
Heuristic-based Parsing System for Big Data Log
Teng Li∗, Shengkai Zhang†, Yebo Feng‡, Jiahua Xu§, Zhuo Ma¶, Yulong Shen∥, Jianfeng Ma∗∗

∗†¶∥∗∗Xidian University, ‡Nanyang Technological University,§University College London
∗†¶∥∗∗State Key Laboratory of Integrated Services Networks (ISN)

Email: ∗litengxidian@gmail.com

Abstract—Logs play a crucial role in recording valuable system
runtime information, extensively utilized by service providers
and users for effective service management. A typical approach
in service management, based on log analysis, involves parsing
the original log messages initially presented in an unstructured
format. Subsequently, a data mining model is employed to
extract critical system behavior information, aiding in service
management. As the volume of logs rapidly increases, training
models using current log resolution methods post-log collection
becomes excessively time-consuming, leading to decreased accu-
racy. Manual analysis of extensive logs is both time-intensive
and inefficient. This article introduces Aclog, an automated log
parsing tool tailored for large-scale log analysis, storage, and
management. Aclog operates by storing and managing logs in
a structured and unified format, thereby offering a cohesive
database for comprehensive log auditing of computing systems.
Key components of Aclog encompass the log updater, log parser,
log storage, and log querier. In this paper, we utilize a real-
world, large-scale public log dataset to showcase the capabilities
of Aclog. We evaluate the log files generated by ten popular
systems.

Index Terms—Big data, Log parsing, Log analysis

I. INTRODUCTION

Logs play crucial roles in computer systems by provid-
ing a detailed record of operational activities. They enable
debugging, troubleshooting, and analysis of security or per-
formance issues. Despite their valuable content, logs pose
significant challenges for analysis and processing due to their
vast amounts of unstructured and complex semantics and low-
level message types.

Previous research has demonstrated that parsing structured
log templates can effectively assist in log analysis. These
approaches can parse logs to reduce storage requirements,
structure data to facilitate system operation rule analysis, and
parse parameters into tables to streamline log management.
Numerous high-precision methods have been proposed for
parsing structured logs. For example, Du et al. proposed
Spell [1], which leverages the longest common sub-sequence
to parse, manage, and analyze the system event logs; He
et al. proposed Drain [2], a method that employs a fixed
depth parse tree to parse logs continuously; Palkar et al. [3]
optimize the log analysis workflow by applying filters to the
raw byte stream of logs before parsing; Bonifati et al. [4] parse
structured knowledge by querying logs in large databases.

However, balancing log parsing accuracy with the storage
space and analysis time consumption presents a significant
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challenge when handling a large volume of logs. Therefore,
there is a pressing need for a new method that efficiently
and accurately parses unstructured logs, without sacrificing log
granularity information.

Building an automatic tool to solve the aforementioned
problems and help log analysis presents three major chal-
lenges:

1) Large Throughput of Log Data: An enterprise-level
system can easily generate gigabytes of log data per
hour, resulting in a substantial accumulation of data
over time. Therefore, efficiently parsing log templates
is necessary for a usable log analysis system.

2) Complex and Unstructured Log Semantics: Logs are
usually recorded using free text, resulting in a complex
and unstructured semantic structure with low-level mes-
sage types. The resolution accuracy of algorithms used
to parse information from different log types varies, and
there exists no universal algorithm for this problem.

3) Changes in Log Templates: While log templates can
be obtained from developers’ support pages or manuals,
changes resulting from software updates can render them
outdated. Additionally, most companies do not disclose
the source code of log systems, making it challenging
to parse log templates without prior knowledge.

In this paper, we propose and implement an automatic
log template parsing approach, Aclog. It can efficiently parse
unstructured log messages into structured log templates and
dynamic parameters to help further analysis and system man-
agement.

Aclog adopts a hierarchical log tree approach to classify
logs, serving as the foundation for its analysis. By concurrently
examining three levels of tree nodes, Aclog identifies dynamic
variables and employs an optimization technique to accurately
extract template information. With a time complexity close to
O(n), Aclog operates with exceptional efficiency, surpassing
existing log template parsing methods. The generated log
templates and parameter types offer a succinct and intuitive
overview of extensive logs, providing structured data that is
valuable for downstream data analysts.

II. METHODOLOGY

In this section, we will detail the data structure of our
method and point out its workflow.
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Fig. 1: Overall architecture of the proposed method

A. Architecture

Aclog stands as an automated log parsing tool comprising
three integral components: the log updater, log parser, and log
querier, alongside log storage. The log collector, the initial
component, imports local logs from external computer systems
into the Aclog framework. Central to Aclog is the log parser,
pivotal for subsequent audits. It meticulously identifies each
original log statement, juxtaposing it against the template
within the log tree, thereby dissecting it into log templates
and parameters. During runtime, the log updater dynamically
modifies corresponding templates and parameters, optimizing
efficiency and accuracy. Log parameters find their abode
within respective log templates in the database. Subsequently,
the log querier loads logs from the database into the applica-
tion, facilitating user queries or visual representations.

In the ensuing section, we will delineate Aclog’s method-
ology in parsing original log messages, followed by an eluci-
dation of its underlying data structure—the log-tree.

B. Data Structure

The basic data structure of Aclog comprises PreRe, which
includes simple regular expression filtering at the top layer.
Filtered log messages are then divided into different branches
based on their length, with each length forming a log-tree.
The vertex in the log tree represents the length of the log
messages. Upon observing the original logs, it was found
that most logs generated by the same print template had only
different parameter positions. Therefore, in PreRe, logs are
preliminarily classified by calculating their size, assuming that
logs with the same template have the same length. Other nodes
in the log tree are internal nodes with special coding rules. At
the end of each path in the log tree, information about all
nodes in the path is saved, including templates and a set of
dynamic variables. Template information is viewed without
backtracking after matching the best template.

For a node inside the log tree with a length of m, let s
represent a set of strings, such as 10−9 or a−z. After passing
through the regular expression, the original log message is
decomposed into a set of rows represented by such strings.
Let T be a set of m strings, i.e., T = s1, s2, ..., sm. In the
internal nodes of the log tree, s1, s2, ..., sm are connected
end to end in the form of tree nodes. Any node sn (0 <

n < m + 1) may have a node branch. When matching the
current node sn as a dynamic variable, the node becomes
∗ to represent the parameters. Nodes in the same layer are
stored in the form of dictionaries, making it convenient for
searching and comparison. Given any pre-resolved log mes-
sage a = ax1, ax2, ax3, ..., am (xiϵ

∑
, 1 < i < m), for

example, “ashe”, the log tree is searched for a Log template
match to find the position of all strings in any string T given
a specific set of strings.

C. Workflow

As illustrated in Figure 1, inspired by the process of manual
log classification, Aclog uses a heuristic-based tree structure
to parse logs in real-time. Initially, the log tree is empty. When
an original log message arrives, it is first divided into a log
string collection using predefined delimiters, and its length is
classified into log trees of corresponding length. Following
this, Aclog proceeds to scour all nodes of the log tree in
search of the current sequence string. Should no match be
uncovered, the system undertakes an evaluation to ascertain if
a new template necessitates creation and subsequent insertion
into the log tree. In the subsequent segment of this subsection,
we will meticulously expound upon each step.

Data Cleansing and Preparation. Preprocessing is a cru-
cial step in log parsing, which can improve the efficiency and
accuracy of subsequent steps. However, due to the complexity
and variability of log attributes, too many pre-definitions can
weaken the portability of unsupervised parsing. Therefore, our
efforts are focused on reducing the impact of data preprocess-
ing on the downstream data processing steps.

By extracting information pieces by spaces and storing them
with lists, Aclog can decompose consecutive log statements
into a sequence of words without utilizing regular expressions.
However, to make Aclog directly comparable to other log
parsers, we also add regular expression support to Aclog. In
the regular-expression mode, after the original log message
arrives, Aclog leverages publicly defined regular expressions in
the LogPai benchmark to identify log keywords or parameters.
For example, Some common variables in the original log
statement, such as IP addresses and blocks, can be easily
identified as parameters using “blk[0− 9]+”.
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Fig. 2: User interface of Aclog

String Pattern Matching. After the log preprocessing step,
the original log message is expressed as a sequence of words
with a length of Length. Aclog starts from the PreRe root
node and classifies the log message using the string collection
length, based on the assumption that log messages with the
same log template have the same length. For instance, “The
current CPU temperature is 45◦” has a string set length of 7
and will be divided into a log tree of Length: 7. Although
log messages with the same log event may have different log
message lengths, they can be handled easily. In Aclog, string
sets that are not matched successfully are matched again from
Length: 6 and Length: 8. Whether to match from different
lengths is controlled by specific experimental parameters. If it
remains unsuccessful, Aclog will create a new pattern string.

Aclog’s automatic matching mechanism determines which
log tree the current log string set needs to find the template in.
Specifically, nodes in the same layer are stored in dictionaries.
Aclog takes three strings from the log string set in order and
matches them with nodes in the three layers. There are two
cases when comparing a string with a child node: either the
corresponding node is the same, or it is different. Traditional
algorithms will consider a mismatch and move to the next node
instead of taking into account the presence of parameters in
the log. Aclog matches three nodes at a time. If they are the
same, the same sub-node is defined as the parameter < ∗ >,
and three more nodes in the set are compared. This step is
repeated until all matching is completed and it is determined
that they have the same log template. If all rounds are different,
it is considered that this is not the same template.

Automated Log Template Enhancement. After matching
the appropriate log template in pattern string matching, Aclog
will add the dynamic parameters of the current log message
to the LogVariable in the log template. Additionally, the
log events in the returned log template will be updated.
Specifically, Aclog will determine whether any node changes
to the parameter ∗ node on the path of the current tail node
and follow the corresponding template location in the new tail
node. When the new dynamic parameter < ∗ > is the first
or last of the log message, Aclog’s parsing accuracy will not

TABLE I: Data Set for Evaluation.

Dataset Description Size Messages Templates

HDFS Hadoop distributed file
system log 1.47GB 11,175,629 14

Hadoop Hadoop MapReduce
job log 48.61 MB 394,308 114

Spark Spark job log 2.75 GB 33,236,604 36
ZooKeeper ZooKeeper service log 9.95 MB 74,380 50

Linux Linux system log 2.25 MB 25,567 27

Mac Mac OS log 16.09 MB 117,283 341

Apache Apache server
error log 4.90 MB 56,481 6

BGL Blue Gene/L
supercomputer log 708.76 MB 4,747,963 589

HealthApp) Health app log 22.44 MB 253,395 221
Thunderbird supercomputer log 29.60 GB 211,212,192 899

be affected. Conversely, tree structures that calculate similarity
will not be judged in this case.

When the corresponding log template is not matched in
pattern string matching, Aclog creates a new template based
on the current log message. Its dynamic parameters are empty,
and there is no ∗ on the log node path since the existing
template has only itself. Aclog initiates the creation of fresh
log tree branches utilizing the derived log template. This pro-
cess involves traversing from the root node to the designated
node that warrants inclusion of the new log template, while
simultaneously incorporating any absent child nodes along
the traversal path. Ultimately, Aclog navigates a path along
the template path, identifying the subsequent matching child
node for each node, and proceeds to update the dictionary
accordingly.

D. User Interface

We provide an interactive application interface as the front
end of Aclog. Figure 2 illustrates the user interface of Aclog.
In this demonstration, we use the LogHub [5] benchmark.
Aclog can be applied to other database systems with simple ex-
tensions. Aclog’s design integrates login, registration, parsing,
upload, and query components to address challenges. Authen-
tication leads users to the main interface for local file querying,
parsing, storage, and database log retrieval. Aclog operates
in three steps: loading local logs, parsing with user-defined
parameters, and querying structured logs from the database.
Aclog automates real-time collection, parsing, and storage of
system logs, accessible only to authorized administrators for
auditing and analysis. This automated process ensures accurate
large-scale log handling without loss of granularity.

III. EVALUATION

In this section, we evaluate our approach from multiple
aspects, including the parameter setup, classification efficacy,
deployability, and operation efficiency.

A. Dataset

We employed log files sourced from ten popular systems,
selected from the benchmark set provided by Logpai [6].
Comprehensive details are presented in Table I. These logs,
originating from real servers, encompass a wide array of
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(a) BGL (b) MAC

Fig. 3: Parameter threshold Settings

log types, including distributed system logs such as HDFS
[7], Hadoop [8], Spark [9], and ZooKeeper [10], alongside
operating system logs like Linux [11] and Mac [12]. Further-
more, they include server application logs like Apache [13],
supercomputer logs including BGL [14] and ThunderBird [15],
and mobile phone system logs such as HealthApp [16]. These
datasets are derived from open-source logs spanning various
domains, as well as logs generated by industrial systems. They
have seen extensive use in previous log analysis and research
endeavors, including tasks such as system exception detection,
problem diagnosis, and system comprehension.

Each dataset within the Logpai collection comprises a subset
of 2000 manually categorized log messages, meticulously
organized into log events to facilitate the assessment of our log
parser’s accuracy. To evaluate the efficacy of log resolution,
we utilize the complete log of each dataset. To illustrate the
effectiveness of Aclog, we compare its performance with the
existing six log parsing methods(Drain [2], Spell [1], IPLoM
[17], AEL [18], LFA [19], Lenma [20]) in terms of accuracy,
efficiency, and effectiveness.

B. Setup

When Aclog parses logs, it sets two parameters to control
the accuracy and time of log parsing: length and threshold.
After the preset matching length or the current matching ac-
curacy is exceeded, the Aclog will end this round of matching,
indicating that the corresponding template of the log has been
found. Different lengths and thresholds will have a significant
impact on the resolution results. The shorter the length and
the lower the threshold, the faster the matching speed. Due
to the diversity of each system, Aclog will have different
performances when facing other systems. That is, Aclog has
different analytic lengths and thresholds for different logs.
To find the best length and threshold, we have analyzed the
resolution of different lengths and thresholds for ten logs. As
shown in Figure 3, we select two MAC logs and BGL logs
whose resolution accuracy is greatly affected by the length
and threshold for display. The lighter the color, the higher
the accuracy. As you can see, the accuracy increases with the
length and threshold value increase. Considering its impact on
efficiency, we select the point with the minimum length plus
threshold synthesis as a reference for subsequent efficiency
comparison.

C. Detection Efficacy

F-measure is a statistic, F-Measure is also called F-Score,
F-Measure is Precision and Recall weighted harmonic aver-
age and is a commonly used evaluation standard in the IR
(information retrieval) field, which is often used to evaluate
the quality of classification models. We use F-measure, a
commonly used evaluation standard in the information field, to
evaluate the quality of classification models. In the f-measure
function, when the parameter is 1, F1 combines precision
and recall results. When F1 is high, the test method is more
effective. As shown in Table II, in the Aclog experiment, the
f-measure is above 0.98, which shows that our test is effective
enough.

It can be seen from the Table III that the accuracy of the
log parsing method proposed in this paper, namely Aclog,
is better than that of the seven methods in ten logs. The
special rules of offline IPLoM make it obtain high precision
on most log data sets. Both online methods, Spell and Drain,
have high-resolution accuracy, and their similar prefix tree
structures have achieved high precision on HDFS and Apache.
LenMA uses the word length as the analysis vector, which has
the worst accuracy on the Health App. LFA is not suitable
for Linux. Aclog is the best in general because it simulates
the way of manually classifying logs and uses three special
rules: first, logs with the same template have the same length,
which makes use of the log length to classify the original
logs efficiently. Secondly, the log parameters with the same
template have the same adjacent locations, which provides a
basis for matching layer three nodes at the same time. Third,
logs with the same prefix more than a certain proportion
have the same template. After introducing the same prefix
proportion, you can quickly cluster logs without comparing
the entire log template.

D. runtime evaluation

Because Drain sets the maximum child node, it will not
cause a profound parse tree during parsing, which greatly
reduces the matching time. However, this may affect the
accuracy of parsing in some cases. Spell also reduces the
running time by using the prefix tree to store log events,
but Spell uses the longest common subsequence method for
comparison, which is time-consuming. During log parsing,
Aclog will create a template for each type of log, which will
become an important factor affecting the running time when
the log data volume is small. As the number of logs increases,
the log template is gradually learned by Aclog. When the
number of log templates is stable, the running time of Aclog
for a single log is O(n), and n is the log length. Therefore,
the parsing time of Aclog is not limited to large-scale logs.
The running time of Aclog still increases linearly when the
number of daily logs increases sharply. Aclog is not limited
by memory because it can parse logs.

Through experimental comparison in Figure 4, we can see
that Aclog has no advantage over other online log parsers
when the data volume is small. Within 1w logs, parsing can be
completed within 10s. When the log volume becomes larger,
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TABLE II: F1 measure, Precision, and Recall for Evaluation

HDFS HealthApp Thunderbird Zookeeper BGL Hadoop Apache Mac Linux Spark

F1 measure 99.99% 98.03% 99.98% 99.97% 99.97% 99.63% 1 80.64% 99.24% 99.17%
Precision 1 98.76% 99.98% 99.96% 99.95% 99.96% 1 85.74% 90.73% 98.35%

Recall 1 99.71% 99.98% 99.98% 1 1 1 99.1% 99.48% 1

TABLE III: Accuracy Performance comparison between the Aclog and other algorithms.

HDFS HealthApp Thunderbird Zookeeper BGL Hadoop Apache Mac Linux Spark

Spell 1.000 0.639 0.844 0.964 0.787 0.778 1 0.757 0.605 0.905
Drain 0.998 0.780 0.955 0.967 0.963 0.948 1 0.787 0.690 0.920
AEL 0.998 0.568 0.941 0.921 0.957 0.869 1 0.764 0.673 0.905
LFA 0.885 0.549 0.649 0.839 0.854 0.900 1 0.599 0.279 0.994

IPLoM 1.000 0.825 0.663 0.962 0.939 0.954 1 0.671 0.672 0.920
LenMa 0.998 0.174 0.943 0.841 0.690 0.885 1 0.698 0.701 0.884
Aclog 0.998 0.895 0.95 0.982 0.965 0.972 1 0.72 0.733 0.98
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Fig. 4: Runtime comparison

the advantage of Aclog is obvious. It can be seen that with a
log volume of 105, Aclog is close to the fastest-running LFA.
Even the fastest Drain has thousands of seconds more running
time than Aclog under the data volume of 106. Aclog greatly
improves the running time of existing online parsing methods
on large-scale log data. On the evaluation of six log data,
Aclog shows excellent performance, and the running time on
HDFS is increased by 0.08 (Aclog and Drain are on HDFS
3∗105); On Thunderbird, the running time of Aclog and Drain

PacketResponder 1 for block blk_38865049064139660 terminating
PacketResponder 0 for block blk_-6952295868487656571 terminating

Received block blk_3587508140051953248 of size 67108864 from /10.251.42.84
Received block blk_5402003568334525940 of size 67108864 from /10.251.214.112

PacketResponder <*> for block blk_<*> terminating

Received block blk_<*> of size <*> from /<*>

Fig. 5: Example of a log parsing template

is increased by 0.637 (on Thunderbird 3 ∗ 107).

IV. RELATED WORK

Mining log templates from logs has been a vibrant area of
research. SLCT [21] stands out as one of the earliest log clus-
tering algorithms, grouping log lines sharing the same pattern
into clusters. Makanju et al. [17] introduced iterative methods
for partitioning system logs in IPLoM without relying on prior
knowledge. SHISO is a novel approach for mining log formats
and parameters in incremental log messages, constructing a
structured tree from log message-derived nodes. Vaarandi et
al. [22] presented LogCluster, which identifies frequent line
patterns and outliers from text event logs. Hamoni et al.
[23] introduced LogMine, a hierarchical log parser within the
map simplification framework of distributed platforms. Spell
utilizing the longest common subsequence-based method for
parsing system event logs and managing discovered message
types in stream mode. HE et al. proposed Drain, employing
a fixed depth parse tree for streaming and timely log parsing.
Messaoudi et al. [24] introduced the MoLFI method, redefin-
ing log message recognition as a multi-objective problem and
employing the NSGA II algorithm to search the solution space
of Pareto optimal message template sets.

Comparison reveals that IPLoM [17], SHISO [25], Log-
Cluster [22], LogMine [23], etc., primarily focus on offline
structured batch processing or matching new log templates
with message types and regular expressions offline. Spell [1]
parses log messages using the longest common subsequence
algorithm, contributing significantly to online parsing. How-
ever, dependency on LCS results in increased matching time
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with a higher volume of logs. Drain [2] employs a fixed
depth tree to represent hierarchical relationships between log
messages, defining grouping rules for each layer based on
factors such as log message length and token similarity. Zhu
et al. [6] evaluated the performance of various data mining
approaches, finding Drain to excel in terms of accuracy and
efficiency. Logram [26] decomposes log messages into n-gram
word vectors stored in a dictionary, distinguishing constant
templates from dynamic variables. While Logram achieves
O(1) template comparison, it consumes significant storage
space.

V. CONCLUSION

In summary, this paper introduces Aclog, an advanced log
parsing method that excels in both precision and security.
It outperforms existing benchmarks like IPLoM and LFA
in accuracy and clustering, making it a valuable tool for
system monitoring, cybersecurity, and network analysis. Fu-
ture enhancements should focus on adapting to dynamic log
environments, scaling for large datasets, and improving real-
time parsing capabilities. This study significantly advances
log parsing methodologies, addressing contemporary priorities
in data privacy and operational efficiency. Future research
should refine Aclog’s efficiency, precision, and applicability
to evolving log structures and cybersecurity challenges.
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