entity controls one or more
public addresses), thereby hindering interoperability within
the Service-Oriented Architecture (SOA). Moreover, fixed-
denomination pools (e.g., 0.1, 1, or 10 ETH) significantly
reduce transactional flexibility. The high operational cost also
presents a major limitation. For example, depositing 1.7 ETH
requires one 1 ETH deposit and seven 0.1 ETH deposits,
totalling eight separate transactions. On Tornado Cash [4],
this incurs approximately 10 million gas—around 480 times
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Fig. 1: Service-oriented decomposition of StealthHub.

the cost of a standard transfer—posing significant barriers to
scalability and adoption.

Alternatively, Stealth Address Protocols (SAPs) protect
user privacy by generating unique recipient-controlled one-
time addresses per transaction, making linkage analysis sig-
nificantly more difficult. However, Alex Márk et al. [9]
have demonstrated that the anonymity offered by SAPs is
fragile—approximately 48.5% of participants remain directly
identifiable on Ethereum Mainnet. Moreover, existing SAP
implementations, particularly Dual-Key Stealth Address Proto-
cols (DKSAPs), incur significant communication overhead due
to complex stealth-address algorithms and present usability
challenges when transferring non-native assets because no
native cryptocurrency is available to cover fees.

Motivated by these shortcomings, we propose StealthHub,
which integrates SAP functionality within a Unspent Transac-
tion Output (UTXO)-based ZKP mixer framework. StealthHub
leverages mixer pools built on the UTXO model, which offer
both strong privacy guarantees and inherent concurrency ben-
efits, while employing a single key pair per user to minimise
communication overhead. It also preserves the strengths of
SAP, notably its support for flexible assets—i.e., not limited
to fixed-denomination native token transfers—and its robust
cross-entity transaction capabilities. Consistent with SOA prin-
ciples, StealthHub is decomposed into four modular, service-
oriented components (Fig. 1): Prover-as-a-Service (PaaS),
for generating computationally intensive ZKPs; Relayer-as-
a-Service (RaaS), for enabling anonymous interactions with
StealthHub contracts; Fuzzy Message Detection (FMD)-as-
a-Service (FaaS), which asynchronously scans ledger events,
decrypts relevant ciphertexts, and notifies users; and a back-
end system comprising smart contracts deployed on a DLT
network, which implement StealthHub’s core business logic.



By modularising these functions into loosely coupled services
with defined interfaces and integrating them via a unified
gateway as the entry point for user requests, StealthHub
supports interoperability and reuse across existing Enterprise
Service Bus (ESB) and Business Process Model and Notation
(BPMN) engines.

Our contributions include formal specification (Sec. III) and
practical Ethereum Virtual Machine (EVM)-based implemen-
tation (Sec. IV) of StealthHub. We provide three protocol vari-
ants—Incremental Merkle Tree (IMT) [10]-based StealthHub-
IMT (SH-I), Merkle Mountain Range (MMR) [11]-based
StealthHub-MMR (SH-M), and aggregated batch-processing
StealthHub-AGG (SH-A)—and compare their on-chain gas
usage and off-chain timings for SAP-specific prepare and scan
announcements processes, demonstrating efficiency improve-
ments compared to existing solutions. Additionally, we evalu-
ate the complexity of ZK circuits implemented in Circom [12],
benchmarked using Groth16 [13] via SnarkJS [14], offering in-
sights into on-chain and off-chain computational trade-offs. Fi-
nally, we compare five ZK-friendly hash functions—including
our implementations of Poseidon2 [15], Neptune [16], and
GMiMC [17]—providing runtime and memory metrics during
setup and proving phases as references for ZK developers.

II. RELATED WORK

SAPs were initially proposed in 2011 by a Bitcoin Forum
member, using Elliptic Curve Diffie-Hellman (ECDH) key
exchanges to generate one-time addresses [18]. Nicolas van
Saberhagen later formalised the DKSAP in 2013, introducing
separate scanning and spending keys for secure blockchain
transaction monitoring [19]. Subsequent research primarily
diverged into two directions: performance-focused enhance-
ments using pairing-based cryptography [20–22], and security-
focused, post-quantum approaches employing lattice-based
cryptography and homomorphic encryption [23–25]. However,
research on the privacy limitations of Stealth Address Protocol
(SAP) remains scarce [9], and parsing stealth addresses con-
tinues to incur substantial computational overhead, particularly
due to the additional viewing key introduced in post-2014
DKSAP variants. Umbra [26], the leading SAP implemen-
tation on EVM-based blockchains and the baseline for our
evaluation, employs such dual-key schemes.

In parallel, mixers have emerged as prevalent blockchain
privacy solutions, initially deployed on Bitcoin [27]. Inspired
by ZKPs, as employed in privacy-preserving frameworks such
as Zerocash [28], ZKP-based mixers obfuscate transactional
linkages. Incentivised mixers like AMR [29] and Tornado
Cash [4] have further promoted adoption. While these ap-
proaches reduce linkability, they remain limited in support-
ing cross-entity interactions, flexible amounts, and non-native
assets—prompting our design of the StealthHub architecture.

Finally, recent ZKP roll-ups [30, 31], rooted in Plasma-
style Layer 2 designs [32], influence our SH-I architecture.
While Layer 2 solutions improve Layer 1 throughput, they
often rely on centralised sequencers. Guo et al. [33] adopt a

Scheme SPKE

Preliminaries: A public-key encryption scheme generates a key pair (pk, sk),
where pk encrypts a message m into a ciphertext ct decryptable only with
sk, ensuring confidentiality.

Algorithms:
• Encrypt(pk,m)→ ct: Encrypts m using pk to output ct.

• Decrypt(sk, ct)→ {m,⊥}: Decrypts ct; outputs ⊥ if fails.

Fig. 2: Public-key encryption scheme SPKE.

Scheme SAE

Preliminaries: Let v ∈ D be asset metadata of arbitrary length, and c, µ ∈
{0, 1}λ a commitment and its encoding under security parameter λ ∈ N. Let
σ ∈ {0, 1}ν , with ν < λ, denote the asset’s fixed-length encoded suffix.
Define:

f : v → σ (injective encoding)

f
−1

: σ → v ∪ {⊥} (decoding with error symbol)

Algorithms:
• Encode(v, c)→ µ:

1) Computes the suffix of the encoding commitment: σ ← f(v).
2) Truncates the first λ− ν bits of c: c′ ← c[ : λ− ν].
3) Generates the encoded commitment: µ← c′ ∥ σ.

• Decode(µ)→ v:

1) Generates σ by parsing µ← c′ ∥ σ where |c′| = λ− ν.
2) Decodes v ← f−1(σ); outputs ⊥ if fails.

Fig. 3: Asset encoding scheme SAE.

similar “sequencer” role in Tornado Cash [4] to reduce on-
chain costs. Wang et al. [34] shift the sequencer function to
users, mitigating central trust but increasing confirmation la-
tency. In contrast, StealthHub supports only user-side batching,
where users independently aggregate commitments off-chain
based on their UTXO spending needs, then submit a single
commitment on-chain (Sec. III-C).

III. STEALTHHUB: PROTOCOL DESCRIPTION

StealthHub involves three key roles: payer, payee, and tum-
bler. Payer set (addrpayer ⊆ addruser) includes users anony-
mously transferring cryptocurrency via StealthHub. Payee set
(addrpayee ⊆ addruser) comprises users anonymously receiv-
ing assets through key pairs (pk, sk). Tumbler (addr tumbler),
implemented as smart contracts deployed on a DLT network
depicted in Fig. 1, acts as a privacy-preserving intermediary
whose security depends on the underlying DLT consensus.

A. Design Goals

StealthHub aims to achieve three primary design goals:
cross-entity capability, flexibility, and high concurrency.

a) Cross-Entity Capability: Typical UTXO-based pri-
vacy schemes require out-of-band communication of a secret
note s. Payer submits a commitment c = H(s) to tumbler as
proof of deposit, and subsequently, payee must prove knowl-
edge of s to tumbler to withdraw the corresponding funds,
where H(·) denotes a cryptographic hash function. StealthHub
addresses this issue via a simplified public-key encryption
scheme SPKE (Fig. 2). Payer encrypts a generated secret note
s = r ∥ N under payee’s public key pk, where r is a random
nonce, and N is a nullifier to prevent double-spending. The
ciphertext is generated as ct ← SPKE.Encrypt(pk, s). Both



Protocol ΠStealthHub

Preliminaries: UTXO u = (c, v) with global set U, and commitment
c = H(s) is computed by hashing a secret preimage s, and v ∈ R+

denotes the token amount. addrpayer, addrpayee, addrrelayer denote ad-
dress sets of users, with addrrelayer∩addrpayer = ∅ and addrrelayer∩
addrpayee = ∅. Let Ua,Ub,Uc,Ud denote UTXO sets corresponding to
deposit outputs, shielded inputs, shielded outputs, and withdrawals, respec-
tively, with no assumption on their sizes. Let fs and fw denote the total
fees for shielded transfers and withdrawals, respectively, including gas costs,
and let πs and πw denote the corresponding ZKPs. Let vw denote the total
amount of tokens withdrawn.

Deposit (txdep) with ΠDeposit (Fig. 5):
• From addrpayer:

– Generates Ua = {uai}i, where uai = (H(sai), vai).
– Submits txdep ∋ Ua.

• Updates U← U ∪ Ua.

Shielded Transfer (txxfer) with Π
(multi)
ShieldedXfer (Fig. 9):

• Processes Ub = {ubi}i ⊆ U to generate Uc = {uci}i:
– Value conservation:

∑
vbi ==

∑
vci + fs.

– Generates πs such that

πs ⊢
(∧

ubi ∈ U
)
∧

(∑
vbi ==

∑
vci + fs

)
.

• Via addrrelayer:
– Submits txxfer ⊃ {Ub,Uc, πs, fs}.

• Updates: U← U \ Ub, U← U ∪ Uc.

Withdrawal (txwd) with ΠWithdraw (Fig. 8):
• Redeems Ud = {udi}i ⊆ U:

– Value conservation:
∑

vdi == vw + fw .
– Specifies addrpayee as a public input to πw .
– Generates πw such that

πw ⊢
(∧

(udi ∈ U)∧(cdi == H(sdi))
)
∧

(∑
vdi == vw+fw

)
.

• Via addrrelayer:
– Submits txwd ⊃ {Ud, πw, fw, addrpayee}.

• Updates: U← U \ Ud.

Fig. 4: StealthHub protocol ΠStealthHub.

the commitment c = H(s) and ciphertext ct are published on-
chain. Payee decrypts ct with their private key sk, retrieves
s = r ∥ N , and verifies c = H(s), thus confirming ownership
of the asset.

b) Flexibility: Traditional UTXO ZKP mixers [4] impose
fixed denominations and single-asset constraints, restricting
use-cases such as Non-Fungible Token (NFT). StealthHub
allows cross-entity transfers and arbitrary asset types and
amounts using asset encoding scheme SAE (Fig. 3). During
deposits, smart contracts compute an encoded commitment
µ ← SAE.Encode(v, c), where µ represents the commitment
containing asset information encoded by tumbler and recorded
on-chain. During withdrawals or shielded transfers, smart
contracts decode v ← SAE.Decode(µ), facilitating arbitrary
asset transfers without compromising anonymity.

c) High Concurrency: By leveraging the UTXO model,
StealthHub1 (Fig. 4) supports concurrent deposits, with-

1In Fig. 4 and the subsequent Fig. 5, Fig. 8, and Fig. 9, transaction
descriptions focus solely on token amount computations, omitting components
such as token ID for simplicity. Commitment generation and verification
in Fig. 4 omit token amount encoding / decoding, which are detailed in
the subsequent protocols. Deposit fees are excluded, as deposits are directly
initiated by payers rather than relayers (addrrelayer). Figures for withdrawal
and shielded transfer protocols also omit explicit relayer details for brevity.

Protocol ΠDeposit

The payer (addrpayer) creates a UTXO u = (c, v) (see Fig. 4) and initiates
the deposit transaction txdep to the tumbler (addrtumbler). The payer uses
the payee’s public key (pkpayee) to encrypt the secret s into the ciphertext
ct , which is then transmitted to the payee via smart contract events.

Payer Deposit (External Transfer):
• Generates secret s = r∥N with a random nonce r and nullifier N .
• Computes commitment c = H(s).
• Creates deposit transaction txdep containing:

– ct ← SPKE.Encrypt(pkpayee, s), where s is the generated secret.
– u = (c, v), where c is a commitment and v a token amount.

• Sends txdep ⊃ {ct, u} from addrpayer to addrtumbler.

Tumbler Processes Deposit:
• On receiving txdep:

– Extracts asset metadata v and commitment c.
– Computes commitment-ready value µ← SAE.Encode(v, c).

• Updates cryptographic accumulator:
– Executes accS ← SAcc.Accumulate(µ).

• Publishes log event: DepositEvent(ct, µ, accS).

Fig. 5: Deposit protocol ΠDeposit.

Scheme SAcc

Preliminaries: A cryptographic accumulator enables a party to compile a
set S = {e1, . . . , en} into a succinct digest accS , with which one can
efficiently prove membership or non-membership of an element e in S by
generating a compact witness ω without revealing the entire set S.

Algorithms:
• Accumulate(S)→ accS : Computes accS for S.

• Prove(accS , e)→ ω: Generates witness ω ⊢ e ∈ S.

• Verify(accS , e, ω)→ {true, false}: Checks ω and outputs true if
valid; otherwise false.

Fig. 6: Accumulator scheme SAcc.

drawals, and shielded transfers. Unlike account-based SAPs
requiring embedded native token fees per transaction, Stealth-
Hub simplifies transaction fee management: users only main-
tain sufficient concealed native tokens within tumbler to cover
intermediary relayer fees, ensuring efficient concurrent trans-
action execution involving native or non-native tokens (ERC-
20, NFTs).

B. Transaction Types

a) Deposit: Initiated by payer, who deposits via their
own public key or any published recipient key, assets move
from payer’s blockchain address into tumbler’s privacy pool.
The deposit transaction txdep (Fig. 5) utilises cryptographic
accumulators and zk-SNARK, as shown in Fig. 6 and Fig. 7,
respectively2. Instantiations using IMT [10], MMR [11], and
Groth16 [13] are later demonstrated in Fig. 14 and Tab. III in
Sec. IV. Resulting ciphertext ct, emitted via contract events,
enables users to scan and decrypt privately.

b) Withdraw: Initiated by payees holding concealed as-
sets and executed via relayers. According to Fig. 8, after

2In this work, we use ⊣ / ⊢ to denote provability: if Γ is a set of axioms
and φ a formula, Γ ⊢ φ means there is a formal proof of φ from Γ. 1λ
denotes the unary encoding of the security parameter λ. · denotes omitted
public parameters in the sub-protocols.



Protocol PzkSNARK

Preliminaries: zk-SNARKs allow a prover to convince a verifier that a
statement x and a witness w satisfy an NP relation R (i.e., (x,w) ∈ R)
without revealing w. The proof π consists of a single message, which the
verifier checks independently. A setup algorithm generates a trusted common
reference string crs to pre-process R, reducing the verifier’s workload.

Algorithms:
• Setup(1λ,R)→ crs: Outputs common reference string crs for security

parameter λ ∈ N and NP relation R.
• Prove(crs, x, w)→ π: Generates proof π ⊢ (x,w) ∈ R.

• Verify(crs, x, π)→ {true, false}: Checks π under crs and outputs
true if valid; otherwise false.

Fig. 7: zk-SNARK protocol PzkSNARK.

Protocol ΠWithdraw

The payee (addrpayee), holding the private key (skpayee) and monitoring
deposit events, proves the ability to spend the UTXO u = (c, v) ∈ U by
constructing a ZKP of ownership (see Fig. 4).

Payee Prepares Withdrawal:
• For DepositEvent(ct, µ, accS):

– Recovers asset metadata v ← SAE.Decode(µ).
– Decrypts s← SPKE.Decrypt(skpayee, ct).
– Verifies µ[ : λ− ν] == H(s)[ : λ− ν].

• Generates membership witness ω for µ ∈ accS :
– Computes ω ← SAcc.Prove(accS , µ).

• Constructs ZKP πw ← PzkSNARK.Prove(·) attesting:
– Knowledge of s.
– Checks true← SAcc.Verify(accS , µ, ω).
– Checks metadata decoding v == SAE.Decode(µ).

• Creates withdrawal transaction txwd containing:
– πw , v, recipient address addrpayee.

• Sends txwd ⊃ {πw, v, addrpayee} from addrrelayer to addrtumbler.

Tumbler Processes Withdrawal:
• On receiving txwd:

– Checks true← PzkSNARK.Verify(πw, ·).
• If verification succeeds:

– Transfers asset specified by v to addrpayee.

Fig. 8: Withdrawal protocol ΠWithdrawal.

tumbler verification, relayers release assets from the privacy
pool to payee’s blockchain address.

c) Shielded Transfer: Initiated by payers holding
shielded assets, executed via relayers, shielded transfers re-
semble deposits and withdrawals. However, rather than exiting
the pool, assets are reassigned internally to the same or an-
other user. Fig. 9 describes executing multiple internal UTXO
transfers within a single blockchain transaction.

C. Batch-Efficient Instantiation

In UTXO-based add-on schemes, individual on-chain state
updates are costly (see Tab. III in Sec. IV). StealthHub
mitigates this by employing off-chain batching and ZK-
verified aggregated state updates—a design approach previ-
ously explored in efforts to reduce Tornado Cash [4]’s on-
chain costs [33, 34]. We employ two Merkle trees: an on-
chain era-tree of height hera, which tracks state transitions,
and off-chain slot-trees of height hslot, which aggregate user
transactions. Each leaf of the era-tree serves as the root of
a corresponding slot-tree, forming a composite structure with

Protocol Π(multi)
ShieldedXfer

The payer (addrpayer, pkpayer, skpayer) proves ownership of a set of
UTXOs Ub = {ubi}i ⊆ U (see Fig. 4), and constructs a new set of UTXOs
Uc = {uci}i for recipients {pkpayeei

}i, such that each uci corresponds
in order and cardinality to pkpayeei

, with the associated ciphertexts ctci.

Multi-Asset Redemption & Partitioning:
• For {DepositEvent(ctbi, µbi, accS)}i:

– Recovers sbi ← SPKE.Decrypt(skpayer, ctbi).
– Verifies µbi[ : λ− ν] ∈ accS == H(sbi)[ : λ− ν].
– Generates membership witness ωbi for µbi ∈ accS :
∗ Computes ωbi ← SAcc.Prove(accS , µbi).

• Atomic consumption (Ub) and redistribution (Uc):
– Computes vbi ← SAE.Decode(µbi).
– Allocates new values vci such that

∑
vci <

∑
vbi.

– Computes cci ← H(sci).
– Encrypts ctci ← SPKE.Encrypt(pkpayeei

, sci).
• Constructs ZKP πs ← PzkSNARK.Prove attesting:

– Knowledge of sci.
– Checks true←

∧
SAcc.Verify(accS , µbi, ωbi).

– Checks metadata decoding vci == SAE.Decode(µci).
• Creates atomic transfer txxfer containing:

– ctci, cci, vci, and πs.
• Sends txxfer ⊃ {ctci, cci, vci, πs} from addrrelayer to addrtumbler.

Tumbler Processes Atomic Shielded Transfer:
• On receiving txwd:

– Checks true← PzkSNARK.Verify(πs, ·).
• If verification succeeds:

– Encodes µci ← SAE.Encode(vci, cbi).
– Updates accS ← SAcc.Accumulate(µci).

• Emits TransferEvent(multi)(ctci, µci, accS).

Fig. 9: Shielded transfer (multiple) protocol Π(multi)
ShieldedXfer.

On-Chain

Off-Chain

era

slot

Fig. 10: An example with hera = hslot = 2, resulting in a
combined tree height of hera−slot = 3. R, N , and L denote
the root node, intermediate nodes, and leaf nodes, respectively.
The nodes enclosed in dashed boxes represent the Merkle hash
path required to verify the membership of leaf node L3.

height hera−slot = hera + hslot − 1. The level containing both
the slot-tree roots and the era-tree leaves is referred to as
the overlap layer (Fig. 10). Further implementation details are
provided in Sec. IV.

IV. EXPERIMENTS

We deployed implementations of SH-I (IMT as accumu-
lator per Fig. 6), SH-M (MMR as accumulator), and SH-
A (MMR as accumulator, with pre-aggregated commitments
per Sec. III-C) on four EVM-compatible DLTs networks,
comprising Solidity-based tumbler contracts and a JavaScript
client: Ethereum [35], Hedera [36], XRP Ledger (XRPL)
EVM Sidechain [37], and BNB Chain [38]. These initial
deployments illustrate the broad applicability of StealthHub



TABLE I: Umbra vs. StealthHub per-step and timings (ms).
Steps marked with “-” indicate no computational complexity
difference between the two and are thus not listed with
improvement percentages, yet are included in the total.

Prepare Announcement

Step Umbra StealthHub Improvement (%)

KeyPair creation (dual. vs. single.) 0.1200 0.0126 89.5
Rand. number generation 0.2040 0.0189 -
Rand. number encryption 4.9745 2.4765 50.2
Compute (pk & addr. vs. SHA256) 3.4541 0.0258 99.3

Total 8.7526 2.5338 71.1

Scan Announcement

Step Umbra StealthHub Improvement (%)

Batch retrieval 5.4799 5.3849 -
Get uncompressed key 0.1268 0.1146 -
Decrypt payload 2.5631 2.4868 -
Compute (addr. vs. SHA256) 2.1966 0.0149 99.3
Comparison 0.0079 0.0001 98.7

Total 10.3743 7.0013 32.5

across existing EVM-centric DLTs [39]. Our code is open-
sourced at https://github.com/hanzeG/StealthHub.

a) SAP Announcement Detecting: We first evaluated
StealthHub’s scanning efficiency compared to dual-key-based
SAP approaches. As summarised in Tab. I, the UTXO struc-
ture eliminates computational overhead from one-time stealth
address generation (addr.) and public key compression (pk).
Additionally, employing the efficient xxHash library [40]
(SHA256) allowed StealthHub to reduce computational time
for prepare and scan announcement phases by over 71% and
32%, respectively.

b) ZK Circuits: We implemented the corresponding
Rank-1 Constraint System (R1CS) circuits in Circom [12],
using Groth16 [13] as an instance of the zk-SNARK described
in Fig. 7, and SnarkJS [14] for proof generation. We then anal-
ysed circuit complexity by measuring non-linear constraints
for five ZK-friendly hash functions with input length two.
Neptune required 228 constraints; Poseidon and Poseidon2
each had 240; GMiMC needed 678; MiMC required 1,320.
For an era-slot tree of height hera−slot and batch size b, the
total number of constraints is given by C = num ·hera−slot ·b,
where num denotes the number of constraints required for
a single invocation of the hash function. At b = 210 and
hera−slot = 40, Neptune, Poseidon, and Poseidon2 yielded
between 222 and 223 constraints, while MiMC and GMiMC
required significantly more—between 224 and 225 (Fig. 12).

Benchmarking prover max RSS on full binary-tree circuits
of heights 1–8 (1–255 hash computations) over five runs
(on M1 Pro CPU, 16 GB RAM, 10 cores), we normalised
Poseidon2’s single-execution metric to M0. At the largest
circuit size, setup runtime was approximately 40M0, repre-
senting 97%, 20%, and 73% runtime reductions compared to
GMiMC, MiMC, and Neptune, respectively. Proof-generation
runtime at the same scale was about 10M0, yielding savings
of 91%, 62%, and 16% compared to GMiMC, MiMC, and
Neptune. Regarding peak memory usage, Poseidon2 consumed
roughly 4.3M0 (setup phase in Fig. 7) and 2.9M0 (prove

TABLE II: Gas costs of deployment transactions.

Scheme Height Cost MMR Improvement (%)

MMR - 1,104,295 -

IMT

4 1,416,057 22.0
8 1,506,107 26.7
16 1,687,311 34.5
31 2,031,036 46.2

TABLE III: On-chain cost under different instantiations.

Scheme p.t.
SH-I (h = 31) SH-M SH-A (b = 25)

wit.
dep. s.t. dep.✞ s.t.✞ dep./s.t.✟

Gas (103) 21 1,042 2,077 311 744 16 = 509/b 255

Percentage✝ (%) 100 4,962 9,890 1,481 3,543 76 1,214

USD ($) 0.68 33.88 67.52 10.11 24.19 0.52 8.29

✝ Gas cost percentage of the plain transfer (p.t.).
✞ Evaluated the first 216 deposit (dep., Fig. 5) and shielded transfer (s.t.,
Fig. 9) transactions due to resource limits; averaged values used as
reference. Withdrawal (wit., Fig. 8) cost remains constant.
✟ The amortized gas cost per transaction in the batch (b = 32), based on the
first 216 transactions, with the average value calculated accordingly.

phase in Fig. 7), compared to Neptune’s 9.9M0 and 3.7M0.
Consequently, Poseidon2 was selected for the MMR and
overall StealthHub implementation.

c) On-chain Gas Costs: We benchmarked on-chain costs
by comparing MMR against an IMT baseline. Contract de-
ployment gas (Tab. II) indicated MMR reduced deployment
costs by approximately 46.2% relative to IMT height 31 and
by over 22% compared to height 4. For insertions, Fig. 13
illustrates average gas consumption for the first 212 and 216

leaves. MMR required 2.43 × 105 and 3.04 × 105 gas re-
spectively, whereas IMTs of heights 12, 16, and 31 consumed
significantly more—3.83 × 105, 4.99 × 105, and 9.60 × 105.
Thus, MMR achieved gas reductions of over 36%, 39%, and
68% compared to IMTs of heights 12, 16, and 31 for the first
216 insertions.

Building on Sec. III, we then implemented the tumbler
prototype, excluding the asset encoding scheme due to un-
resolved security. This is left to future work, potentially
informed by systems like Railgun [41]. Furthermore, as the
EVM-compatible networks, i.e., XRPL EVM Sidechain, BNB
Chain, and Hedera, share the same gas accounting model when
calling smart contract functions—due to their adherence to
EVM semantics—differences in actual on-chain costs stem
solely from platform-specific pricing3. We therefore focus our
analysis on Ethereum as a representative case. We measured
gas costs for SH-I (an IMT of height h = 31), SH-M (using
an MMR), and SH-A (an era-slot tree with MMR eras and
IMT slots of height h = 5), all using Poseidon2. As shown in
Tab. III4, the first 216 deposit and shielded transfer transactions
in SH-M cost approximately 311K and 744K gas, respectively.
In SH-A, which aggregates UTXO insertions and verifies
ZK proofs on-chain, each such transaction consumed roughly

3Hedera differs from Ethereum in gas accounting for contract deployment
by incorporating storage duration. For opcodes like LOG and SSTORE, it
applies a rent-like model, unlike Ethereum’s fixed-cost approach.

4At the time of writing: 1 ETH = 3,251 USD, mainnet gas price = 10 Gwei.
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Fig. 11: Constraints number in Circom circuits (from SnarkJS) vs. Merkle tree height h and batch size b.
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Fig. 12: Metrics of hash functions in SnarkJS Groth16.
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Fig. 13: Gas costs for leaf node insertions in MMR and IMT.

509K gas. With a batch size b = 25 (i.e., the number of leaf
nodes in a slot tree of height hslot = 5), SH-A’s amortized
per-transaction cost dropped to about 16K gas, below the 21K
gas of a standard transfer. Withdrawals incurred a fixed cost
of 255K gas due to a constant proof size and the absence
of tree updates (Fig. 14). Thus, SH-A achieves deposit and
shielded transfer gas costs around $0.52 per transaction, while
withdrawal costs remain approximately 12 times that of a
standard transfer—a reasonable trade-off, as a single ZK proof
can withdraw multiple UTXOs (Tab. III).
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Fig. 14: Gas consumption on Ethereum.

V. CONCLUSION AND FUTURE WORK

We introduced StealthHub, a UTXO-based SAP, instanti-
ated in three variants: SH-I, SH-M, and SH-A. Our evalua-
tion demonstrates consistently low computational overhead,
both on-chain and off-chain, across a variety of represen-
tative workloads. Future work includes providing a formal
security proof, integrating StealthHub into more advanced
Decentralised Finance (DeFi) workflows [29] (e.g., token
swaps [1, 42], lending [43], and yield farming [44, 45]), and
assessing the robustness and scalability of its batch-processing
design under realistic usage conditions. A major focus is
to quantitatively evaluate the privacy properties of existing
blockchain privacy protocols, drawing inspiration from prior
studies on Tornado Cash [4, 5] and Umbra [9, 26]. We
aim to conduct a comprehensive privacy comparison using
graph-theoretic [46, 47] and information-theoretic [9, 48, 49]
methods, in order to rigorously evaluate and further enhance
StealthHub’s potential to provide strong privacy guarantees.
These efforts are intended to contribute to a unified and gen-
eralizable theoretical framework for analyzing add-on privacy
mechanisms in DLTs.
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