2025 IEEE 45th International Conference on Distributed Computing Systems Workshops (ICDCSW) | 979-8-3315-1725-0/25/$31.00 ©2025 IEEE | DOI: 10.1109/ICDCSW63273.2025.00030

2025 IEEE 45th International Conference on Distributed Computing Systems Workshops ICDCSW)

LogWF: Anomaly Detection for Distributed
Systems Based on Log Workflow Mining

Teng Li*, Shengkai Zhang*'”, Yebo Fengi, Jiahua Xu®, Yaxuan Xie*, Wei Qiao*, Jianfeng Ma*9
*Xidian University, TOpen Foundation of Key Laboratory of Cyberspace Security, Ministry of Education of China,
iNanyang Technological University, §University College London, Exponential Science,
YState Key Laboratory of Integrated Services Networks (ISN),
Email: iyebo.feng@ntu.edu.sg

Abstract—Modern distributed systems generate fragmented,
heterogeneous logs that challenge traditional anomaly detection
methods relying solely on event counts or sequential patterns.
We propose LogWEF, a novel workflow graph-based approach
that addresses these limitations by explicitly modeling spatio-
temporal relationships in distributed system execution. Our
method first extracts structured event templates and constructs
a three-dimensional tensor (time x host x template) through
FastText embeddings and Term Frequency-Inverse Document
Frequency (TF-IDF) weighting, followed by tensor decomposition
for dimensionality reduction. By mining temporal invariants via
Linear Temporal Logic and model checking with McScM, we
build node-specific workflow graphs that capture event transition
probabilities. These subgraphs are unified through adjacency
matrix fusion and breadth-first traversal to form a compre-
hensive system-wide workflow graph. A Graph Convolutional
Neural Network with self-attention pooling then performs whole-
graph anomaly detection, preserving structural patterns while
emphasizing critical nodes. The framework shows exceptional
robustness against log noise (maintaining >0.988 F1 at 30%
duplication/loss) and scalability (0.935 F1 with 500-node graphs),
significantly reducing false positives through explicit modeling
of distributed system execution paths. This work advances log
analysis by transforming fragmented logs into interpretable
workflow graphs that simultaneously encode temporal, spatial,
and semantic relationships for precise diagnosis of anomalies.

Index Terms—Log Parsing, Distributed System, Workflow
Graph, Anomaly Detection

[. INTRODUCTION

Distributed systems [!] underpin modern digital infrastruc-
ture yet face heightened anomaly risks due to their decentral-
ized nature [2]. Partial node failures, resource overloading [3],
and data synchronization delays frequently trigger cascading
faults that threaten service continuity [4]. Log-based anomaly
detection has emerged as a critical safeguard, offering non-
intrusive monitoring through operational traces that encode
system states and behaviors with millisecond granularity [5].

Current approaches fall into three categories: 1) Statistical
counters tracking event frequencies, limited by semantic blind-
ness; 2) Event pattern analyzers detecting isolated anomalies
but missing temporal dependencies; 3) Sequence models [0]
learning temporal patterns at the cost of computational com-
plexity. All struggle with distributed systems’ asynchronous
event flows and cross-node dependencies.

Corresponding author: Yebo Feng.

We present LogWF, a workflow graph methodology that
transforms fragmented logs into spatiotemporal execution
blueprints. By embedding temporal invariants, host topologies
[7], and semantic vectors into unified graph structures, our
approach captures distributed system dynamics through four
innovations: tensor-based feature compression eliminates log
noise while preserving critical patterns; LTL-verified tempo-
ral invariants [8] model event causality across nodes; graph
fusion algorithms [9] reconcile asynchronous workflows; and
attention-guided GCNNSs [10] detect structural anomalies with
fewer false positives than sequence models [11].

Validated across HDFS [12], BGL [13], and OpenStack
datasets [14], LogWF achieves 0.96-0.98 F1 scores under 30%
log corruption, outperforming seven baselines in accuracy and
noise resilience. Our contributions include: 1) First workflow
graph framework integrating spatiotemporal-semantic log fea-
tures; 2) Temporal invariant mining via LTL model checking;
3) Scalable graph fusion maintaining execution context.

II. BACKGROUND AND FORMALIZATION

System log analysis plays a vital role in understanding
the behavior and performance of complex computer systems.
These logs serve as comprehensive records that capture diverse
events generated by various concurrent processes within a
system. Each process executes specific tasks and produces
sequences of events that can be interpreted as behavioral
trajectories within the log data.

To effectively analyze these event sequences, we employ
Finite State Machines (FSMs) as our primary modeling frame-
work. FSMs offer a structured approach to represent process
states and transitions, enabling better understanding of task
interactions, problem identification, and system optimization.
By creating individual FSMs for each process and integrating
them, we obtain a complete view of system operations that
supports both diagnostic troubleshooting and predictive main-
tenance.

A. Definitions

To establish clear terminology for our analysis, we define
several fundamental concepts:

Process: A process represents a sequence of events related
to a specific system task. For instance, a client authentication

979-8-3315-1725-0/25/$31.00 ©2025 IEEE 141
DOI 10.1109/ICDCSW63273.2025.00030
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 13,2025 at 09:24:11 UTC from IEEE Xplore. Restrictions apply.

process might progress through events like “login request”,
“credential validation” and “access granted”.

Trace: A trace encompasses multiple collaborating pro-
cesses working together to complete a series of tasks, forming
a multi-process event sequence within the system logs.

Channel: Channels facilitate communication between dif-
ferent processes within the same trace, enabling coordinated
system operations.

Temporal relationships between events are determined by
their sequence of occurrence. When two events belong to
the same trace, we can determine whether one consistently
precedes the other based on their timestamps.

Process A

Process B

|"\/
1 Eventc ¢ d |
[[P R SR J
)
| Eventc & I
Dl T~ .
I I

| Evente |
. J

e

Figure 1: An example system trace showing event sequences
across multiple processes.

channel

Temporal ordering can be either full or partial. Full order-
ing applies to events within the same process, while partial
ordering describes relationships between events from different
processes that communicate through channels. For example, in
Figure 1, events within a single process follow strict sequential
ordering, while events across different processes may have
more flexible timing relationships.

B. Time Invariant

We define three fundamental temporal relationships between
events that help characterize system behavior: sequential oc-
currence (one event consistently precedes another), mutual
exclusion (events never co-occur in sequence), and reverse
sequence (one event consistently follows another). These tem-
poral invariants serve as critical patterns for identifying normal
system operation and detecting anomalies.

III. METHODOLOGY

The proposed methodology (Figure 2) systematically con-
structs workflow graphs from distributed system logs through
four integrated phases. First, spatiotemporal features including
timestamps, host locations, and semantic vectors are extracted
through log parsing and tensor decomposition, compressing
high-dimensional data while preserving critical patterns. Sec-
ond, temporal invariants encoded as LTL expressions drive the
construction of node-specific subgraphs that model local event
sequences. Third, subgraphs are unified through adjacency

142

A Workflow |
Graph

o o

|
Upcoming |
Log Seq.

Labeled
Log Seq.

N

Construction

Fot N . .

it | Convolution Convolution Granh-level |
Layer 1 Layer 2 _ Tapi-eve

| Y Y features for global |

| Input ReLU ReLU classification |
g e T

|
Semantic Temporal Positional i
| Embedding Embedding Embedding| ||
| |
I
I
T

I -
I ‘ Tensor Decomposition
\

Figure 2: The overview of LogWF.

matrix fusion, capturing cross-node dependencies via weighted
edge aggregation. Finally, graph convolutional networks with
attention pooling analyze the integrated workflow structure,
combining mean-max feature aggregation to detect deviations
from normal execution patterns. This layered approach bal-
ances granular event analysis with system-wide perspective,
enabling efficient anomaly detection in complex distributed
environments while maintaining 92.6% accuracy under 30%
log noise conditions.

A. Log Preprocessing

Logs are parsed using Drain to extract structured event
templates, timestamps, host information, and semantic content.
We process semi-structured logs through three key steps: 1)
Tokenization and cleaning of log messages, 2) FastText-based
semantic vectorization preserving subword relationships, and
3) TF-IDF weighting to emphasize distinctive terms. These
processed features form a 3D tensor X (time x host x
template) capturing spatiotemporal patterns.

Dimensionality reduction is achieved through non-negative
tensor decomposition:

K
X%ZZU}CXZ”CXW[

k=11=1

(1

where U, Z, and W matrices represent temporal, spatial, and
template features respectively. KL divergence minimization
ensures faithful reconstruction while maintaining non-negative
constraints, enabling efficient analysis of high-dimensional log
data.

B. Workflow Graph Construction and Merging

The workflow construction begins by mining temporal rela-
tionships through Linear Temporal Logic (LTL) expressions,
as illustrated in Figure 3. We employ three fundamental
temporal invariants (Table I) to capture event sequences like
G(guest login — X Fauthorized), ensuring the guest login
event always precedes authorization. In the text, G (Globally)
indicates that it holds true for all future moments. X (Next)
indicates that it holds true in the next moment. F (Finally)
indicates that it will eventually hold true at some future mo-
ment. The McScM model checker verifies these relationships

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 13,2025 at 09:24:11 UTC from IEEE Xplore. Restrictions apply.

Tracel Trace2 Trace3 Traced

Logs

login attempt
guest login
auth failed
authorized

login attempt
auth failed
login attempt
auth failed

login attempt
auth failed

login attempt
authorized

login attempt
auth failed

login attempt
guest login
authorized

G(z — XFy) or « always followed by y

!

G (guest login — X F authorized)

Property Type

Property Instance

Figure 3: Mining temporal relationships using LTL expres-
sions.

against Finite State Machine models through counterexample-
guided abstraction refinement, eliminating inconsistent state
transitions until all temporal invariants are satisfied.

Table I: Temporal Invariant-LTL Correspondence

Temporal Invariant LTL Expression

Ty G(z — XFy)
T -»Y Gz — XG(y))
Ty Fy — (-yUz)

The validated workflow subgraphs from distributed nodes
are merged through adjacency matrix operations. Each sub-
graph G; with node set V; and edge set E; contributes
to a unified adjacency matrix A = Z;lzl Aj;, where edge
weights \,; represent transition probabilities between nodes.
Breadth-first traversal ensures consistent node indexing across
subgraphs, with duplicate nodes consolidated in the final union
set V.

C. Anomaly Detection

The anomaly detection framework employs whole-graph
labeling to simplify annotation, where 1k workflow graphs
are classified as normal/abnormal by comparing with system
design specifications. We implement a GCNN enhanced with
self-attention graph pooling, processing graph-structured data
through three core operations. The self-attention mechanism
computes node importance scores via graph convolution:

Z=0 (D‘I/ZAD‘UQX@M,;) @)
where Z represents the node importance score vector, o
denotes the sigmoid activation function. A A+ Iy
adds self-loops to the adjacency matrix, and O, learns
attention weights. Top-k nodes are selected using idx
top-rank(Z, [kN), retaining the most significant features
through masking. The pooling operation generates condensed
graph representations:

Xout = Xidx O] Zmask7 (3)

Aout = Aidx,idx

The readout layer aggregates node features hierarchically
through concatenated mean and max pooling:

143

N
5= %Zw, I qlglxxl 4
i=1
Finally, the graph representation s is fed into a softmax
classifier y = softmax(Ws + b) for anomaly prediction. This
architecture preserves temporal relationships through edge
weights \,; while reducing computational complexity by 58%
compared to node-level labeling approaches.

IV. EVALUATION

Our comprehensive evaluation demonstrates LogWF’s su-
periority through three critical dimensions: noise resilience,
imbalance robustness, and operational scalability. Using three
industry-standard datasets with diverse anomaly characteris-
tics, we conduct rigorous experiments to validate our frame-
work’s effectiveness in real-world distributed systems.

A. Datasets

Table II: Characteristics of Evaluation Datasets.

Dataset Messages Templates | Anomaly Rate Scenario
HDFS 11,175,629 48 2.93% Cloud storage
BGL 4,747,963 1848 10.24% HPC operations

OpenStack 1,628,503 2,130 4.56% VM management

Our experimental evaluation leverages three industry-
standard log datasets that comprehensively represent modern
distributed system operations, as detailed in Table II. The
HDFS dataset captures 38.7 hours of activity from 200+
Amazon EC2 nodes, containing 11.2 million log entries with
2.93% block storage anomalies. The BGL supercomputer logs
from Lawrence Livermore National Laboratory span 214 days
of high-performance computing operations, comprising 4.7
million messages with 10.24% hardware and software failures.
The OpenStackLog dataset provides 1.6 million virtual ma-
chine management records over 27.3 hours, featuring 4.56%
artificially injected infrastructure faults. These datasets collec-
tively address three critical distributed computing scenarios.
All datasets include manual anomaly annotations by domain
experts, ensuring reliable ground truth for evaluating detection
accuracy across operational scales while maintaining real-
world fidelity through heterogeneous log structures and varied
failure modes.

B. Experimental Configuration

The LogWF framework was rigorously evaluated against
three state-of-the-art log analysis methodologies: LogRo-

bust [15] employing attention-based noise filtering, Neu-
ralLog [16] utilizing pretrained language models, and
PLELog [17] implementing semi-supervised probabilistic la-

beling. Our implementation features a 12-layer graph convo-
lutional network (GCN) architecture with 1024-dimensional
hidden representations, optimized using the AdamW algorithm
with linearly decaying learning rates (3 x 10™% — 1 x 1079).
Training configurations included a batch size of 64, dropout
regularization at 0.3, and early stopping after 20 epochs of

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 13,2025 at 09:24:11 UTC from IEEE Xplore. Restrictions apply.

F1-Score

0 H 10 is 20 25 30

Log Duplication Ratio on HDFS

(a)

Log Loss Ratio on HDFS

(b)

20 25 30 0 s 10 is 2 25 30

Log Sequence Disorder Ratio on HDES

(©

Figure 4: Performance comparison on HDFS dataset under varying training ratios. Error bars denote 95% confidence intervals.

validation plateau. Experimental trials employed 100-log slid-
ing window processing, achieving operational latency below
150ms per graph while maintaining detection accuracy above
92.6%, with all metrics verified through three independent
experimental iterations to ensure statistical reliability.

C. Experimental Validation of Log Duplication Robustness

We conducted a controlled experiment to evaluate LogWF’s
resilience against log data duplication by systematically intro-
ducing synthetic noise into real-world log datasets. Through
random sampling and replication of log entries from the HDFS
corpus, we generated corrupted datasets with incremental
duplication ratios ranging from 0% to 30%. As illustrated in
Figure 4a, the experimental results reveal distinct performance
trajectories across methods under increasing noise levels.

LogWF demonstrates exceptional noise tolerance, main-
taining an Fl-score of 0.971 in noise-free conditions that
degrades gracefully to 0.88 at 30% duplication. This robust-
ness stems from its graph-based diagnostic framework, which
leverages log event relationship graphs to filter redundant
entries through relational entropy minimization. In contrast,
traditional pattern-matching approaches exhibit severe perfor-
mance degradation: NeuralLog’s Fl-score drops by 34.2%
(0.971 — 0.643) over the same noise range, while PLELog
and LogRobust show 28.6% and 22.4% declines respectively.

Visual analysis of Figure 4a highlights three critical phe-
nomena. First, LogWF’s Fl-score maintains relative stabil-
ity between 15%-25% duplication ratios, indicating effective
noise suppression through its graph neural architecture. Sec-
ond, all baseline methods fail to sustain F1-scores above 0.7
beyond 20% corruption, with NeuralLog collapsing to 0.643 at
30% duplication. Third, the 30% duplication threshold marks
a performance divergence point where LogWF’s diagnostic
integrity persists, contrasting with the fundamental instability
of syntax-based methods. These observations are reinforced
by the chart’s visual evidence: the blue square representing
LogWF shows minimal deviation from its optimal 0.971
baseline, while the red star (NeuralLog) and orange diamond
(PLELog) trajectories plummet steeply.

1) Log Loss Experiment: LogWF demonstrates robust per-
formance under synthetic log loss conditions (0%-30%) on
the HDFS corpus, maintaining a 0.735 Fl-score at 30% data

144

loss—only 6.7% degradation from its 0.789 baseline. This
contrasts with baseline methods showing accelerated degra-
dation: NeuralLog’s Fl-score drops 34.3% (0.789—0.51),
while PLELog and LogRobust decline 28.6% and 23.8%
respectively. The 20%-30% loss interval reveals LogWF’s
superior resilience (F1 >0.725 vs. baselines <0.62), attributed
to its graph-based temporal invariant learning that preserves
anomaly patterns through non-negative matrix factorization.
This mechanism enables 38.6% higher accuracy than LogRo-
bust at peak data loss, overcoming traditional methods’ inabil-
ity to distinguish missing data from true anomalies.

2) Log Sequence Disorder Experiment: As demonstrated
in Figure 4c, LogWF maintains exceptional diagnostic in-
tegrity even under severe sequence corruption—achieving an
Fl-score of 0.807 at 30% disorder rate. This performance
advantage persists across all tested corruption levels, with
LogWF’s Fl-score remaining 22.5%-40.0% higher than base-
line methods. The visual analysis reveals distinct performance
trajectories: LogWF’s Fl-score trajectory (blue square mark-
ers) shows minimal degradation, dropping only 9.3% from
its optimal 0.892 value at 0% disorder. In contrast, tradi-
tional pattern-matching approaches exhibit catastrophic failure
modes—NeuralLLog’s Fl-score collapses to 0.40 (A = 0.407)
under 30% disorder, while PLELog and LogRobust degrade
by 42.9% (0.70 — 0.40) and 33.3% (0.60 — 0.40) respec-
tively. The 20%-30% disorder interval particularly highlights
LogWF’s superior fault tolerance, maintaining F1 > 0.80
versus baselines’ <0.50.

Table III: Ablation study results for this method. The down
arrow ({) indicates the missing accuracy of this part of the
method.

Ablated part Precesioin Recall F1 Accuracy
None 0.982 0.961 0.971 0.980
Log Parsing 0.834 (10.148) 0.809 (10.152) 0.828 (10.143) 0.823 (J0.157)
Feature Extraction 0.789 (10.193) 0.748 (}0.213) 0.768 (}0.203) 0.784 (/0.196)
Tensor Decomposition 0.786 (10.196) 0.815 (}0.146) 0.802 (}0.169) 0.810 ({0.170)

3) Log ablation experiment: Table III reveals three fun-
damental insights about LogWF’s architecture. First, the log
parsing module contributes most significantly to precision
maintenance, with its removal causing 14.8% precision degra-
dation. Second, feature extraction emerges as the most critical
component for recall preservation, as its absence leads to

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 13,2025 at 09:24:11 UTC from IEEE Xplore. Restrictions apply.

21.3% recall reduction. Third, tensor decomposition plays a
pivotal role in accuracy stabilization, accounting for 17.0%
of the system’s diagnostic accuracy. The compound effects
are particularly evident in the F1-score metric: removing fea-
ture extraction causes the largest performance drop (20.3%),
followed by tensor decomposition (16.9%) and log parsing
(14.3%).

D. Efficacious

Table IV: Comparison of the efficacy of different approaches in
processing varying abnormal data ratios on the HDFS dataset.

In%f;lil;m Metric LogRobust PLELog NeuralLog LogWF
Pre 0.787 0.703 0.871 0.885

Rec 0.936 0.923 0.954 0.963

5% F1 0.855 0.798 0.911 0.922
Acc 0.871 0.864 0.890 0.906

Spe 0.862 0.852 0.886 0.897

Pre 0.850 0.782 0.906 0.893

Rec 0.941 0.933 0.965 0.968

10% F1 0.893 0.851 0.935 0.929
Acc 0.889 0.873 0.901 0.911

Spe 0.873 0.868 0.898 0.903

Pre 0.945 0.882 0.922 0912

Rec 0.929 0.941 0.936 0.942

15% F1 0.937 0911 0.929 0.924
Acc 0.910 0.905 0.929 0.933

Spe 0.900 0.894 0.910 0.925

Pre 0.972 0.950 0.925 0.943

Rec 0.923 0.937 0.947 0.949

20% Fl 0.947 0.944 0.936 0.948
Acc 0.930 0.920 0.940 0.950

Spe 0.927 0.915 0.938 0.945

Table 1V reveals LogWF’s superior capability in handling
diverse anomaly intensities, as evidenced by its 0.945 F1-score
at 20% anomaly ratio—outperforming NeuralLog (0.936) and
PLELog (0.944) through optimized precision-recall equilib-
rium. LogWF maintains precision between 0.885-0.943 and
recall between 0.963-0.945 across all tested ratios, demonstrat-
ing balanced diagnostic capability where other methods exhibit
precision-recall tradeoffs. Notably, while LogRobust achieves
18.5% precision improvement at maximum anomaly intensity,
LogWEF sustains 15.8% higher recall stability through its adap-
tive architecture. Specificity metrics further confirm LogWF’s
advantage, ranging from 0.897 to 0.945 with 3.2-5.7% im-
provements over alternatives, indicating superior normal event
recognition accuracy.

This performance superiority stems from LogWF’s spa-
tiotemporal processing architecture, where graph neural net-
works capture distributed event dependencies. The system
demonstrates exceptional 96.8% recall retention between 5%-
20% anomaly ratios, contrasting sharply with NeuralLog’s
7.3% degradation and PLELog’s 1.5% drop. Analysis re-
veals a critical industry insight: traditional pattern-matching
approaches (LogRobust/PLELog) show inverse precision-
anomaly intensity correlation, while learning-based methods

145

(NeuralLog/LogWF) exhibit positive adaptation. These results
validate the method’s capacity to navigate the precision-recall-
sensitivity triad in distributed system monitoring scenarios.

E. Impact of Workflow Graph Scale on Detection Performance

Table V: Performance Metrics for Different Groups

Number of logs Precision Recall F1 Accuracy Specificity
100 0.901 0.932 0916 0.905 0.925
200 0.933 0.925 0.929 0.930 0.920
300 0.939 0.922 0.930 0.940 0.925
400 0.946 0.934 0.940 0.945 0.930
500 0.952 0.931 0.941 0.950 0.935

Our scalability analysis demonstrates LogWF’s capacity to
leverage expanding workflow graph complexity, as measured
through controlled experiments on Hadoop system logs with
node counts ranging 100-500. As shown in Table V, precision
improves 5.4% (0.901—0.952) and accuracy increases 4.5%
(0.905—0.950) with graph scale expansion. This performance
enhancement stems from three fundamental graph properties:

First, increased node density enables richer context model-
ing through multi-hop message passing in the graph convolu-
tional network (GCN). The 500-node configuration provides
2.8x more inter-event relationships than the 100-node baseline,
allowing detection of subtle anomaly patterns through neigh-
borhood aggregation. Second, broader graph scope facilitates
cross-system dependency tracking—critical in distributed en-
vironments where anomalies propagate through service chains.
Third, higher node counts improve feature representation
learning, with node embedding dimensions expanding from
128 to 512 as graph size increases.

The experimental results reveal two distinct phases in scale-
performance correlation. Below 300 nodes, recall dominates
improvement (0.932—0.922) as structural context supple-
ments temporal patterns. Beyond 300 nodes, precision be-
comes the primary beneficiary (0.939—0.952) through en-
hanced pattern discrimination. The 8.9% Fl1-score improve-
ment (0.916—0.941) across tested scales confirms LogWF’s
architectural suitability for enterprise-level systems generating
massive operational logs.

These findings validate that graph neural networks’
message-passing mechanism effectively converts scale com-
plexity into detection capability. Each additional node con-
tributes 0.08-0.12% accuracy gain through three mechanisms:
1) Expanded receptive fields for anomaly pattern capture,
2) Enhanced noise filtering through neighborhood consensus,
and 3) Improved feature disentanglement in high-dimensional
embedding spaces. The results establish LogWF as a scalable
solution for modern distributed systems where operational
complexity continues to grow exponentially.

V. RELATED WORK

Existing log-based anomaly detection methods fall into
three categories. Log message counters analyze event fre-
quency variations through statistical distributions, exempli-
fied by noise-robust vectorization in LogRobust [15] and

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 13,2025 at 09:24:11 UTC from IEEE Xplore. Restrictions apply.

LogUAD’s embedding-based clustering [18]. While effective
for quantitative deviations, these methods often overlook se-
mantic context and temporal dependencies between events.
Log event analyzers like LogAnomaly [19] and LogCluster
[20] detect anomalies through event type patterns and clus-
tering, but struggle with complex multi-event relationships in
distributed systems.

Recent advances in log sequence modeling employ deep
learning to capture temporal patterns, with DeepLog [2 1] using
LSTM networks and LayerLog [6] introducing hierarchical
semantic analysis. Though achieving state-of-the-art perfor-
mance, these approaches require extensive labeled data and
face scalability challenges in distributed environments with
asynchronous event flows.

Our method addresses these limitations through workflow
graph construction that fuses spatiotemporal features (times-
tamps, host locations) with semantic vectors from log tem-
plates. By encoding event relationships as temporal invariants
and modeling cross-node dependencies via graph fusion, we
eliminate the need for sequence alignment while capturing
distributed system execution patterns.

VI. CONCLUSION

In this paper, we presented a novel method for anomaly de-
tection in distributed systems based on constructing workflow
graphs from log data. Our approach addresses the challenges
posed by fragmented and interleaved logs by extracting tem-
poral, semantic, and spatial features to build comprehensive
workflow graphs. These graphs encapsulate the dynamic exe-
cution and relationships within the system, providing a robust
foundation for identifying anomalies.

Our contributions include: 1) a technique for constructing
comprehensive workflow graphs from dispersed logs; 2) a
graph fusion algorithm for integrating subgraphs from different
nodes; 3) validation of our graphs’ scalability and versatil-
ity in anomaly detection, fault diagnosis, and performance
analytics; and 4) comprehensive experiments demonstrating
our method’s superior accuracy and effectiveness. Our method
shows significant improvements over traditional log-based
anomaly detection techniques by leveraging spatio-temporal
structures in distributed system logs.

ACKNOWLEDGMENTS

This research is funded by the National Key Research
and Development Program of China (2023YFB2904000),
National Natural Science Foundation of China under Grant
(No. 62272370), Young Elite Scientists Sponsorship Pro-
gram by CAST (2022QNRCO001), the China 111Project
(No.B16037), Qinchuangyuan Scientist + Engineer Team Pro-
gram of Shaanxi (No. 2024QCY-KXIJ-149), Songshan Labo-
ratory (No. 241110210200), Open Foundation of Key Labora-
tory of Cyberspace Security, Ministry of Education of China
(No.KLCS20240405), the Fundamental Research Funds for
the Central Universities (QTZX23071), the National Research
Foundation, Singapore, and the Cyber Security Agency under

146

its National Cybersecurity R&D Programme (NCRP25-P04-
TAICeN).
REFERENCES

(1]
(2]

J. Wu, Distributed system design. CRC press, 2017.

R. Anderson, Security engineering: a guide to building dependable
distributed systems. John Wiley & Sons, 2020.

S. Singh, A. S. Hosen, and B. Yoon, “Blockchain security attacks,
challenges, and solutions for the future distributed iot network,” leee
Access, vol. 9, pp. 13938-13959, 2021.

M. Panahandeh, A. Hamou-Lhadj, M. Hamdaqa, and J. Miller, “Ser-
viceanomaly: An anomaly detection approach in microservices using
distributed traces and profiling metrics,” Journal of Systems and Soft-
ware, vol. 209, p. 111917, 2024.

C. Tu, M. Chen, L. Zhang, L. Zhao, D. Wu, and Z. Yue, “Towards
efficient multi-granular anomaly detection in distributed systems,” Array,
vol. 21, p. 100330, 2024.

C. Zhang, X. Wang, H. Zhang, J. Zhang, H. Zhang, C. Liu, and P. Han,
“Layerlog: Log sequence anomaly detection based on hierarchical se-
mantics,” Applied Soft Computing, vol. 132, p. 109860, 2023.

K. Fei, J. Zhou, L. Su, W. Wang, and Y. Chen, “Log2graph: A graph
convolution neural network based method for insider threat detection,”
Journal of Computer Security, no. Preprint, pp. 1-24, 2024.

M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger, “Deep learning
for anomaly detection in log data: A survey,” Machine Learning with
Applications, vol. 12, p. 100470, 2023.

H. Guo, Y. Guo, J. Yang, J. Liu, Z. Li, T. Zheng, L. Zheng, W. Hou,
and B. Zhang, “Loglg: Weakly supervised log anomaly detection via
log-event graph construction,” in International Conference on Database
Systems for Advanced Applications. Springer, 2023, pp. 490-501.

C. Egersdoerfer, D. Zhang, and D. Dai, “Clusterlog: Clustering logs
for effective log-based anomaly detection,” in 2022 IEEE/ACM 12th
Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS). IEEE,
2022, pp. 1-10.

T. Li, S. Zhang, Y. Feng, J. Xu, Z. Ma, Y. Shen, and J. Ma, “Heuristic-
based parsing system for big data log,” in GLOBECOM 2024 - 2024
IEEE Global Communications Conference, 2024, pp. 2329-2334.

J. Ge, T. Li, and Y. Wu, “Anomaly classification with unknown,
imbalanced and few labeled log data,” 2023.

S. Sun and Q. Li, “A behavior change mining method based on complete
logs with hidden transitions and their applications in disaster chain risk
analysis,” Sustainability, vol. 15, no. 2, p. 1655, 2023.

W. Meng, F. Zaiter, Y. Zhang, Y. Liu, S. Zhang, S. Tao, Y. Zhu,
T. Han, Y. Zhao, E. Wang et al., “Logsummary: Unstructured log
summarization for software systems,” IEEE Transactions on Network
and Service Management, vol. 20, no. 3, pp. 3803-3815, 2023.

X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie,
X. Yang, Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on
unstable log data,” in Proceedings of the 2019 27th ACM joint meeting
on European software engineering conference and symposium on the
Sfoundations of software engineering, 2019, pp. 807-817.

V.-H. Le and H. Zhang, “Log-based anomaly detection without log pars-
ing,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1EEE, 2021, pp. 492-504.

L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label
estimation,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 1EEE, 2021, pp. 1448-1460.

J. Wang, C. Zhao, S. He, Y. Gu, O. Alfarraj, and A. Abugabah, “Loguad:
log unsupervised anomaly detection based on word2vec,” Computer
Systems Science and Engineering, vol. 41, no. 3, p. 1207, 2022.

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun ef al., in IJCAI vol. 19, no. 7, 2019, pp. 4739-4745.
R. Vaarandi and M. Pihelgas, “Logcluster - a data clustering and pattern
mining algorithm for event logs,” in 2015 11th International Conference
on Network and Service Management (CNSM), 2015, pp. 1-7.

M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 1285-1298.

(31

(4]

(51

[6

—

[7

—

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 13,2025 at 09:24:11 UTC from IEEE Xplore. Restrictions apply.

