
Journal of Systems Architecture 168 (2025) 103578

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Log2Evt: Constructing high-level events for IoT Systems through log-code

execution path correlationI

Teng Li a,b,c,d, Baichuan Zheng a,b,c,d, Yebo Feng e,h,∗, Xiaowen Quan f, Jiahua Xu g,h, Yang Liu a,
Jianfeng Ma a
a School of Cyber Engineering, Xidian University, Xi’an 710071, China
b State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
c Songshan Laboratory, Henan 450018, China
d Key Laboratory of Cyberspace Security, Ministry of Education, Xi’an 710071, China
e College of Computing and Data Science, Nanyang Technological University, Singapore 639798, Singapore
fWebRAY Tech (Beijing) Co., Ltd., Beijing 100000, China
g Department of Computer Science, University College London, London WC1E 6EA, UK
h Exponential Science, Cayman Islands

A R T I C L E I N F O

Keywords:
Internet of things
Smart society
Log analysis
Event converting
Graph theory

 A B S T R A C T

The detection of cyberattacks in IoT ecosystems requires comprehensive log auditing across distributed devices,
yet the volume and heterogeneity of IoT logs exceed traditional analysis capabilities. Therefore, it is essential
to narrow down the scope of forensics precisely and efficiently to target attack-related events. Existing schemes
have the disadvantage of low accuracy and flexibility. We propose a novel approach that synthesizes high-
level security events from low-level IoT logs by correlating firmware execution traces with runtime call stack
contexts. Our approach implements lightweight monitoring probes at critical IoT workflow points and employs
an IoT-optimized Common Ancestor algorithm for log sequence analysis. The experiments demonstrate a 15%
improvement in accuracy compared to the rule-based matching scheme. Additionally, the results highlight the
influence of the threshold parameter and show that the approach has minimal impact on program operation.
The approach effectively addresses the challenges of protocol fragmentation and resource constraints in IoT
environments, providing a foundation for robust security monitoring in smart city deployments.
1. Introduction

In IoT-enabled smart societies, the operational behavior of IoT
devices, such as sensor activations, data transmissions, or firmware
updates, manifests as high-level events composed of numerous low-
level function executions. Each execution generates a stream of log
messages that document state changes across distributed IoT networks.
Constructing high-level events from raw IoT logs is essential for two
reasons. First, these events contextualize device interactions into ac-
tionable security narratives, enabling analysts to trace multi-step at-
tack chains, such as compromised sensors triggering cascading fail-
ures, which individual logs alone cannot reveal [1]. Second, they
expose stealthy attack patterns, including slow-burn data exfiltration
or spoofed device commands, that evade detection when logs are
analyzed in isolation. However, IoT environments introduce unique
challenges. Fig. 1 illustrates a fundamental challenge in log analysis
where concurrent system activities cause log entries to become frag-
mented and interleaved. A single logical event, such as a user login,

I This article is part of a Special issue entitled: ‘SPASS’ published in Journal of Systems Architecture.
∗ Corresponding author at: College of Computing and Data Science, Nanyang Technological University, Singapore 639798, Singapore.
E-mail address: yebo.feng@ntu.edu.sg (Y. Feng).

often comprises multiple suboperations, such as authentication and
session initialization, with each generating a distinct log entry. In the
figure, the single User-A Login event produces two separate log entries:
User-A Login_1 and User-A Login_2. These entries are separated in the
timeline by logs from other concurrent user activities. This interleaving
complicates the reconstruction of a user’s session. For example, the
complete timeline for User-A involves a successful login that generates
two separate log entries, a subsequent logout, and later, a separate,
failed login attempt. Without sophisticated analysis, the fragmented
nature of these logs makes it difficult to accurately trace the sequence of
operations for any single user or process. Additionally, heterogeneous
IoT hardware generates both structured logs, like timestamped sensor
readings, and unstructured logs, such as free-text error reports from
legacy devices. These concurrent operations scatter log entries, forc-
ing analysts to prioritize specific messages and inadvertently overlook
fragmented traces of malicious activity [2,3]. Attackers exploit these
inconsistencies by dispersing malicious activity across mixed-format
https://doi.org/10.1016/j.sysarc.2025.103578
Received 31 March 2025; Received in revised form 27 August 2025; Accepted 8 Se
vailable online 13 September 2025
383-7621/© 2025 Elsevier B.V. All rights are reserved, including those for text and
ptember 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:yebo.feng@ntu.edu.sg
https://doi.org/10.1016/j.sysarc.2025.103578
https://doi.org/10.1016/j.sysarc.2025.103578

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 1. Visualization of interleaved multi-user log sequences.
logs to evade rule-based detection [4–6]. Existing approaches for IoT
log analysis [7–9] often prioritize sequential log ordering, neglecting
asynchronous workflows where correlated events span multiple de-
vices. By isolating event-specific log sequences, such as those tied to
a single firmware update, auditors can reconstruct IoT-centric attack
pathways, such as rogue nodes injecting falsified data. This need for
efficiency is a well-recognized challenge, as many security mechanisms
for functions like data sharing are too computationally intensive for
resource-limited IoT devices [10]. Addressing these challenges requires
lightweight techniques to map low-level IoT logs to high-level events
without overwhelming resource-constrained devices, ensuring real-time
intrusion detection in scalable smart societies.

However, transforming low-level log data generated by IoT devices
into high-level operational events remains a critical challenge for ef-
fective intrusion detection in smart societies. IoT systems inherently
involve large-scale deployments with heterogeneous devices, produc-
ing immense volumes of unstructured logs. Administrators struggle to
define reliable detection rules [11,12] or keywords [13,14] due to
the dynamic nature of IoT environments, where device diversity and
unpredictable interactions amplify the risk of missing attack signatures.
Compounding this issue, IoT devices often lack standardized logging
formats, leading to inconsistencies that hinder automated analysis. Fur-
thermore, concurrent operations across distributed IoT networks scatter
log entries, forcing analysts to prioritize specific messages and inadver-
tently overlook fragmented traces of malicious activity. Systems can
analyze IoT workflow execution paths, representing the chronological
sequence of operations. By reconstructing these paths, systems can cor-
relate isolated log entries into coherent, high-level events. This enables
real-time detection of covert attacks. This focus on efficiency is crucial,
as even fundamental tasks like processing network packets can create
unpredictable workloads that challenge the real-time capabilities of
embedded systems [15]. Importantly, this approach maintains minimal
computational overhead, which is essential for resource-constrained
IoT infrastructures.

In IoT-enabled environments, addressing log analysis challenges
requires approaches capable of processing massive volumes of device-
generated logs, even when fragmented across distributed networks.
IoT-specific solutions must sift through disorganized logs to identify
security-relevant entries, such as anomalous sensor readings or unau-
thorized firmware access attempts. Existing IoT-specific approaches,
such as behavioral model extraction and source code analysis tech-
niques, contribute to resolving these issues but have limitations. For
example, process mining and supervised learning approaches model
device behavior through operational logs [16,17], enabling adminis-
trators to effectively correlate log patterns with IoT device states [18].
However, in IoT contexts, these approaches rely heavily on accurate
2
log text semantics, and errors in this analysis can lead to faulty mod-
els [19]. Conversely, source code analysis techniques map log messages
to execution nodes in programs, helping administrators track connec-
tions between logs based on control flow. This enables deeper insights
into temporal relationships between events but often requires exten-
sive computational resources, making these approaches struggle with
scalability in large IoT deployments [20]. These persistent challenges
are rooted in the limitations of analysis techniques that depend on the
simple chronological order of entries or text-based keyword match-
ing, which remain inadequate for reconstructing a complete picture
of events in complex IoT environments. Specifically, such methods
struggle with the fact that devices often perform multiple, independent
actions simultaneously, thereby obscuring the true cause-and-effect
relationships between log entries. For instance, a smart lock might
log user authenticated, followed by an interleaved, periodic battery
status message, and then motor driver fault. An analyzer relying solely
on temporality or keyword matching would likely fail to associate
the authentication with the subsequent motor fault, thereby failing to
identify the high-level event: a failed unlock attempt. This semantic
fragmentation of logs presents an opportunity for adversaries to conceal
malicious activities. Thus, there is a critical need for an approach that
integrates the real-time responsiveness and flexibility of process mining
with the structural efficacy and event flow tracking capabilities of
source code analysis [21], while minimizing resource consumption and
semantic ambiguities inherent to IoT systems [22].

To address these challenges in IoT systems, we propose Log2Evt, an
advanced approach for IoT devices that tightly integrates log analysis
with execution paths. Log2Evt offers three key advantages over existing
approaches: (1) it accurately tracks logs across program function calls
by monitoring real-time execution paths across IoT workflows, provid-
ing a complete picture of how logs are generated and passed between
functions; (2) it minimizes reliance on complex semantic analysis by
utilizing execution context from the program’s call stack, improving the
precision of log correlation without excessive computational overhead;
and (3) it enables administrators to pinpoint log origins to specific IoT
components, offering real-time access to device states and accelerating
threat response through integration with IoT management platforms,
all without disrupting operational efficiency. Revisiting the smart lock
example, Log2Evt would identify that both the user authenticated and
motor driver fault logs originate from the same high-level execution
trace corresponding to an unlock operation. Consequently, it correctly
correlates these entries into a single, cohesive event while disregarding
the unrelated battery status log.

Log2Evt is optimized for IoT device log analysis by employing
techniques specifically designed for resource-constrained and hetero-
geneous smart environments. It utilizes lightweight tracing tools to
dynamically monitor IoT firmware and real-time operating system

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
(RTOS) functions, capturing execution states without requiring device
recompilation. This capability is essential for embedded systems with
limited computational flexibility. The approach first identifies logging
sources specific to IoT workflows, such as sensor data pipelines or edge
compute tasks, and determines whether logs originate from structured
frameworks or direct hardware-level writes. Probes are then deployed
on these functions or IoT-specific storage interfaces to record call
stacks and log content during execution. For low-power devices, it
minimizes overhead by selectively tracing mission-critical function.
To address IoT’s fragmented log sequences, Log2Evt maps logs and
execution paths to a hierarchical tree structure, tagging nodes with
IoT-centric metadata like device type or edge cluster affiliation. It
combines the Common Ancestor algorithm with an optimized Tarjan-
LCA variant, which efficiently identifies the Lowest Common Ancestor,
to reconstruct event sequences from distributed IoT operations, such as
correlating a compromised gateway’s logs with downstream actuator
anomalies. This approach enables granular auditing of cross-device
attacks while maintaining compatibility with lightweight IoT proto-
cols, ensuring efficient analysis even in bandwidth-constrained smart
societies.

To evaluate this approach, we designed several experiments based
on CentOS with SystemTap installed. In Section 4.3, Log2Evt workflow
is demonstrated, and the impact of thresholds on efficacy is evaluated.
In Section 4.4, the efficacy of this approach is improved by 15%
compared to the rule-based matching approach. In Section 4.5, it
is verified that the time and space consumption has low impact on
program operation.

The main contributions of this paper are listed as follows:

• We develop a theoretical framework to model causal relation-
ships in fragmented IoT logs through execution context aware-
ness, explicitly tailored for IoT firmware and RTOS. By defining
event boundaries via execution path ancestry in IoT workflows,
rather than relying on timestamps or log semantics, our approach
reconstructs high-level device operations from disordered logs,
countering evasion tactics like device spoofing or distributed data
injection attacks.

• We introduce an approach to dynamically correlate IoT device
runtime behaviors with log generation processes—without modi-
fying resource-constrained IoT hardware. This eliminates depen-
dency on predefined templates, critical for heterogeneous IoT
systems where structured and unstructured logs coexist.

• We design a multi-granular event abstraction framework to re-
solve ambiguities in IoT logs through hierarchical execution trace
analysis. By leveraging shared ancestry in device firmware execu-
tion and adaptive thresholding, it bridges semantic gaps in IoT-
specific logs while maintaining linear scalability for large-scale
deployments.

• In the designed experiments, Log2Evt demonstrates 15% higher
accuracy in event reconstruction and 93% lower deployment
overhead compared to baselines, while establishing reproducible
metrics for cross-approach comparisons in fragmented log analy-
sis.

2. Related work

While recent advancements in process mining [23,24] and log
clustering [25,26] have enhanced log analysis, these methods are often
inadequate for addressing the unique challenges of IoT environments.
Process mining techniques, for example, typically assume semantic con-
sistency in log messages to discover behavioral models. This assumption
is frequently violated in heterogeneous IoT ecosystems characterized
by diverse and unstructured logging practices. Similarly, many modern
log parsers require training on specific formats, which limits their
applicability to new or proprietary device logs.
3
Log2Evt proposes a more fundamental approach by shifting the
focus from log content to log origin. Unlike methods that contend with
format diversity, our technique is inherently agnostic to log message
content, establishing correlations based on the shared code execution
ancestry of log entries. This provides a robust mechanism for event
reconstruction across heterogeneous devices without relying on brittle,
predefined templates. Furthermore, Log2Evt is designed specifically for
resource-constrained settings. It employs a lightweight, on-device probe
for data capture and offloads computationally intensive analysis to a
backend system with greater resources. This distributed architecture
contrasts sharply with approaches that impose an unsustainable ana-
lytical burden on low-power sensors or gateways, ensuring our method
is well-suited for practical, large-scale IoT deployments.

Table 1 compares Log2Evt with state-of-the-art approaches in IoT
log analysis, emphasizing its capabilities in addressing device hetero-
geneity and resource constraints. Log2Evt constructs IoT device exe-
cution trees by analyzing runtime call stack traces from IoT firmware
and RTOS, using an adaptive Tree Conversion algorithm to map log
correlations across distributed workflows. Granularity is dynamically
tuned based on IoT device capabilities — for instance, prioritizing low-
memory sensors versus high-performance edge servers — ensuring ef-
ficient log analysis without overburdening resource-limited nodes. Un-
like existing approaches, Log2Evt operates without firmware modifica-
tions, enabling seamless deployment across diverse IoT environments,
from embedded ARM microcontrollers to ZigBee gateways, through
standard debugging interfaces.

2.1. Process mining

Process mining techniques are increasingly critical for analyzing IoT
systems, where they discover, monitor, and optimize device workflows
by extracting insights from distributed event logs [30–32] generated by
sensors, actuators, and edge computing nodes. In IoT-enabled systems,
the generated process models can be represented using structures such
as Petri-nets [33], BPMN [34]. In the process mining, ProM [35],
which provides a variety of algorithms to support process mining in the
broadest sense, is widely used such as discovering processes, identifying
bottlenecks, analyzing social networks, and verifying business rules.

To mine the software development process, Sebu et al. [23] extract
hidden information about the process in the event process logs in soft-
ware development using the ProM. Boxi Yu et al. [24] propose LightAD,
an optimized architecture that balances training time, inference time,
and performance scores through automated hyper-parameter tuning.

To mine behavior patterns, Michela Vespa et al. [36] present a
framework that integrates probabilistic constraints with declarative
process mining to address the inherent uncertainty in process execu-
tion, offering novel techniques for discovery, conformance checking,
and monitoring, demonstrated through proof-of-concept prototypes and
evaluated on real-life logs. Moreover, for the mining of user behav-
ior, [37,38] use pre-defined high-level user operations as their refer-
ences to derive process and user interface flow models. Liu et al. [29]
propose a supervised learning approach that matches user behavior
patterns and discovers user behavior models using existing process
discovery approaches. Further, Zhihan Jiang et al. [39] propose LILAC,
achieving superior efficiency compared to existing approaches, signif-
icantly reducing queries to language models by leveraging in-context
learning and an adaptive parsing cache.

Uncertain data are found in process mining, which contains non-
deterministic and random event attributes that may represent many
possible real-life events. Pegoraro et al. [40] propose an approach
to obtain a complete probability distribution over possible instantia-
tions of uncertain attributes in tracking. Meanwhile, Aleksei Pismerov
et al. [41] apply various embedding approaches to a dataset of event
logs. By transitioning to log embeddings and applying clustering tech-
niques, the efficiency of process mining is improved. Siyu Yu et al. [42]
propose Log3T, a novel log parsing approach with generalization ability

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Table 1
Comparison of approaches (see [27]).

Approaches

Dynamic adaptation capability System integration characteristics Semantic comprehension depth
Particle
size

adjustment

Fast
application
adaptation

Graph
algorithm
application

Root
cause
tracing

Loose
match

Temporal
sensitivity

[28] × × × × × ×
[27] × × × × ✓ ✓

[29] × × ✓ × ✓ ✓

Log2Evt ✓ ✓ ✓ ✓ ✓ ✓
to support new log types in incoming logs. Evaluation on 16 benchmark
datasets shows Log3T outperforms state-of-the-art parsers in parsing
accuracy and can automatically adapt to new log types in incoming
logs.

2.2. Log clustering

Logging serves as a critical diagnostic tool in IoT systems, enabling
efficient identification of device failures, network anomalies, and se-
curity breaches in resource-constrained smart environments. For IoT
systems clustering techniques streamline fault detection by grouping re-
lated entries across distributed nodes. This addresses the inefficiency of
keyword-based searches [43], which struggle to detect subtle patterns
in encrypted LoRaWAN transmissions or correlate multi-device fail-
ures in industrial IoT deployments. By organizing logs from gateways,
sensors, and actuators into contextually meaningful clusters, adminis-
trators can pinpoint issues like firmware crashes in low-power devices
or synchronization errors in mesh networks, significantly reducing
diagnostic latency while conserving computational resources.

Static clustering is single log row clustering that ignores the order
and dependencies between rows. Each log row is assigned to the cluster
representing the statement that generated it. Lin Yang et al. [25] pro-
pose PLELog, a practical semi-supervised log-based anomaly detection
approach that leverages probabilistic label estimation and attention-
based GRU neural networks to efficiently identify system anomalies
by incorporating the strengths of both supervised and unsupervised
approaches. Siyu Yu et al. [44] propose Brain, a novel stable log
parsing approach inspired by the observation that the longest com-
mon pattern among logs is likely to be part of the log template.
AUTOLOG [45] employs program analysis to generate comprehen-
sive runtime log sequences without actual system execution, enabling
log-based anomaly detectors to achieve improved performance over ex-
isting datasets. LogPrompt [46] utilizes large language models (LLMs)
and advanced prompt strategies to address the limitations of exist-
ing approaches in terms of interpretability and adaptability to new
domains.

Xu Junjielong et al. [26] introduce a novel automatic logging frame-
work that utilizes the in-context learning paradigm of large language
models. This approach demonstrates superior logging accuracy while
significantly reducing the computational resources typically required
for model tuning.

Dynamic clustering is the process of assigning log lines to classes
that refer to their original events. DivLog [47] leverages diverse log
samples and constructing prompts with appropriate examples, address-
ing limitations of traditional parsers that rely on heuristics or lim-
ited training data. Zeyang Ma et al. [48] investigate the effective-
ness of large language models, specifically Flan-T5-small, Flan-T5-base,
LLaMA-7B, and ChatGLM-6B, in improving log parsing efficacy over
traditional approaches, highlighting the model size and training size
impact, and discussing the mixed results of pre-training on log parsing
performance.
4
2.3. Userspace tracing in IoT device development

IoT developers face unique challenges when debugging resource-
constrained embedded systems, particularly when working with RTOS
and low-power wireless protocol stacks. Symbolic debuggers provide
some help, but the task is still complex and challenging. Other than
breakpoints and tracing, these tools provide little advanced help. Over
the past decade, many tracing tools have emerged in the software stack,
and the debugging process can be largely automated if explicit support
is provided for these tasks.

Kprobes [49] dynamically modifies the kernel code on the x86
architecture to provide the ability to insert custom detection based
on breakpoints or based on dynamic jumps. Breakpoints in both of
these approaches can have some performance impact, and neither of
these approaches guarantees access to local variables in the middle of
functions that the compiler has optimized. SystemTap [50] is based on
Kprobes and Linux Kernel Markers to provide a scriptable language for
creating probes. Adel Belkhiri et al. [51] introduce a comprehensive
tracing-based framework for DPDK applications to collect and ana-
lyze performance data, enabling practitioners to diagnose performance
anomalies and optimize application efficiency with minimal overhead.

3. Methodology

3.1. Overview

In Log2Evt, we specialize in extracting security-critical events from
IoT devices by analyzing firmware execution paths, treating log mes-
sages as contextual markers within constrained embedded environ-
ments. As shown in Fig. 2, our methodology employs three IoT-
optimized phases. In the source location phase, we deploy lightweight
probes by analyzing interactions between IoT firmware and logging
mechanisms: for logging frameworks, we identify framework-specific
interface functions, while for direct file logging, we monitor Virtual
File System (VFS) write operations and authenticate target logs through
inode verification. The dataflow trajectory tracing phase then bridges
static logging points with dynamic execution context using SystemTap
as a real-time collector, which deploys Kprobes to capture complete
call stacks during function execution, preserving critical runtime in-
formation often lost in offline logging systems. This dual capture of
structured log data and concurrent execution paths enables precise
event attribution. Finally, the event chain integration phase transforms
raw trajectories into semantic events through hierarchical tree con-
struction and relational analysis, where our segmentation algorithm
clusters correlated logs while filtering noise, effectively elevating low-
level log sequences to comprehensible system events through structural
pattern recognition and multi-level aggregation. This pipeline ensures
event reconstruction maintains both execution context and opera-
tional semantics through continuous instrumentation-to-interpretation
synchronization.

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 2. Overview of Log2Evt.
3.2. Source location

A fundamental challenge in log-based auditing is accurately at-
tributing log messages to their originating execution contexts —
essential for reconstructing meaningful system events from fragmented
logs. Traditional approaches typically rely on static program analysis or
predefined logging rules, which present two inherent limitations: they
cannot adapt to dynamically generated logs in modern componentized
systems with varying logging mechanisms across software layers, and
they fail to capture the causal relationships between log entries and
their triggering execution paths, particularly when logs are routed
through intermediate services. These shortcomings compromise audit
accuracy.

Our key insight is that all log generation must ultimately interface
with system-level I/O operations, regardless of the logging mechanism
used — whether direct file writes or framework-mediated outputs.
By instrumenting this critical junction, we establish a unified moni-
toring layer that preserves execution context without requiring prior
knowledge of application-specific logging implementations.

As illustrated in Fig. 2, our implementation operationalizes this
insight through dual monitoring strategies. For applications writing
directly to files, we intercept VFS operations to trace back to the
originating program’s call stack. When logs are routed through frame-
works like Syslog, we instead target the final interface functions that
bridge applications to the logging service. This bifurcated approach
ensures comprehensive coverage while maintaining system integrity —
monitoring points are selected at the last common boundary before
log data leaves application control, thus capturing authentic execution
contexts without perturbing normal operations.

The initial step involves identifying the specific programs requiring
monitoring. Log data can originate from diverse sources, including
but not limited to application operations, system activities, network
communications, database transactions, and security events. These logs
are typically captured through various monitoring mechanisms such
as system audit tools, network packet capture utilities, application
5
instrumentation, and dedicated logging frameworks. These log entries
commonly contain essential process identifiers, and execution path
information, which form the basis for subsequent analysis.

For programs that generate log files directly, the data writing pro-
cess typically occurs through VFS. VFS provides a standardized in-
terface that enables applications to perform file operations. As Fig. 3
illustrates, when a program needs to write or read data, it first initiates
the operation in user mode and passes the data to VFS. The approach
then transitions to kernel mode, where VFS executes sys_write/sys_read
functions to transmit the data to the underlying file system. Finally, the
data is written to disk storage.

Since log messages are passed to VFS through chained function
calls, by monitoring the write function of VFS, we can directly obtain
the corresponding call stack at the time of writing when the program
executes the write.

In the alternative logging approach, messages are routed through
logging frameworks like Syslog on Linux systems. Syslog employs User
Datagram Protocol (UDP) or Transmission Control Protocol (TCP) pro-
tocols for message transmission. Unlike direct file writing where call
stacks can be traced through VFS, applications utilizing Syslog first
transmit messages via socket connections to the Syslog daemon, which
then writes them to files through VFS. This indirect routing prevents
direct VFS monitoring from capturing the originating program stack.
When attempting to trace function call chains as in the previous sce-
nario, VFS monitoring can only detect the logging service’s activities,
failing to capture the message forwarding process from the source
application to the logging service, as illustrated in Fig. 4.

Programs typically implement an interface function to interact with
the logging framework. This function processes all logging events ac-
cording to predefined configurations and formatting rules, then for-
wards them to the framework by invoking public library functions such
as syslog().

In the scenario described in Section 1, PAM (Pluggable Authen-
tication Modules) manages remote login authentication through SSH
protocol for remote shell access. PAM’s logging output is directed to

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 3. Function call path of VFS.
Fig. 4. Traceability of the log service.

the SECURE log file located in /var/log/ via the Rsyslog framework.
As illustrated in Fig. 5, when processing the log message requirement
‘‘user ingroup nopasswdlogin’’ not met by user ‘‘niki’’, the call trace
terminates at pam_vsyslog(). Since this function serves as PAM’s fi-
nal logging interface, monitoring it enables accurate capture of both
message content and corresponding stack traces.

This monitoring approach can be extended to other applications uti-
lizing logging frameworks, provided system developers can identify the
interface functions responsible for framework communication during
program execution.

3.3. Dataflow trajectory tracing

Our fundamental insight recognizes that meaningful event recon-
struction requires continuous yet lightweight capture of execution
trajectories, representing the specific, ordered sequence of functions,
methods, or key code segments executed by the program leading up
to a particular state or event. This capture must be synchronized with
log generation. Rather than instrumenting entire codebases or relying
on sampled profiles, we strategically trace control flow at the narrow
interface between program logic and log emission mechanisms.

Our implementation realizes this through Kprobes — a dynamic
kernel instrumentation mechanism — orchestrated via SystemTap’s ab-
straction layer. Unlike static tracing frameworks that require persistent
code modifications, Kprobes enable hot-pluggable monitoring points in-
serted at runtime. This is crucial for auditing closed-source components
or systems with frequent updates, where traditional recompilation-
based approaches are inadequate. SystemTap enhances this capability
through its domain-specific language, allowing declarative specification
of trace points while managing low-level complexities such as register
preservation and context switching.

The tracing methodology deliberately avoids full-stack recording,
instead focusing on two key dimensions:

Vertical Context: Captured through user/kernel-space stack unifi-
cation, preserving call hierarchy from application logic to system call
execution.

Horizontal Correlation: Achieved via temporal synchronization
between log writes and their preceding execution trajectories.
6
3.3.1. Kprobes
Log2Evt implements dynamic program monitoring and custom in-

struction execution through the SystemTap framework, with Kprobes
serving as the primary instrumentation mechanism. The approach
enables users to establish monitoring points by strategically placing
Kprobes and associating them with custom handler functions. Upon
reaching a Kprobe point during kernel execution, the approach tem-
porarily diverts control flow to execute the corresponding handler
function before returning to the normal execution path.

Kprobes provides kernel instrumentation mechanisms that enable
the insertion of hooks into kernel functions, allowing user-defined code
execution at these instrumentation points. As illustrated in Fig. 6, the
Kprobes mechanism operates through the following sequence:

When registering a Kprobe point, the approach first creates a backup
of the target instruction at the monitored location. It then replaces the
original instruction’s entry point with a breakpoint instruction.

Upon CPU execution reaching the breakpoint instruction, a trap is
triggered. The trap handler preserves the current CPU register state
and invokes the designated trap processing function. This function
establishes the Kprobes execution context and calls the user-registered
pre_handler callback, passing both the struct Kprobes structure address
and preserved CPU register data as parameters.

Kprobes executes the previously backed-up instruction in single-step
mode, followed by invoking the user-registered post_handler function.
The execution path then returns to the normal instruction stream
following the probe point.

Leveraging Kprobes, Log2Evt implements monitoring points at
strategic locations within target program functions that precede log-
writing operations. When log-writing occurs, Log2Evt captures both the
program’s current call stack trace and the corresponding log content,
enabling comprehensive runtime analysis.

3.3.2. SystemTap
Log2Evt utilizes SystemTap as an abstraction layer over Kprobes to

streamline the monitoring implementation. SystemTap provides a high-
level scripting interface that enables developers to create sophisticated
analysis and monitoring scripts for problem diagnosis. As illustrated in
Fig. 7, SystemTap translates administrator-provided scripts into Kprobe
implementations through a multi-stage process. When a user submits
a script file, SystemTap first generates an Abstract Syntax Tree (AST)
through parsing. During the elaboration phase, it resolves symbolic
references, transforms the code into C, and compiles it into a loadable
kernel module. Finally, SystemTap loads the module into the kernel,
initiates system monitoring, and establishes data channels to relay
collected information to userspace.

3.3.3. Set Kprobes
SystemTap exposes the print_ubacktrace() function to capture and

output the current user-space task’s call stack trace. Upon Kprobe
trigger events, this function enables immediate stack trace extraction
at the instrumentation point.

The analysis requires continuous stack monitoring to detect and
record all runtime call stack modifications. The implementation places
Kprobes at function entry points, executing instrumentation code upon
each function invocation. When triggered, these probes capture the
current call stack, providing a comprehensive view of the program’s
call hierarchy.

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 5. Function call path of a login log.
Fig. 6. Workflow of Kprobes.
Fig. 7. Workflow of SystemTap.

Formally, let 𝐶 denote an atomic function call operation, and let 𝑠 =
{𝐶1, 𝐶2,… , 𝐶𝑚} represent an ordered trajectory sequence of function
executions, comprising 𝑚 sequential calls. We define 𝑂𝑎 as the primary
operation that executes print_ubacktrace() and emits trajectory 𝑠.
Building upon 𝑂𝑎, we further define 𝑂𝑏 as an augmented operation
that encapsulates both the base functionality and extends it to capture
parametric log text, subsequently generating the log-path binary tuple
𝑔 = {𝑠, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒}.

Let 𝐸 = {𝐶1, 𝐶2,… , 𝐶𝑛} be the original program execution sequence,
where 𝑛 is the length of this sequence. Log2Evt inserts the operation
𝑂𝑎, 𝑂𝑏 into all general functions and log recording functions of the
target program, then 𝐸 becomes 𝐸′ = {𝐶1, 𝑂𝑎, 𝐶2, 𝑂𝑎,… , 𝑂𝑎, 𝐶𝑛}.

As detailed in the ‘‘Log Framework Case’’ in Fig. 4, when programs
utilize logging frameworks, 𝑂𝑏 is instrumented at log recording function
entry points. The 𝑂𝑏 operation executes prior to message propagation
through the logging framework.

For the ‘‘Without Log Framework Case’’ described in Fig. 4, when
programs perform direct file-based logging, Log2Evt implements VFS
activity monitoring, constraining its scope to the target file through
inode-based filtering.

Log2Evt implements SystemTap-based Kprobe instrumentation on
VFS write operations. The probe activation is constrained to specific file
operations through inode-based filtering, ensuring targeted monitoring.

Notably, despite the function call path traversing from the target
program to the VFS (illustrated in Fig. 3), memory address analy-
sis enables precise delineation between the two execution contexts.
This boundary identification facilitates accurate determination of the
recording function’s memory address.
7
Fig. 8. An example of Tree conversion.

3.4. Event chain integration

Reconstructing high-fidelity system events from interleaved logs and
fragmented execution traces represents a fundamental challenge in log
auditing. Traditional graph-based correlation methods struggle with
two key limitations: they impose rigid parent–child dependencies ill-
suited for modern parallelized systems where logs may originate from
concurrent threads, and they scale poorly with execution depth. These
shortcomings enable attackers to evade detection by distributing attack
footprints across shallow but broad execution branches.

Our insight pivots on three principles for robust event reconstruc-
tion: hierarchical causality preservation, adaptive granularity control,
and linear-time scalability. Events manifest as clusters of causally re-
lated logs, bounded by shared execution ancestry rather than temporal
adjacency. Segmentation thresholds must dynamically adapt to execu-
tion context depth to counter adversarial dispersion tactics. Practical
auditing demands sub-quadratic complexity regardless of system scale
or attack sophistication.

The proposed approach operationalizes these principles through a
novel fusion of tree-based ancestry analysis and adaptive thresholding.
Unlike prior tree construction methods that require complete execution
traces, our differential tree conversion incrementally builds hierarchical
models from partial trajectories — a critical adaptation for auditing
long-running systems. By anchoring event boundaries to the lowest
common ancestors of log-correlated nodes, we inherently account for
parallel execution paths while maintaining deterministic segmentation.

Following trajectory acquisition, Log2Evt transforms the captured
function call sequences into hierarchical tree structures through node

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
clustering. This transformation leverages the Common Ancestor algo-
rithm, which comprises three components: Tree Conversion, Tarjan-
LCA (Lowest Common Ancestor), and Event Segmentation algorithms.
Algorithm 1: Execution Path Tree Construction and Log Node
Highlighting

Input: A sequence of function call trajectories
𝑆 ← {𝑠1, 𝑠2,… , 𝑠𝑛}; A sequence of (log-path,
log-message) groups 𝐺 ← {𝑔1,… , 𝑔𝑘};

Output: Program execution path tree 𝑇 ; Highlight log node set
𝛼 ← {𝑁1,… , 𝑁𝑝}

// Initialize tree and supporting structures
1 Tree 𝑇 ← new Tree();
2 Node 𝑁 ;
3 Set 𝛼 ← ∅;

// Build tree structure from call trajectories
4 foreach path 𝑠𝑖 ← {𝐶1

𝑖 , 𝐶
2
𝑖 ,… , 𝐶𝑚

𝑖 } in 𝑆 do
5 Variable 𝑗 ← 1 if 𝑖 > 1 then

// If not the first path, find common
prefix with 𝑠𝑖−1

6 while 𝑗 ≤ length(𝑠𝑖−1) and 𝑗 ≤ 𝑚 and 𝐶𝑗
𝑖 points to 𝐶

𝑗
𝑖−1 do

7 𝑗 + + ; // Calls match, extend common
prefix

8 𝑁 ← 𝑇 .locateNode({𝐶1
𝑖 ,… , 𝐶𝑗−1

𝑖 }) ; // Move 𝑁 to end
of common prefix in 𝑇

9 while 𝑗 ≤ 𝑚 do
// Add remaining calls from 𝑠𝑖 as new nodes

10 𝑁 ← 𝑁.addSon(𝐶𝑗
𝑖) ;

11 𝑗++ ;

// Attach log messages and identify highlight
nodes

12 foreach group 𝑔𝑖𝑑𝑥 ← (path𝑖𝑑𝑥,message𝑖𝑑𝑥) in 𝐺 do
13 𝑁 ← 𝑇 .findNode(path𝑖𝑑𝑥) ; // Find node in 𝑇 for

this log’s path
14 if 𝑁 ≠ null then

// If path exists in tree
15 𝑁.appendLogMessage(message𝑖𝑑𝑥) ;
16 𝛼.add(𝑁)

17 return 𝑇 , 𝛼

3.4.1. Tree conversion algorithm
Given a function call trajectory sequence 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑛} and its

corresponding binary log-path grouping sequence 𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑘},
Log2Evt constructs a hierarchical tree structure where nodes responsi-
ble for log message generation are distinctly marked, as illustrated in
Fig. 8.

To address this challenge, we perform a traversal of sequences 𝑆
and 𝐺 to construct the program execution tree. Let 𝐶𝑗

𝑖 denote the
𝑗th function invocation within trajectory 𝑠𝑖. The process, formalized
in Algorithm 1, encompasses three primary phases. First, the differ-
ential analysis phase compares adjacent trajectories to identify their
first divergent node (lines 4–7). Subsequently, the tree construction
phase incorporates these identified differences into the tree structure
through child node insertion operations (lines 8–11). Finally, during the
node annotation phase, log-related nodes are identified using the log-
path binary grouping, marked accordingly, and augmented with their
corresponding log messages (lines 12–16).

Multiple tree matches for a function call path 𝑠, which is tied to a
log entry in group 𝑔, arise when identical call sequences execute repeat-
edly during a program’s runtime. Such repetitions occur, for example,
in loops or through frequently called subroutines. Each execution,
while structurally identical, represents a distinct temporal instance.
8
Algorithm 2: Tarjan-LCA
Input: execution path tree 𝑇 ; Highlight log node set

𝛼 ← {𝑁1, 𝑁2,… , 𝑁𝑛}
Output: LCA node set 𝛽 ← {𝑀1,𝑀2,… ,𝑀𝑛−1}

// Initialize data structures
1 Query 𝑞𝑢𝑒𝑟𝑦;
2 Bool Array 𝑚𝑎𝑟𝑘𝑒𝑑;
// Definition of union-find helper functions

3 def Find(𝑢):
// Finds representative of the set containing

𝑢 with path compression
4 return 𝑢 points to ancestor[𝑢] ? 𝑢 ∶ (ancestor[𝑢] ←

Find(ancestor[𝑢])) ; // If 𝑢 is not its own
ancestor, recursively find and update

5 def Union(𝑢, 𝑣):
// Merges the sets containing 𝑢 and 𝑣

6 return ancestor[Find(𝑢)] ← Find(𝑣) ; // Set ancestor of
𝑢’s representative to 𝑣’s representative

// Main Tarjan-LCA algorithm
7 def Tarjan_LCA(𝑢):
8 ancestor[Find(𝑢)] ← 𝑢 ;
9 for 𝑣 ∈ 𝑢.son do
10 Tarjan_LCA(𝑣) ; // Recursively call LCA for

child 𝑣
11 Union(𝑢, 𝑣) ; // Merge the set of 𝑣 into the set

of 𝑢
12 ancestor[Find(𝑢)] ← 𝑢 ; // Ensure 𝑢 remains the

representative of the merged set
13 marked[𝑢] ← True ;
14 foreach 𝑁𝑖 ∈ 𝛼 do

// Iterate through highlight nodes to form
query pairs (𝑁𝑖, 𝑁𝑖+1)

15 if 𝑁𝑖+1 ← 𝑢 and marked[𝑁𝑖] ← True then
// If 𝑢 is one node of a query (𝑁𝑖, 𝑢) and 𝑁𝑖

is already marked
16 𝑀𝑖 ← ancestor[𝑁𝑖] ; // The LCA of (𝑁𝑖, 𝑢) is the

current ancestor of 𝑁𝑖

// Call main algorithm to start the process
17 Tarjan_LCA(𝑇 .root) ; // Begin LCA computation from

the root of the tree 𝑇

To resolve this, we employ chronological ordering. This means a log
entry is matched to the instance of path 𝑠 in the execution tree 𝑇
that corresponds to the log’s actual time of generation. This time is
typically determined by log timestamps or the log’s sequential order.
The rationale is to ensure each log entry is linked to its unique, tem-
porally accurate execution context within 𝑇 . This precise mapping is
vital for maintaining the integrity of event reconstruction, particularly
for analyzing the ordered operations common in AIoT systems. Our
approach presumes sufficient temporal information is available for such
deterministic mapping.

3.4.2. Tarjan-LCA algorithm
Following the transformation of function call trajectory sequence 𝑆

and log-path binary groups 𝐺 into tree structure 𝑇 with highlighted
node-set 𝛼, event integration proceeds through analysis of common
ancestor maximization between adjacent highlighted nodes. The de-
termination of maximum common ancestors reduces to the Lowest
Common Ancestor (LCA) problem, where the LCA depth represents the
maximum value. Given that each function transition corresponds to a

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
unique tree node, resulting in substantial tree dimensionality, Log2Evt
implements the Tarjan-LCA algorithm to compute the LCA node-set 𝛽 =
{𝑀1,𝑀2,… ,𝑀𝑛−1}, where 𝑀𝑗 represents the LCA of adjacent nodes 𝑁𝑗
and 𝑁𝑗+1. Leveraging Concurrent Set operations, the computation of 𝛽
achieves time complexity 𝑂(𝑁 + 𝑄), where 𝑄 denotes the total query
count.
Algorithm 3: Event Segmentation

Input: LCA node set 𝛽 ← {𝑀1,𝑀2,. . . ,𝑀𝑛−1}; Program
execution path tree 𝑇 ; Highlight log node set
𝛼 ← {𝑁1, 𝑁2,… , 𝑁𝑛}; Threshold ratio 𝑅𝐴

Output: Event sequences {𝐸1, 𝐸2,… , 𝐸𝑐𝑜𝑢𝑛𝑡}

// Initialize variables and array
1 Variable 𝑐𝑜𝑢𝑛𝑡, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;
2 Array 𝑑𝑒𝑝𝑡ℎ ;
3 𝑐𝑜𝑢𝑛𝑡 ← 0 ;
4 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0 ;
// Calculate the depth of each LCA node and the

initial threshold
5 foreach 𝑀𝑖 in 𝛽 do

// Iterate through each LCA node
6 𝑑𝑒𝑝𝑡ℎ[𝑖] ← 𝑇 .depth(𝑀𝑖) ; // Get depth of LCA node 𝑀𝑖

in tree 𝑇
7 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝑑𝑒𝑝𝑡ℎ[𝑖] ;
8 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑅𝐴 ; // Calculate depth and get

final threshold
// Initialize the first event sequence with the

first highlight node
9 𝐸0.insert(𝑁1) ;
// Segment events based on depth and threshold

10 foreach 𝑑𝑒𝑝𝑡ℎ[𝑖] in 𝑑𝑒𝑝𝑡ℎ do
// Iterate through calculated depths of 𝑀𝑖

11 if 𝑑𝑒𝑝𝑡ℎ[𝑖] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
// If LCA depth is greater than threshold,

start a new event
12 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1 ;
13 𝐸𝑐𝑜𝑢𝑛𝑡.insert(𝑁𝑖+1) ; // Add the next highlight node

𝑁𝑖+1 to the current event 𝐸𝑐𝑜𝑢𝑛𝑡

In Algorithm 2, we define functions Find and Union (lines 3–6)
that form the foundation of the Tarjan-LCA algorithm. For each ver-
tex 𝑢 encountered during depth-first search traversal, we consider a
subtree of 𝑇 rooted at 𝑢 (line 8). The Tarjan_LCA function initializes
by designating 𝑢 as the ancestor of its disjoint set. For each adjacent
vertex 𝑣 connected to 𝑢, the algorithm recursively invokes Tarjan_LCA,
followed by a Union operation on 𝑢 and 𝑣, subsequently re-establishing
𝑢 as the set’s ancestor (lines 9–13). Upon completing the traversal of 𝑢’s
descendants, the algorithm marks 𝑢 as processed and queries the LCA
utilizing the marked vertex array (lines 14–16). Finally, the highlighted
node-set 𝛼 is enqueued into the query queue, and the Tarjan-LCA
algorithm initiates its execution from the root of the program execution
tree 𝑇 (line 17).

3.4.3. Event segmentation algorithm
The process of segmenting raw log sequences into meaningful, high-

level events begins by analyzing the structural relationships between
consecutive log entries. Following the application of Algorithm 2, we
first determine the Lowest Common Ancestor (LCA) for every pair of ad-
jacent highlighted nodes in the sequence. The depth of this LCA within
the program’s execution path tree is a critical piece of information; it
serves as a proxy for the semantic relatedness between the two nodes. A
shallow LCA, corresponding to a smaller depth value, indicates that the
nodes share a recent ancestor and are likely part of the same localized
operation. Conversely, a deep LCA suggests their common ancestor is
9
far up the execution hierarchy, implying the nodes belong to distinct
functional contexts.

With this structural information established, Algorithm 3 leverages
these LCA depths to partition the log stream. The fundamental premise
of this algorithm is that a significant increase in the LCA depth between
consecutive log nodes signals a transition from one high-level event
to another. To formalize this, the algorithm first computes a dynamic
partitioning threshold. As detailed in lines 5–7, it iterates through the
set of all LCA nodes, 𝛽, summing their respective depths. This sum is
then scaled by a user-defined ratio, 𝑅𝐴, to produce the final 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.
This 𝑅𝐴 parameter provides crucial flexibility, allowing the sensitivity
of the segmentation to be tuned; a higher 𝑅𝐴 will result in coarser,
larger events, while a lower value will produce more fine-grained event
boundaries.

The segmentation procedure itself begins by initializing the first
event sequence, 𝐸0, with the very first highlighted log node, 𝑁1 (line
8). Subsequently, the algorithm iteratively traverses the pre-computed
LCA depths (lines 9–13). For each step in the iteration, it compares
the LCA depth between the current node and the next against the
calculated 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. If the depth value is less than or equal to the
threshold, it signifies contextual continuity, and the subsequent node,
𝑁𝑖+1, is appended to the current event, 𝐸𝑐𝑜𝑢𝑛𝑡. However, if the depth
exceeds the threshold (line 10), it indicates a contextual break. In this
case, the algorithm concludes the current event and initiates a new one
by incrementing the event counter, 𝑐𝑜𝑢𝑛𝑡 (line 11). The node 𝑁𝑖+1 is
then assigned as the first entry in this newly created event sequence.
This process is repeated until all highlighted nodes have been assigned,
resulting in a complete partitioning of the log sequence into a set of
discrete, semantically coherent events.

4. Evaluation of Log2Evt

To evaluate the effectiveness of our proposed approach, we con-
ducted comprehensive experimental analysis across four primary mod-
ules:

• Theoretical analysis: We evaluate Log2Evt against two baseline
approaches. Our system achieves (𝑁) complexity versus base-
lines’ (𝑁𝐷), providing enhanced flexibility through program
execution tree analysis.

• Functional experiments: We demonstrate the operational workflow
of Log2Evt using an SSH login case study, visualizing call stack
sequences through flame graph analysis [52]. Additionally, we
assess the sensitivity of the threshold parameter 𝑅𝐴 on system
performance.

• Efficacy experiments: We evaluate the system’s performance
through comparative analysis using established metrics includ-
ing Purity, Rand Index, and Fowlkes–Mallows Index, bench-
marking against behavior pattern alignment-based and rule-based
matching approaches.

• Time and space occupation experiments: We examine both the-
oretical and empirical performance characteristics of Log2Evt,
including computational complexity analysis and empirical time
consumption measurements.

We present the experiment results from Sections 4.1 to 4.5, respec-
tively.

4.1. Theoretical analysis

This section presents a comparative analysis between our proposed
technique Log2Evt and two established baseline models. We systemat-
ically evaluate these models to provide a comprehensive assessment of
their performance and methodological characteristics.

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 9. Comparison of Log2Evt and the previous matching approach.
Table 2
Comparison in terms of complexity. (𝑁 : sequence length of log messages, 𝐷:
number of detectable event types.)
 Approaches Space complexity Time complexity
 Pre-process Post-process Sum
 Log2Evt – (𝑁) (𝑁) (𝑁)
 [29] (𝐷) (𝑁𝐷) (𝑁𝐷 +𝐷) (𝑁𝐷)
 [28] (𝐷) (𝑁𝐷) (𝑁𝐷 +𝐷) (𝑁𝐷)

• Liu et al. [29] propose a hierarchical approach that begins with
activity mining to transform low-level event logs into abstract
logs. These abstract logs capture user actions, which are subse-
quently analyzed using established process discovery techniques
to derive user behavior models.

• Khan et al. [28] present an object-oriented framework for event
log analysis. Their methodology employs association rule mining
on object-based event log representations. The extracted rules
are then transformed into temporal event sequences, with causal
inference techniques applied for validation.

Both Liu et al. [29] and Khan et al. [28] employ rule-based matching
techniques to establish mappings between logs and events. Liu et al.
further enhance efficacy and efficiency through the application of
Petri nets. In contrast, our proposed approach, Log2Evt, augments the
analysis by incorporating function call information captured during
program execution, in addition to the log message content. Table 2
presents a comparative analysis of Log2Evt and the baseline models in
terms of time and space complexity, where 𝑁 represents the sequence
length of log messages and 𝐷 denotes the number of detectable event
types.

Regarding preprocessing requirements, Liu et al. [29] and Khan
et al. [28] both necessitate predefined matching templates, resulting
in space complexity that scales linearly with the number of detectable
events. In contrast, our approach, Log2Evt, determines log message
relationships by analyzing common ancestor patterns in the program
execution tree, eliminating the need for explicit matching templates.
10
The sublinear-time design of Log2Evt provides inherent scalabil-
ity advantages as log volumes grow. Nevertheless, highly distributed
IoT deployments with concurrent device operations present distinctive
challenges. Maintaining real-time analysis capabilities becomes increas-
ingly demanding when coordinating execution paths across large-scale
heterogeneous infrastructures, where resource-constrained devices co-
exist with high-capacity nodes. To preserve responsiveness in such
environments, future implementations could incorporate distributed
coordination mechanisms. Edge gateways might perform preliminary
event reconstruction before forwarding consolidated metadata to cen-
tralized systems. This layered strategy would retain the core method-
ology while adapting to the hierarchical nature of operational IoT
networks.

While Liu et al. [29] and Khan et al. [28] focus exclusively on
log text analysis, Log2Evt encompasses both log text and function
call transitions, resulting in higher computational complexity and time
requirements. However, our experimental evaluation demonstrates that
this additional computational overhead is justified by the substan-
tial improvements in detection efficacy compared to both baseline
approaches.

From a theoretical perspective, Log2Evt demonstrates enhanced
flexibility through its integration of dynamic debugging techniques,
contrasting with the rule-based event matching approaches employed
by [28,29]. As illustrated in Fig. 9, Log2Evt achieves event clustering
by analyzing the positional relationships of log output functions within
the program execution tree, eliminating the need to consider boundary
conditions and variant operations.

The implications of this theoretical framework extend beyond its
analytical capabilities to its practical performance and scalability. The
architectural design, centered on a strategic separation of duties be-
tween on-device data gathering and backend analysis, is not merely a
conceptual choice but a foundational element that ensures efficiency in
resource-constrained IoT environments.

This performance profile is best understood by examining its core
components. On the end devices, the Log2Evt component functions
as a minimalist observer, with its sole responsibility being to note
when specific software activities occur and to report these observations.

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 10. Flame graph of two login events.
Table 3
Log datasets characteristics.
 Log source Entry count Message type ground truth
 Loghub (OpenSSH) 655,146 Obtained from He et al. [53]a
 Loghub (Linux) 25,567 Obtained from He et al. [53]a
 Linux Application Log Dataset 21,760 Available onlineb
a Loghub, https://github.com/logpai/loghub.
b Linux Application Log Dataset, https://github.com/czz19981215/Linux-Application-
Log-Dataset.

By offloading all complex calculations and data interpretation, the
processing overhead is kept exceptionally low, preventing interference
with a device’s primary functions. The memory footprint is similarly
minimal and, crucially, constant, as the system does not need to store a
growing history of events on the device itself. This makes the approach
theoretically sound for even the most stringent memory limitations.

In contrast, all computationally intensive tasks are handled by the
backend analysis engine. While operating in a resource-rich environ-
ment, the algorithms for event reconstruction and pattern identification
are still chosen for efficiency to ensure that the analysis process remains
timely even as data volume grows. This architectural separation is
also what makes the framework inherently scalable. The on-device
component operates in isolation, allowing the system to support a
growing number of devices without creating a cascading load. The
greater data throughput from a larger network is managed by the
backend’s ability to be scaled horizontally, for instance, by distributing
the analytical workload across a cluster of servers.

Therefore, the principles established in our theoretical analysis
provide a robust blueprint for a system that is not only sound in its
logic but also viable in practice. This strong theoretical grounding in
efficiency and scalability sets the stage for the empirical validation of
these performance characteristics in the subsequent sections.

4.2. Experiment setting

The experimental evaluations were conducted on a computing plat-
form with the following specifications: CentOS Linux 7 (kernel ver-
sion 3.10.0–123.el7.x86_64), SystemTap version 4.0/86, Intel Core i7-
6800K CPU, and 16 GB DDR4 RAM.

Given that Log2Evt necessitates access to runtime program informa-
tion, evaluation using pre-existing log datasets is not feasible. Instead,
we utilized a custom log dataset, as detailed in Table 3, for our analysis.
The log samples from the Linux Application Log Dataset were employed
to benchmark our proposed approach against established baselines, as
detailed in Table 4.

Log2Evt performs event sequence segmentation on log datasets,
which, along with the baseline approaches, can be conceptualized
as clustering methodologies. The effectiveness of these approaches is
11
evaluated using standard clustering metrics: Purity, Rand Index, and
Fowlkes–Mallows Index.

𝑃𝑢𝑟𝑖𝑡𝑦 is a straightforward and interpretable metric widely em-
ployed for evaluating clustering performance. This measure quanti-
fies clustering efficacy by first identifying the most predominant class
within each cluster, then summing the count of these dominant class
members across all clusters, and finally normalizing by the total num-
ber of data points. Formally, given a set of clusters 𝑀 and a set of
classes 𝐷, both partitioning 𝑁 data points, 𝑃𝑢𝑟𝑖𝑡𝑦 can be mathemati-
cally expressed as: 𝑃𝑢𝑟𝑖𝑡𝑦 = 1

𝑁
∑

𝑚∈𝑀 max𝑑∈𝐷 |𝑚 ∩ 𝑑|.
The Rand Index (𝑅) quantifies the similarity between two data

clustering configurations. Consider a set 𝑆 = {𝑜1,… , 𝑜𝑛} containing 𝑛
elements, with two distinct partitions: 𝑋 = {𝑋1,… , 𝑋𝑟} dividing 𝑆 into
𝑟 subsets, and 𝑌 = {𝑌1,… , 𝑌𝑠} dividing 𝑆 into 𝑠 subsets. The following
definitions establish the foundation for calculating this index:

• True Positives (𝑇𝑃): Number of element pairs in 𝑆 that are
clustered together in both 𝑋 and 𝑌 .

• True Negatives (𝑇𝑁): Number of element pairs in 𝑆 that are
separated in both 𝑋 and 𝑌 .

• False Positives (𝐹𝑃): Number of element pairs in 𝑆 that are
clustered together in 𝑋 but separated in 𝑌 .

• False Negatives (𝐹𝑁): Number of element pairs in 𝑆 that are
separated in 𝑋 but clustered together in 𝑌 .

The Rand Index (𝑅) is defined as: 𝑅 = (𝑇𝑃 +𝑇𝑁)∕(𝑇𝑃 +𝐹𝑃 +𝑇𝑁 +
𝐹𝑁),where 𝑇𝑃+𝑇𝑁 represents the total number of concordant element
pairs between configurations 𝑋 and 𝑌 , while 𝐹𝑃 + 𝐹𝑁 represents the
discordant pairs.

The Fowlkes-Mallows Index (𝐹𝑀) is an external evaluation metric
used to quantify the similarity between two clustering configurations
or between a clustering and a benchmark classification. This index
is particularly useful in assessing confusion matrices. A higher 𝐹𝑀
value indicates greater similarity between the compared clusterings or
between the clustering and the benchmark. The 𝐹𝑀 index is defined
as the geometric mean of precision and recall: 𝐹𝑀 =

√

𝑃𝑃𝑉 ⋅ 𝑇𝑃𝑅 =
√

𝑇𝑃
𝑇𝑃+𝐹𝑃 ⋅ 𝑇𝑃

𝑇𝑃+𝐹𝑁 , where 𝑇𝑃𝑅 is the true positive rate, also called
sensitivity or recall, and 𝑃𝑃𝑉 is the positive predictive rate, also known
as precision.

4.3. Functional experiments

The SSH protocol is widely used as a secure remote login protocol,
and its experiments are representative and of high research value. In
this section, the experiments evaluate the feasibility of Log2Evt and the
impact of threshold 𝑅𝐴 on efficacy by analyzing successive SSH login
sequences.

In the feasibility experiment, two logins were made to the host via
the WinSCP software at 22:04:13 and 22:04:26. The log file recording

https://github.com/logpai/loghub
https://github.com/czz19981215/Linux-Application-Log-Dataset
https://github.com/czz19981215/Linux-Application-Log-Dataset

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 11. The common ancestors of the target log set.
Table 4
Tested components and log sources.
 Test components Log path Description
 PAM (1.1.8) /var/log/secure User authentication library suite
 Samba (4.10.16) /var/log/samba/ SMB protocol implementation
 Vsftpd (3.0.2) /var/log/vsftpd.log FTP server for Unix-like systems
 Networkmanager (0.9.9.1) /var/log/message Network interface configuration daemon
Table 5
Logs of two successful logins.
 Time Content
 22:04:13 Accepted password for root from 192.168.221.1 port 9866 ...
 22:04:13 pam_unix(sshd:session): session opened for ...
 22:04:13 subsystem request for sftp by user root
 22:04:26 Accepted password for root from 192.168.221.1 port 9877 ...
 22:04:26 pam_unix(sshd:session): session opened for ...
 22:04:26 subsystem request for sftp by user root

the login behavior is located in /var/log/secure, and the logs of the two
successful logins are shown in Table 5.

SSH login behavior is done through PAM (Pluggable Authenti-
cation Modules), and PAM completes logging by calling the rsyslog
logging framework. From the logging framework call relationship, it
is necessary to monitor the pam_vsyslog() function located in linux-
pam-master/libpam/pam_syslog.c during the log source location phase,
and its function prototype is ‘‘void pam_vsyslog (const pam_handle_t
*pamh, int priority, const char *fmt, va_list args)’’.

After converting the obtained set of program’s call stacks into a
tree structure by Algorithm 1, the sequence of function call traces
corresponding to the logs is mapped into highlighted nodes. To better
represent the program’s operation, the structure is visualized using the
flame graph.

The flame graph is a visual profiler that creates an interactive SVG
that shows a collection of stacked traces. It has the following features:

• The stack is represented as a column of boxes, where each box
represents a function (stack frame)

• The 𝑦-axis shows the stack depth from the root node at the bottom
to the leaf node at the top, the top box represents the function on
the CPU when the stack trace is collected, and the function below
the function is its parent.

• The 𝑥-axis spans the stack collection, indicating the passage of
time.
12
As shown in Fig. 10, the left and right sides have the same pattern,
corresponding to the same login behavior twice, and the resulting logs
are mapped to the same set of stack frames in both sets. This visual-
ization shows that the program performs the same process twice and
outputs the same log messages when performing two login operations.

Subsequently, after calculation of highlighted nodes by Algorithm
2, as shown in Fig. 11, the numbers of common ancestors between
adjacent highlighted nodes on this tree is calculated, which are 7, 4,
2, 7, 4. The respective depths of these highlighted nodes are 1, 4, 6,
1, 4. Taking 𝑅𝐴 = 0.35, by Algorithm 3, the threshold is calculated
to be 5.6, so it is decided that logs 3 and 4 do not belong to the same
event.Log messages 1, 2, 3 are classified to event 1, and log messages 4,
5, 6 are classified to event 2. The output results are consistent with the
operation flow and prove the approach’s feasibility.

4.4. Efficacy experiments

In the execution path analysis conducted by Log2Evt, Algorithm
3 employs a critical threshold ratio, denoted as 𝑅𝐴, for the purpose
of event classification. To establish the classification criterion, we first
identify 𝛽 as the set of LCA nodes relevant to the log messages under
consideration. A threshold value is then computed. This computation
involves multiplying the ratio 𝑅𝐴 by the sum of the depths of all nodes
𝑀𝑖 within the set 𝛽. This specific calculation is formally expressed in
from equation: 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑅𝐴 ∗

∑

𝑀𝑖∈𝛽 𝑑𝑒𝑝𝑡ℎ(𝑀𝑖).
The threshold ratio 𝑅𝐴 represents a critical trade-off. A low 𝑅𝐴

value imposes a stringent, or shallow, depth threshold, which causes
the algorithm to partition log sequences more frequently. While this
produces fine-grained event sequences, it also introduces the risk of
over-segmentation, wherein a single logical operation is erroneously
fragmented. Conversely, a high 𝑅𝐴 value establishes a lenient thresh-
old, leading to the creation of broader, coarse-grained events. Al-
though this approach provides a high-level overview, it risks under-
segmentation, where distinct activities are improperly merged. As
demonstrated in our experiments, the optimal 𝑅𝐴 value must be

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 12. Effect of 𝑅𝐴 on Log2Evt’s performance across multiple log datasets and evaluation metrics.
selected to balance these extremes, aligning the event granularity with
the application’s inherent logical structure.

While the 𝑅𝐴 parameter governs the outcome, the system’s perfor-
mance is also dependent on the efficiency of the LCA computation. This
represents a key design choice rather than a tunable hyperparameter. A
naive, brute-force LCA calculation would render the system unscalable.
Our deliberate selection of the Tarjan-LCA algorithm, a highly opti-
mized offline method with near-linear time complexity, is foundational
to our approach. This choice ensures that the event integration phase
remains efficient enough for large-scale log analysis, a decision that
prioritizes performance without altering the correctness of the final
event classification.

In Fig. 11, 𝑅𝐴 = 0.35 is used as a sample, but in practice, the
𝑅𝐴 values for obtaining the best results are different for different log
samples. As an important variable directly related to the threshold, the
variation of 𝑅𝐴 can significantly affect the score.

In this experiment, the manually divided event sequence is used as
the standard answer compared to the analysis results. This experiment
compares the 𝑃𝑢𝑟𝑖𝑡𝑦, 𝑅 and 𝐹𝑀 as the index with the following
approaches: behavior pattern alignment-based matching approach rep-
resented by [29], and the rule-based matching approach represented
by [28].

This experiment evaluates [28,29] and Log2Evt based on 𝑃𝑢𝑟𝑖𝑡𝑦, 𝑅
and 𝐹𝑀 . The results are shown in Table 6. Log2Evt has a certain degree
of improvement in the above metrics compared with the alignment-
based matching approach [29] and rule-based matching approach [28].

In the threshold experiments, we evaluate the efficacy of Log2Evt
at 𝑅𝐴 equals to 0.2, 0.4, 0.6, 0.8 and 1.0, respectively, by evaluating
13
the criteria 𝑃𝑢𝑟𝑖𝑡𝑦, 𝑅, and 𝐹𝑀 based on this log sample. The results
are shown in Fig. 12. As illustrated in the figure, all three metrics
demonstrate notable sensitivity to variations in the 𝑅𝐴 threshold.
Specifically, 𝑃𝑢𝑟𝑖𝑡𝑦 exhibits a gradual decline as 𝑅𝐴 increases beyond
0.4, while 𝑅 shows relatively stable performance until 𝑅𝐴 reaches 0.6,
after which it experiences a sharp decrease. The 𝐹𝑀 score, being a
harmonic mean of precision and recall, follows a similar trend to 𝑃𝑢𝑟𝑖𝑡𝑦
but with more pronounced deterioration at higher 𝑅𝐴 values. From the
experiment results, the choice of 𝑅𝐴 greatly impacts the performance
of Log2Evt, and the best efficacy is achieved with 𝑅𝐴 around 0.4 for
this log sample.

4.5. Time and space occupation experiments

The time required to perform an operation is one of the metrics to
measure the effectiveness of an algorithm. In addition, Log2Evt records
all the program traces to the memory for analysis. So the space usage
of Log2Evt needs to be tested to evaluate the feasibility of its use.

To evaluate the time consumption and space occupation of Log2Evt
a long sequence of operations with repeatable and strictly consis-
tent characteristics is applied to the log samples, and the results are
averaged. These cases’ time consumption and space occupation are
evaluated using this approach following the actual application scenario.

In this section of the experiment, the same operations are executed
1000 times for each application scenario, evaluating the time com-
plexity and space usage by the algorithm run time and the size of
the recorded program trace file. In order for multiple login attempts

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Table 6
Efficacy experiment results.
 Condition PAM Samba Vsftpd Networkmanager

 𝑃𝑢𝑟𝑖𝑡𝑦 𝑅 𝐹𝑀 𝑃𝑢𝑟𝑖𝑡𝑦 𝑅 𝐹𝑀 𝑃𝑢𝑟𝑖𝑡𝑦 𝑅 𝐹𝑀 𝑃𝑢𝑟𝑖𝑡𝑦 𝑅 𝐹𝑀
 Log2Evt 1.00 1.00 1.00 0.90 0.95 0.75 0.95 0.99 0.92 0.85 0.81 0.80
 [29] 0.91 0.93 0.88 0.81 0.97 0.77 0.89 0.99 0.83 0.39 0.55 0.36
 [28] 0.86 0.91 0.85 0.74 0.95 0.65 0.87 0.99 0.78 0.34 0.54 0.33
Fig. 13. CDFs of time and space consumption for a single event.
Fig. 14. Time to record call stacks.

to not be blocked, for PAM, the 𝑀𝑎𝑥𝐴𝑢𝑡ℎ𝑇 𝑟𝑖𝑒𝑠 configuration file in
/etc/ssh/sshd_config needs to be changed to 1000.

The experimental results are shown in Fig. 13. For all test samples,
the average space occupied by the logged data for each operation is
between 25 KB and 50 KB, and the algorithm execution time is between
500 μs and 1000 μs.

At the same time, since Log2Evt needs to configure the sequence
of probes in the target application, it needs to consider the time to
configure the sequence in the program and the impact of probes on
the program execution performance.

For the evaluation of the time to record program’s call stacks, we
place timers in each probe and print out the CPU time taken by each
probe in the logged data. As shown in Fig. 14, the time taken for each
execution of the code in the probe is mainly distributed between 2500
ns and 17000 ns, with PAM taking the least time and Samba taking the
most time, which is related to the length of the printed stack.

For evaluating the time to configure the probe, we place a timer at
the beginning of the bash script and the beginning of the SystemTap
to count the time from executing the script to configuring all probes.
14
Fig. 15. Time to configure probes.

As shown in Fig. 15, the time used to configure probes is mainly
distributed between 3000 ms and 25000 ms, among which Vsftpd takes
the least time and Samba takes the most time, which is related to the
number of functions of the program.

Based on the experimental results presented in Fig. 16, we con-
ducted a systematic analysis of temporal and spatial characteristics
across four application scenarios (PAM, Samba, Vsftpd, and Network-
manager) with controlled operational repetitions (1000–4000 execu-
tions). The boxplots reveal statistically significant performance dis-
tributions across two primary dimensions: temporal performance and
spatial efficiency.

The algorithm demonstrates sub-millisecond latency across all sce-
narios, with interquartile ranges indicating stable temporal predictabil-
ity. PAM exhibits the most consistent temporal distribution, suggest-
ing optimized performance for authentication operations. Conversely,
Samba displays wider dispersion, potentially due to its complex file-
sharing protocol stack. Notably, temporal scaling remains sublinear as
operational repetitions increase from 1000 to 4000, confirming the
algorithm’s efficient time complexity.

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Fig. 16. Boxplots of time and space consumption for events with different times.
Memory consumption per operation remains constrained within
25–50 KB, exhibiting near-constant growth characteristics. Network-
manager demonstrates the most stable allocation pattern, while Vsftpd
shows moderate variance. The 95th percentile of spatial consumption
never exceeds 50 KB, even under maximum operational load, validating
the design’s memory-efficient architecture.

5. Discussion

The integration of execution path tracing with IoT log analysis,
as proposed in Log2Evt, introduces a novel paradigm for enhanc-
ing observability in resource-constrained smart systems. By correlat-
ing firmware runtime context with device logs, this approach bridges
the gap between fragmented sensor telemetry and actionable secu-
rity insights. While evaluations demonstrate efficacy in lab-based IoT
testbeds, scalability challenges and IoT-specific deployment barriers
require deeper scrutiny.

5.1. Internal validity in IoT contexts

IoT hardware and RTOS heterogeneity: The reliance on dynamic
tracing tools like eBPF introduces dependencies on specific micro-
controller architectures and real-time operating systems . Proprietary
firmware in industrial IoT devices or locked-down consumer gadgets
may block runtime instrumentation, limiting real-time path tracing.
For example, low-power LoRaWAN sensors with stripped debugging
interfaces cannot capture call stack traces during energy-saving sleep
modes.

Concurrency limitations in distributed IoT workflows: The
method assumes execution context coherence within single-device
firmware. However, IoT operations like multi-sensor data fusion or
edge-cloud synchronization involve asynchronous, distributed work-
flows. In such cases, call stacks from a Raspberry Pi edge node may
fail to propagate context to associated LoRaWAN gateways, causing log
correlation gaps during cross-device attacks.

Resilience to Log Noise and Adversarial Manipulation: Log2Evt
demonstrates inherent robustness against common forms of log noise
and adversarial manipulation. Its resilience stems from the core prin-
ciple of correlating logs with their actual, dynamically captured code
execution paths. Intentionally injected log noise, if not generated by
15
a legitimate and instrumented code path, will fail to correlate and is
thus naturally filtered out. Forging logs with misleading call stacks
presents a more sophisticated challenge, but this would require an
attacker to gain sufficient privileges to manipulate the low-level tracing
mechanism itself, at which point the system is likely already fully
compromised. While a high volume of noise could degrade perfor-
mance before being filtered, the accuracy of event reconstruction re-
mains high against attacks that cannot control the underlying execution
environment.

5.2. External validity in IoT deployments

Resource constraints and performance balance: Despite effi-
ciency optimizations, implementing full execution path tracking on
embedded microcontrollers may significantly increase computational
load, threatening real-time guarantees in industrial control systems. For
battery-powered IoT nodes, the trade-off between tracking granularity
and energy consumption becomes an unavoidable design contradic-
tion, requiring dynamic balance between data accuracy and device
longevity.

Real-world IoT log complexity: Evaluations used sanitized logs
from homogeneous device fleets, but operational IoT environments mix
structured and unstructured logs. Environmental interference and third-
party black-box components introduce noise unaccounted for in current
models, potentially masking stealthy attacks like firmware downgrade
exploits.

Robustness to data obfuscation: The validity of the Log2Evt
framework extends to environments with encrypted logs or restricted
tracing because its core mechanism relies on the structural fingerprint
of the code execution path, not solely on log content. While this
approach preserves the ability to reconstruct a skeletal event narrative,
it inherently faces limitations, namely a loss of semantic richness from
unreadable messages and potential ambiguity if the execution trace
itself is incomplete.

Applicability to Real-Time Detection: The Log2Evt framework is
conceptually adaptable to runtime anomaly detection because its core
data collection method, which relies on dynamic kernel instrumenta-
tion, captures execution paths in real time. This provides the necessary
live data stream for on-the-fly analysis. However, the computational
expense of the full event reconstruction and relational analysis pipeline

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
introduces a significant latency trade-off. In its current form, this over-
head makes the complete process better suited for deep postmortem
forensics rather than immediate, low-latency threat detection.

5.3. Future work

Our future research will advance the Log2Evt framework by fo-
cusing on three interconnected areas: enhancing its utility in privacy-
restricted settings, strengthening its resilience against sophisticated
attacks, and adapting it for real-time threat detection.

First, we will address the challenge of analysis in privacy-restricted
environments by developing a more resilient hybrid framework. We
plan to enhance Log2Evt by fusing the available structural data with
other system telemetry, such as network flows, and employing proba-
bilistic models to handle ambiguity. Furthermore, we will investigate
the application of advanced privacy-preserving technologies, including
homomorphic encryption, to enable direct analysis of encrypted logs
and traces, thereby maintaining data confidentiality throughout the
event reconstruction process.

Building on this, to further harden Log2Evt against sophisticated
adversarial attacks, our future work will focus on developing a robust
integrity validation framework. We plan to move beyond simple cor-
relation by implementing anomaly detection directly on the execution
traces themselves, building models of legitimate call stack patterns to
identify forged or unusual paths. This will be complemented by a cross-
validation system that correlates events constructed by Log2Evt with
data from independent sources, such as network intrusion detection
systems, to verify their authenticity. This multi-layered approach will
enable the system to not only detect but also actively flag and isolate
sophisticated adversarial manipulations.

Finally, to make these enhanced security capabilities practical for
immediate threat response, we will focus on adapting Log2Evt for
real-time anomaly detection by designing a tiered analysis framework.
This involves developing a lightweight, real-time triage component for
instant threat flagging based on execution path signatures, comple-
mented by a near-real-time deep analysis layer for more complex event
reconstruction. We plan to build this system using stream processing
engines for efficient data handling and will integrate online machine
learning algorithms to dynamically model normal system behavior and
accurately detect deviations.

By addressing these IoT-centric limitations — through adaptive
tracing for heterogeneous hardware and noise-resilient correlation
algorithms — future work could enable robust intrusion detection
across smart cities, healthcare IoT, and Industry 4.0 deployments.
6. Conclusion

Cyberspace is increasingly targeted by stealthy attacks, particularly
in IoT systems where adversaries exploit vulnerabilities in intercon-
nected smart devices. To address the forensic challenges posed by
massive, fragmented logs from distributed sensors, gateways, and edge
nodes, we propose Log2Evt, which can construct high-level events from
low-level log messages, helping users locating attack-related log entries
more quickly and accurately.

Log2Evt is shown to have higher efficacy in specifying test cases
compared to the matching-based representation approaches. However,
depending on the design of the program, the classification approach
based on the maximum number of common ancestors has the theoreti-
cal possibility of outputting low efficacy results. Due to the debugging
mechanism, Log2Evt is only applicable to programs with DebugInfo.
For future work, we will improve the data structure in the Common
Ancestor algorithm, for example, using a hashing algorithm to increase
computational efficiency and robustness in the face of large-scale sys-
tems. In addition, inspired by the excellent performance of Kprobes
and the SystemTap framework, we will investigate its application in
the field of network security in more depth.
16
CRediT authorship contribution statement

Teng Li: Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization. Baichuan Zheng: Writing – review &
editing, Writing – original draft, Visualization, Validation, Software,
Methodology, Investigation, Formal analysis, Data curation, Concep-
tualization. Yebo Feng: Writing – review & editing, Methodology,
Conceptualization. Xiaowen Quan: Conceptualization. Jiahua Xu:
Writing – review & editing, Supervision, Methodology. Yang Liu:
Conceptualization. Jianfeng Ma: Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is funded by the National Key Research and Devel-
opment Program of China (2023YFB2904000), Natural Science Basic
Research Program of Shaanxi (No. 2025JC-JCQN-073), National Natu-
ral Science Foundation of China under Grant (No. 62272370), Young
Elite Scientists Sponsorship Program by CAST (2022QNRC001), the
China 111Project (No. B16037), Qinchuangyuan Scientist + Engineer
Team Program of Shaanxi (No. 2024QCY-KXJ-149), Songshan Labora-
tory (No. 241110210200), Open Foundation of Key Laboratory of Cy-
berspace Security, Ministry of Education of China (No. KLCS20240405)
and the Fundamental Research Funds for the Central Universities,
China (QTZX23071), the National Research Foundation, Singapore,
and DSO National Laboratories under the AI Singapore Programme
(AISG Award No: AISG2-GC-2023-008), the National Research Founda-
tion, Singapore, and the Cyber Security Agency under its National Cy-
bersecurity R&D Programme (NCRP25-P04-TAICeN), the National Re-
search Foundation, Prime Minister’s Office, Singapore under its Campus
for Research Excellence and Technological Enterprise (CREATE) pro-
gramme, and Ripple under its University Blockchain Research Initiative
(UBRI) [54].

References

[1] Wei Qiao, Yebo Feng, Teng Li, Zhuo Ma, Yulong Shen, JianFeng Ma, Yang Liu,
Slot: Provenance-driven APT detection through graph reinforcement learning,
2024, arXiv preprint arXiv:2410.17910.

[2] Shahbaz Siddiqui, Sufian Hameed, Syed Attique Shah, Abdul Kareem Khan, Adel
Aneiba, Smart contract-based security architecture for collaborative services in
municipal smart cities, J. Syst. Archit. 135 (2023) 102802, URL https://www.
sciencedirect.com/science/article/pii/S1383762122002879.

[3] Hongtao Yu, Suhui Liu, Liquan Chen, Yuan Gao, Blockchain-enabled one-to-
many searchable encryption supporting designated server and multi-keywords for
Cloud-IoMT, J. Syst. Archit. 149 (2024) 103103, URL https://www.sciencedirect.
com/science/article/pii/S1383762124000407.

[4] Panjun Sun, Yi Wan, Zongda Wu, Zhaoxi Fang, Qi Li, A survey on privacy and
security issues in IoT-based environments: Technologies, protection measures and
future directions, Comput. Secur. 148 (2025) 104097.

[5] Tao Zhang, Fanyu Kong, Dongshang Deng, Xiangyun Tang, Xuangou Wu,
Changqiao Xu, Liehuang Zhu, Jiqiang Liu, Bo Ai, Zhu Han, et al., Moving target
defense meets artificial intelligence-driven network: A comprehensive survey,
IEEE Internet Things J. (2025).

[6] Yangzixing Lv, Wei Shi, Weiyong Zhang, Hui Lu, Zhihong Tian, Do not trust the
clouds easily: The insecurity of content security policy based on object storage,
IEEE Internet Things J. 10 (12) (2023) 10462–10470.

[7] Yukyung Lee, Jina Kim, Pilsung Kang, Lanobert: System log anomaly detection
based on bert masked language model, Appl. Soft Comput. 146 (2023) 110689.

[8] Lin Yang, Junjie Chen, Shutao Gao, Zhihao Gong, Hongyu Zhang, Yue Kang,
Huaan Li, Try with simpler-an evaluation of improved principal component
analysis in log-based anomaly detection, ACM Trans. Softw. Eng. Methodol. 33
(5) (2024) 1–27.

[9] Zijun Cheng, Qiujian Lv, Jinyuan Liang, Yan Wang, Degang Sun, Thomas
Pasquier, Xueyuan Han, Kairos: Practical intrusion detection and investigation
using whole-system provenance, in: 2024 IEEE Symposium on Security and
Privacy, SP, IEEE, 2024, pp. 3533–3551.

http://arxiv.org/abs/2410.17910
https://www.sciencedirect.com/science/article/pii/S1383762122002879
https://www.sciencedirect.com/science/article/pii/S1383762122002879
https://www.sciencedirect.com/science/article/pii/S1383762122002879
https://www.sciencedirect.com/science/article/pii/S1383762124000407
https://www.sciencedirect.com/science/article/pii/S1383762124000407
https://www.sciencedirect.com/science/article/pii/S1383762124000407
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb4
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb4
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb4
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb4
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb4
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb5
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb5
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb5
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb5
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb5
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb5
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb5
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb6
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb6
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb6
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb6
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb6
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb7
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb7
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb7
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb8
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb8
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb8
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb8
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb8
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb8
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb8
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb9
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb9
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb9
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb9
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb9
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb9
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb9

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
[10] Qingqing Xie, Fatong Zhu, Xia Feng, Blockchain-enabled data sharing for IoT: A
lightweight, secure and searchable scheme, J. Syst. Archit. 154 (2024) 103230,
URL https://www.sciencedirect.com/science/article/pii/S138376212400167X.

[11] Kexiong Fei, Jiang Zhou, Yucan Zhou, Xiaoyan Gu, Haihui Fan, Bo Li, Weiping
Wang, Yong Chen, LaAeb: A comprehensive log-text analysis based approach for
insider threat detection, Comput. Secur. 148 (2025) 104126.

[12] Yiren Chen, Mengjiao Cui, Ding Wang, Yiyang Cao, Peian Yang, Bo Jiang,
Zhigang Lu, Baoxu Liu, A survey of large language models for cyber threat
detection, Comput. Secur. (2024) 104016.

[13] Guojun Chu, Jingyu Wang, Qi Qi, Haifeng Sun, Zirui Zhuang, Bo He, Yuhan
Jing, Lei Zhang, Jianxin Liao, Anomaly detection on interleaved log data with
semantic association mining on log-entity graph, IEEE Trans. Softw. Eng. (2025).

[14] Teng Li, Shengkai Zhang, Yebo Feng, Jiahua Xu, Zhuo Ma, Yulong Shen, Jianfeng
Ma, Heuristic-based parsing system for big data log, in: GLOBECOM 2024 - 2024
IEEE Global Communications Conference, 2024, pp. 2329–2334.

[15] Ilja Behnke, Christoph Blumschein, Robert Danicki, Philipp Wiesner, Lauritz
Thamsen, Odej Kao, Towards a real-time IoT: Approaches for incoming packet
processing in cyber–physical systems, J. Syst. Archit. 140 (2023) 102891, URL
https://www.sciencedirect.com/science/article/pii/S138376212300070X.

[16] Chen Zhi, Liye Cheng, Meilin Liu, Xinkui Zhao, Yueshen Xu, Shuiguang
Deng, LLM-powered zero-shot online log parsing, in: 2024 IEEE International
Conference on Web Services, ICWS, IEEE, 2024, pp. 877–887.

[17] Aoxiao Zhong, Dengyao Mo, Guiyang Liu, Jinbu Liu, Qingda Lu, Qi Zhou,
Jiesheng Wu, Quanzheng Li, Qingsong Wen, Logparser-llm: Advancing efficient
log parsing with large language models, in: Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2024, pp. 4559–4570.

[18] Daniel Schuster, Francesca Zerbato, Sebastiaan J van Zelst, Wil MP van der Aalst,
Defining and visualizing process execution variants from partially ordered event
data, Inform. Sci. 657 (2024) 119958.

[19] Tianzhu Zhang, Han Qiu, Gabriele Castellano, Myriana Rifai, Chung Shue Chen,
Fabio Pianese, System log parsing: A survey, IEEE Trans. Knowl. Data Eng. 35
(8) (2023) 8596–8614.

[20] Haitian Yang, Degang Sun, Yan Wang, Weiqing Huang, DSGN: Log-based
anomaly diagnosis with dynamic semantic gate networks, Inform. Sci. 680 (2024)
121174.

[21] Hui Lu, Chengjie Jin, Xiaohan Helu, Xiaojiang Du, Mohsen Guizani, Zhihong
Tian, DeepAutoD: Research on distributed machine learning oriented scalable
mobile communication security unpacking system, IEEE Trans. Netw. Sci. Eng.
9 (4) (2022) 2052–2065.

[22] Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu,
Zhuangbin Chen, Jieming Zhu, Michael R Lyu, A large-scale evaluation for log
parsing techniques: How far are we? in: Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2024, pp. 223–234.

[23] Maria Laura Sebu, Horia Ciocarlie, Applied process mining in software de-
velopment, in: 2014 IEEE 9th IEEE International Symposium on Applied
Computational Intelligence and Informatics, SACI, IEEE, 2014, pp. 55–60.

[24] Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang Wu, Yuchi
Ma, Pinjia He, Deep learning or classical machine learning? An empirical
study on log-based anomaly detection, in: Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, 2024, pp. 1–13.

[25] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
Wenbin Zhang, Semi-supervised log-based anomaly detection via probabilistic
label estimation, in: 2021 IEEE/ACM 43rd International Conference on Software
Engineering, ICSE, IEEE, 2021, pp. 1448–1460.

[26] Junjielong Xu, Ziang Cui, Yuan Zhao, Xu Zhang, Shilin He, Pinjia He, Liqun
Li, Yu Kang, Qingwei Lin, Yingnong Dang, et al., UniLog: Automatic logging via
LLM and in-context learning, in: Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 2024, pp. 1–12.

[27] Shaohan Huang, Yi Liu, Carol Fung, Rong He, Yining Zhao, Hailong Yang,
Zhongzhi Luan, Hitanomaly: Hierarchical transformers for anomaly detection in
system log, IEEE Trans. Netw. Serv. Manag. 17 (4) (2020) 2064–2076.

[28] Saad Khan, Simon Parkinson, Discovering and utilising expert knowledge from
security event logs, J. Inf. Secur. Appl. 48 (2019) 102375.

[29] Cong Liu, Shi Wang, Shangce Gao, Feng Zhang, Jiujun Cheng, User behavior
discovery from low-level software execution log, IEEJ Trans. Electr. Electron.
Eng. 13 (11) (2018) 1624–1632.

[30] Edyta Brzychczy, Milda Aleknonytė-Resch, Dominik Janssen, Agnes Koschmider,
Process mining on sensor data: a review of related works, Knowl. Inf. Syst. (2025)
1–34.

[31] Octavio Loyola-González, Process mining: software comparison, trends, and
challenges, Int. J. Data Sci. Anal. 15 (4) (2023) 407–420.

[32] Shameer K. Pradhan, Mieke Jans, Niels Martin, Getting the data in shape for
your process mining analysis: An in-depth analysis of the pre-analysis stage,
ACM Comput. Surv. (2025).

[33] Guanjun Liu, Petri Nets: Theoretical Models and Analysis Methods for Concurrent
Systems, Springer Nature, 2022.

[34] Anna A Kalenkova, Wil MP van der Aalst, Irina A Lomazova, Vladimir A
Rubin, Process mining using BPMN: relating event logs and process models, in:
Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems, 2016, pp. 123–123.
17
[35] Ezequiel O. Ramos, Rogério Rossi, Process mining applied in a software project
development with SCRUM and prom, Eur. J. Eng. Technol. Res. 8 (5) (2023)
17–24.

[36] Michela Vespa, Elena Bellodi, Federico Chesani, Daniela Loreti, Paola Mello,
Evelina Lamma, Anna Ciampolini, Marco Gavanelli, Riccardo Zese, Probabilistic
traces in declarative process mining, in: International Conference of the Italian
Association for Artificial Intelligence, Springer, 2024, pp. 330–345.

[37] Yintong Huo, Yuxin Su, Cheryl Lee, Michael R. Lyu, SemParser: A semantic parser
for log analytics, in: 2023 IEEE/ACM 45th International Conference on Software
Engineering, ICSE, IEEE, 2023, pp. 881–893.

[38] Weibin Meng, Federico Zaiter, Yuzhe Zhang, Ying Liu, Shenglin Zhang, Shimin
Tao, Yichen Zhu, Tao Han, Yongpeng Zhao, En Wang, Yuzhi Zhang, Dan Pei,
LogSummary: Unstructured log summarization for software systems, IEEE Trans.
Netw. Serv. Manag. 20 (3) (2023) 3803–3815.

[39] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong
Huo, Pinjia He, Jiazhen Gu, Michael R Lyu, Lilac: Log parsing using llms with
adaptive parsing cache, Proc. the ACM Softw. Eng. 1 (FSE) (2024) 137–160.

[40] Marco Pegoraro, Bianka Bakullari, Merih Seran Uysal, Wil MP van der Aalst,
Probability estimation of uncertain process trace realizations, in: International
Conference on Process Mining, Springer, Cham, 2022, pp. 21–33.

[41] Aleksei Pismerov, Maxim Pikalov, Applying embedding methods to process
mining, in: Proceedings of the 2022 5th International Conference on Algorithms,
Computing and Artificial Intelligence, 2022, pp. 1–5.

[42] Siyu Yu, Yifan Wu, Zhijing Li, Pinjia He, Ningjiang Chen, Changjian Liu, Log
parsing with generalization ability under new log types, in: Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2023, pp. 425–437.

[43] Xiaoyun Li, Hongyu Zhang, Van-Hoang Le, Pengfei Chen, Logshrink: Effective log
compression by leveraging commonality and variability of log data, in: Proceed-
ings of the 46th IEEE/ACM International Conference on Software Engineering,
2024, pp. 1–12.

[44] Siyu Yu, Pinjia He, Ningjiang Chen, Yifan Wu, Brain: Log parsing with
bidirectional parallel tree, IEEE Trans. Serv. Comput. 16 (5) (2023) 3224–3237.

[45] Yintong Huo, Yichen Li, Yuxin Su, Pinjia He, Zifan Xie, Michael R Lyu, Autolog:
A log sequence synthesis framework for anomaly detection, in: 2023 38th
IEEE/ACM International Conference on Automated Software Engineering, ASE,
IEEE, 2023, pp. 497–509.

[46] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yuhang
Chen, Yanqing Zhao, Hao Yang, Yanfei Jiang, Interpretable online log analysis
using large language models with prompt strategies, in: Proceedings of the
32nd IEEE/ACM International Conference on Program Comprehension, 2024, pp.
35–46.

[47] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, Pinjia He, DivLog:
Log parsing with prompt enhanced in-context learning, in: Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, 2024, pp.
1–12.

[48] Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun Chen, Shaowei Wang,
Llmparser: An exploratory study on using large language models for log parsing,
in: Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, 2024, pp. 1–13.

[49] Jim Keniston, Kernel probes, 2022, https://docs.kernel.org/trace/kprobes.html.
(Accessed January 2025).

[50] Frank Ch. Eigler, Systemtap, 2005, https://sourceware.org/systemtap/. (Accessed
January 2025).

[51] Adel Belkhiri, Martin Pepin, Mike Bly, Michel Dagenais, Performance analysis of
DPDK-based applications through tracing, J. Parallel Distrib. Comput. 173 (2023)
1–19.

[52] Brendan Gregg, The flame graph, Commun. ACM 59 (6) (2016) 48–57.
[53] Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu, Loghub: a large collection

of system log datasets towards automated log analytics, 2020, arXiv preprint
arXiv:2008.06448.

[54] Yebo Feng, Jiahua Xu, Lauren Weymouth, University blockchain research initia-
tive (UBRI): Boosting blockchain education and research, IEEE Potentials 41 (6)
(2022) 19–25.

Teng Li received the B.S. degree in School of Computer
Science and Technology from Xidian University, China in
2013, and Ph.D. degree in School of Computer Science and
Technology from Xidian University, China in 2018. He is
currently a Professor at the School of Cyber Engineering, Xi-
dian University, China. His current research interests include
wireless and networks, distributed systems and intelligent
terminals with focus on security and privacy issues.

https://www.sciencedirect.com/science/article/pii/S138376212400167X
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
https://www.sciencedirect.com/science/article/pii/S138376212300070X
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb28
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb28
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb28
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb31
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb31
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb31
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb33
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb33
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb33
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb44
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb44
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb44
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
https://docs.kernel.org/trace/kprobes.html
https://sourceware.org/systemtap/
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb52
http://arxiv.org/abs/2008.06448
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54

T. Li et al. Journal of Systems Architecture 168 (2025) 103578
Baichuan Zheng received his B.S. degree in School of Cyber
Engineering from Xidian University, China in 2024, where
he is pursuing the M.S. degree. His current research interests
include IoT security, log analysis, network security, and
federated learning.

Yebo Feng is a research fellow in the College of Computing
and Data Science (CCDS) at Nanyang Technological Uni-
versity (NTU). He received his Ph.D. degree in Computer
Science from the University of Oregon (UO) in 2023. His
research interests include network security, blockchain se-
curity, and anomaly detection. He is the recipient of the
Best Paper Award of 2019 IEEE CNS, Gurdeep Pall Graduate
Student Fellowship of UO, and Ripple Research Fellowship.
He has served as the reviewer of IEEE TDSC, IEEE TIFS,
ACM TKDD, IEEE JSAC, IEEE COMST, etc. Furthermore, he
has been a member of the program committees for interna-
tional conferences including SDM, CIKM, and CYBER, and
has also served on the Artifact Evaluation (AE) committees
for USENIX OSDI and USENIX ATC.

Xiaowen Quan received the M.S. degree in software en-
gineering from Tsinghua University. His research interests
include application security and network measurement.
18
Jiahua Xu is Associate Professor in Financial Computing,
and Programme Director of the MSc Emerging Digital
Technologies at UCL. She is also affiliated to the UCL
Centre for Blockchain Technologies. Her research focuses
on blockchain economics and decentralized finance. She has
published in Usenix Security, ACM IMC, FC, IEEE ICDCS
and IEEE ICBC. She has reviewed for Advances in Complex
Systems, Computer Networks, Transactions on the Web and
Cities.

Yang Liu received the B.S. degree in computer science and
technology from Xidian University, in 2017. He is now an
associate professor at school of Cyber Engineering, Xidian
University. His research interests cover formal analysis of
authentication protocols and deep learning neural network
in cyber security.

Jianfeng Ma received the B.S. degree in computer science
from Shaanxi Normal University in 1982, and M. S. degree
in computer science from Xidian University in 1992, and the
Ph. D. degree in computer science from Xidian University
in 1995. Currently he is the directer of Department of
Cyber engineering and a professor in School of Cyber
Engineering, Xidian University. He has published over 150
journal and conference papers. His research interests include
information security, cryptography, and network security.

	Log2Evt: Constructing high-level events for IoT Systems through log-code execution path correlation
	Introduction
	Related Work
	Process mining
	Log clustering
	Userspace Tracing in IoT Device Development

	Methodology
	Overview
	Source location
	Dataflow trajectory tracing
	Kprobes
	SystemTap
	Set Kprobes

	Event chain integration
	Tree conversion algorithm
	Tarjan-LCA algorithm
	Event Segmentation algorithm

	Evaluation of Log2Evt
	Theoretical analysis
	Experiment setting
	Functional experiments
	Efficacy experiments
	Time and space occupation experiments

	Discussion
	Internal validity in IoT contexts
	External validity in IoT deployments
	Future work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

