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 A B S T R A C T

The detection of cyberattacks in IoT ecosystems requires comprehensive log auditing across distributed devices, 
yet the volume and heterogeneity of IoT logs exceed traditional analysis capabilities. Therefore, it is essential 
to narrow down the scope of forensics precisely and efficiently to target attack-related events. Existing schemes 
have the disadvantage of low accuracy and flexibility. We propose a novel approach that synthesizes high-
level security events from low-level IoT logs by correlating firmware execution traces with runtime call stack 
contexts. Our approach implements lightweight monitoring probes at critical IoT workflow points and employs 
an IoT-optimized Common Ancestor algorithm for log sequence analysis. The experiments demonstrate a 15% 
improvement in accuracy compared to the rule-based matching scheme. Additionally, the results highlight the 
influence of the threshold parameter and show that the approach has minimal impact on program operation. 
The approach effectively addresses the challenges of protocol fragmentation and resource constraints in IoT 
environments, providing a foundation for robust security monitoring in smart city deployments.
1. Introduction

In IoT-enabled smart societies, the operational behavior of IoT 
devices, such as sensor activations, data transmissions, or firmware 
updates, manifests as high-level events composed of numerous low-
level function executions. Each execution generates a stream of log 
messages that document state changes across distributed IoT networks. 
Constructing high-level events from raw IoT logs is essential for two 
reasons. First, these events contextualize device interactions into ac-
tionable security narratives, enabling analysts to trace multi-step at-
tack chains, such as compromised sensors triggering cascading fail-
ures, which individual logs alone cannot reveal [1]. Second, they 
expose stealthy attack patterns, including slow-burn data exfiltration 
or spoofed device commands, that evade detection when logs are 
analyzed in isolation. However, IoT environments introduce unique 
challenges. Fig.  1 illustrates a fundamental challenge in log analysis 
where concurrent system activities cause log entries to become frag-
mented and interleaved. A single logical event, such as a user login, 
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often comprises multiple suboperations, such as authentication and 
session initialization, with each generating a distinct log entry. In the 
figure, the single User-A Login event produces two separate log entries: 
User-A Login_1 and User-A Login_2. These entries are separated in the 
timeline by logs from other concurrent user activities. This interleaving 
complicates the reconstruction of a user’s session. For example, the 
complete timeline for User-A involves a successful login that generates 
two separate log entries, a subsequent logout, and later, a separate, 
failed login attempt. Without sophisticated analysis, the fragmented 
nature of these logs makes it difficult to accurately trace the sequence of 
operations for any single user or process. Additionally, heterogeneous 
IoT hardware generates both structured logs, like timestamped sensor 
readings, and unstructured logs, such as free-text error reports from 
legacy devices. These concurrent operations scatter log entries, forc-
ing analysts to prioritize specific messages and inadvertently overlook 
fragmented traces of malicious activity [2,3]. Attackers exploit these 
inconsistencies by dispersing malicious activity across mixed-format 
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Fig. 1. Visualization of interleaved multi-user log sequences.
logs to evade rule-based detection [4–6]. Existing approaches for IoT 
log analysis [7–9] often prioritize sequential log ordering, neglecting 
asynchronous workflows where correlated events span multiple de-
vices. By isolating event-specific log sequences, such as those tied to 
a single firmware update, auditors can reconstruct IoT-centric attack 
pathways, such as rogue nodes injecting falsified data. This need for 
efficiency is a well-recognized challenge, as many security mechanisms 
for functions like data sharing are too computationally intensive for 
resource-limited IoT devices [10]. Addressing these challenges requires 
lightweight techniques to map low-level IoT logs to high-level events 
without overwhelming resource-constrained devices, ensuring real-time 
intrusion detection in scalable smart societies.

However, transforming low-level log data generated by IoT devices 
into high-level operational events remains a critical challenge for ef-
fective intrusion detection in smart societies. IoT systems inherently 
involve large-scale deployments with heterogeneous devices, produc-
ing immense volumes of unstructured logs. Administrators struggle to 
define reliable detection rules [11,12] or keywords [13,14] due to 
the dynamic nature of IoT environments, where device diversity and 
unpredictable interactions amplify the risk of missing attack signatures. 
Compounding this issue, IoT devices often lack standardized logging 
formats, leading to inconsistencies that hinder automated analysis. Fur-
thermore, concurrent operations across distributed IoT networks scatter 
log entries, forcing analysts to prioritize specific messages and inadver-
tently overlook fragmented traces of malicious activity. Systems can 
analyze IoT workflow execution paths, representing the chronological 
sequence of operations. By reconstructing these paths, systems can cor-
relate isolated log entries into coherent, high-level events. This enables 
real-time detection of covert attacks. This focus on efficiency is crucial, 
as even fundamental tasks like processing network packets can create 
unpredictable workloads that challenge the real-time capabilities of 
embedded systems [15]. Importantly, this approach maintains minimal 
computational overhead, which is essential for resource-constrained 
IoT infrastructures.

In IoT-enabled environments, addressing log analysis challenges 
requires approaches capable of processing massive volumes of device-
generated logs, even when fragmented across distributed networks. 
IoT-specific solutions must sift through disorganized logs to identify 
security-relevant entries, such as anomalous sensor readings or unau-
thorized firmware access attempts. Existing IoT-specific approaches, 
such as behavioral model extraction and source code analysis tech-
niques, contribute to resolving these issues but have limitations. For 
example, process mining and supervised learning approaches model 
device behavior through operational logs [16,17], enabling adminis-
trators to effectively correlate log patterns with IoT device states [18]. 
However, in IoT contexts, these approaches rely heavily on accurate 
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log text semantics, and errors in this analysis can lead to faulty mod-
els [19]. Conversely, source code analysis techniques map log messages 
to execution nodes in programs, helping administrators track connec-
tions between logs based on control flow. This enables deeper insights 
into temporal relationships between events but often requires exten-
sive computational resources, making these approaches struggle with 
scalability in large IoT deployments [20]. These persistent challenges 
are rooted in the limitations of analysis techniques that depend on the 
simple chronological order of entries or text-based keyword match-
ing, which remain inadequate for reconstructing a complete picture 
of events in complex IoT environments. Specifically, such methods 
struggle with the fact that devices often perform multiple, independent 
actions simultaneously, thereby obscuring the true cause-and-effect 
relationships between log entries. For instance, a smart lock might 
log user authenticated, followed by an interleaved, periodic battery 
status message, and then motor driver fault. An analyzer relying solely 
on temporality or keyword matching would likely fail to associate 
the authentication with the subsequent motor fault, thereby failing to 
identify the high-level event: a failed unlock attempt. This semantic 
fragmentation of logs presents an opportunity for adversaries to conceal 
malicious activities. Thus, there is a critical need for an approach that 
integrates the real-time responsiveness and flexibility of process mining 
with the structural efficacy and event flow tracking capabilities of 
source code analysis [21], while minimizing resource consumption and 
semantic ambiguities inherent to IoT systems [22].

To address these challenges in IoT systems, we propose Log2Evt, an 
advanced approach for IoT devices that tightly integrates log analysis 
with execution paths. Log2Evt offers three key advantages over existing 
approaches: (1) it accurately tracks logs across program function calls 
by monitoring real-time execution paths across IoT workflows, provid-
ing a complete picture of how logs are generated and passed between 
functions; (2) it minimizes reliance on complex semantic analysis by 
utilizing execution context from the program’s call stack, improving the 
precision of log correlation without excessive computational overhead; 
and (3) it enables administrators to pinpoint log origins to specific IoT 
components, offering real-time access to device states and accelerating 
threat response through integration with IoT management platforms, 
all without disrupting operational efficiency. Revisiting the smart lock 
example, Log2Evt would identify that both the user authenticated and 
motor driver fault logs originate from the same high-level execution 
trace corresponding to an unlock operation. Consequently, it correctly 
correlates these entries into a single, cohesive event while disregarding 
the unrelated battery status log.

Log2Evt is optimized for IoT device log analysis by employing 
techniques specifically designed for resource-constrained and hetero-
geneous smart environments. It utilizes lightweight tracing tools to 
dynamically monitor IoT firmware and real-time operating system 
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(RTOS) functions, capturing execution states without requiring device 
recompilation. This capability is essential for embedded systems with 
limited computational flexibility. The approach first identifies logging 
sources specific to IoT workflows, such as sensor data pipelines or edge 
compute tasks, and determines whether logs originate from structured 
frameworks or direct hardware-level writes. Probes are then deployed 
on these functions or IoT-specific storage interfaces to record call 
stacks and log content during execution. For low-power devices, it 
minimizes overhead by selectively tracing mission-critical function. 
To address IoT’s fragmented log sequences, Log2Evt maps logs and 
execution paths to a hierarchical tree structure, tagging nodes with 
IoT-centric metadata like device type or edge cluster affiliation. It 
combines the Common Ancestor algorithm with an optimized Tarjan-
LCA variant, which efficiently identifies the Lowest Common Ancestor, 
to reconstruct event sequences from distributed IoT operations, such as 
correlating a compromised gateway’s logs with downstream actuator 
anomalies. This approach enables granular auditing of cross-device 
attacks while maintaining compatibility with lightweight IoT proto-
cols, ensuring efficient analysis even in bandwidth-constrained smart 
societies.

To evaluate this approach, we designed several experiments based 
on CentOS with SystemTap installed. In Section 4.3, Log2Evt workflow 
is demonstrated, and the impact of thresholds on efficacy is evaluated. 
In Section 4.4, the efficacy of this approach is improved by 15% 
compared to the rule-based matching approach. In Section 4.5, it 
is verified that the time and space consumption has low impact on 
program operation.

The main contributions of this paper are listed as follows:

• We develop a theoretical framework to model causal relation-
ships in fragmented IoT logs through execution context aware-
ness, explicitly tailored for IoT firmware and RTOS. By defining 
event boundaries via execution path ancestry in IoT workflows, 
rather than relying on timestamps or log semantics, our approach 
reconstructs high-level device operations from disordered logs, 
countering evasion tactics like device spoofing or distributed data 
injection attacks.

• We introduce an approach to dynamically correlate IoT device 
runtime behaviors with log generation processes—without modi-
fying resource-constrained IoT hardware. This eliminates depen-
dency on predefined templates, critical for heterogeneous IoT 
systems where structured and unstructured logs coexist.

• We design a multi-granular event abstraction framework to re-
solve ambiguities in IoT logs through hierarchical execution trace 
analysis. By leveraging shared ancestry in device firmware execu-
tion and adaptive thresholding, it bridges semantic gaps in IoT-
specific logs while maintaining linear scalability for large-scale 
deployments.

• In the designed experiments, Log2Evt demonstrates 15% higher 
accuracy in event reconstruction and 93% lower deployment 
overhead compared to baselines, while establishing reproducible 
metrics for cross-approach comparisons in fragmented log analy-
sis.

2. Related work

While recent advancements in process mining  [23,24] and log 
clustering  [25,26] have enhanced log analysis, these methods are often 
inadequate for addressing the unique challenges of IoT environments. 
Process mining techniques, for example, typically assume semantic con-
sistency in log messages to discover behavioral models. This assumption 
is frequently violated in heterogeneous IoT ecosystems characterized 
by diverse and unstructured logging practices. Similarly, many modern 
log parsers require training on specific formats, which limits their 
applicability to new or proprietary device logs.
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Log2Evt proposes a more fundamental approach by shifting the 
focus from log content to log origin. Unlike methods that contend with 
format diversity, our technique is inherently agnostic to log message 
content, establishing correlations based on the shared code execution 
ancestry of log entries. This provides a robust mechanism for event 
reconstruction across heterogeneous devices without relying on brittle, 
predefined templates. Furthermore, Log2Evt is designed specifically for 
resource-constrained settings. It employs a lightweight, on-device probe 
for data capture and offloads computationally intensive analysis to a 
backend system with greater resources. This distributed architecture 
contrasts sharply with approaches that impose an unsustainable ana-
lytical burden on low-power sensors or gateways, ensuring our method 
is well-suited for practical, large-scale IoT deployments.

Table  1 compares Log2Evt with state-of-the-art approaches in IoT 
log analysis, emphasizing its capabilities in addressing device hetero-
geneity and resource constraints. Log2Evt constructs IoT device exe-
cution trees by analyzing runtime call stack traces from IoT firmware 
and RTOS, using an adaptive Tree Conversion algorithm to map log 
correlations across distributed workflows. Granularity is dynamically 
tuned based on IoT device capabilities — for instance, prioritizing low-
memory sensors versus high-performance edge servers — ensuring ef-
ficient log analysis without overburdening resource-limited nodes. Un-
like existing approaches, Log2Evt operates without firmware modifica-
tions, enabling seamless deployment across diverse IoT environments, 
from embedded ARM microcontrollers to ZigBee gateways, through 
standard debugging interfaces.

2.1. Process mining

Process mining techniques are increasingly critical for analyzing IoT 
systems, where they discover, monitor, and optimize device workflows 
by extracting insights from distributed event logs [30–32] generated by 
sensors, actuators, and edge computing nodes. In IoT-enabled systems, 
the generated process models can be represented using structures such 
as Petri-nets [33], BPMN [34]. In the process mining, ProM [35], 
which provides a variety of algorithms to support process mining in the 
broadest sense, is widely used such as discovering processes, identifying 
bottlenecks, analyzing social networks, and verifying business rules.

To mine the software development process, Sebu et al. [23] extract 
hidden information about the process in the event process logs in soft-
ware development using the ProM. Boxi Yu et al. [24] propose LightAD, 
an optimized architecture that balances training time, inference time, 
and performance scores through automated hyper-parameter tuning.

To mine behavior patterns, Michela Vespa et al. [36] present a 
framework that integrates probabilistic constraints with declarative 
process mining to address the inherent uncertainty in process execu-
tion, offering novel techniques for discovery, conformance checking, 
and monitoring, demonstrated through proof-of-concept prototypes and 
evaluated on real-life logs. Moreover, for the mining of user behav-
ior, [37,38] use pre-defined high-level user operations as their refer-
ences to derive process and user interface flow models. Liu et al. [29] 
propose a supervised learning approach that matches user behavior 
patterns and discovers user behavior models using existing process 
discovery approaches. Further, Zhihan Jiang et al. [39] propose LILAC, 
achieving superior efficiency compared to existing approaches, signif-
icantly reducing queries to language models by leveraging in-context 
learning and an adaptive parsing cache.

Uncertain data are found in process mining, which contains non-
deterministic and random event attributes that may represent many 
possible real-life events. Pegoraro et al. [40] propose an approach 
to obtain a complete probability distribution over possible instantia-
tions of uncertain attributes in tracking. Meanwhile, Aleksei Pismerov 
et al. [41] apply various embedding approaches to a dataset of event 
logs. By transitioning to log embeddings and applying clustering tech-
niques, the efficiency of process mining is improved. Siyu Yu et al. [42] 
propose Log3T, a novel log parsing approach with generalization ability 
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Table 1
Comparison of approaches (see [27]).

Approaches

Dynamic adaptation capability System integration characteristics Semantic comprehension depth
Particle
size

adjustment

Fast
application
adaptation

Graph
algorithm
application

Root
cause
tracing

Loose
match

Temporal
sensitivity

[28] × × × × × ×
[27] × × × × ✓ ✓

[29] × × ✓ × ✓ ✓

Log2Evt ✓ ✓ ✓ ✓ ✓ ✓
to support new log types in incoming logs. Evaluation on 16 benchmark 
datasets shows Log3T outperforms state-of-the-art parsers in parsing 
accuracy and can automatically adapt to new log types in incoming 
logs.

2.2. Log clustering

Logging serves as a critical diagnostic tool in IoT systems, enabling 
efficient identification of device failures, network anomalies, and se-
curity breaches in resource-constrained smart environments. For IoT 
systems clustering techniques streamline fault detection by grouping re-
lated entries across distributed nodes. This addresses the inefficiency of 
keyword-based searches [43], which struggle to detect subtle patterns 
in encrypted LoRaWAN transmissions or correlate multi-device fail-
ures in industrial IoT deployments. By organizing logs from gateways, 
sensors, and actuators into contextually meaningful clusters, adminis-
trators can pinpoint issues like firmware crashes in low-power devices 
or synchronization errors in mesh networks, significantly reducing 
diagnostic latency while conserving computational resources.

Static clustering is single log row clustering that ignores the order 
and dependencies between rows. Each log row is assigned to the cluster 
representing the statement that generated it. Lin Yang et al. [25] pro-
pose PLELog, a practical semi-supervised log-based anomaly detection 
approach that leverages probabilistic label estimation and attention-
based GRU neural networks to efficiently identify system anomalies 
by incorporating the strengths of both supervised and unsupervised 
approaches. Siyu Yu et al. [44] propose Brain, a novel stable log 
parsing approach inspired by the observation that the longest com-
mon pattern among logs is likely to be part of the log template. 
AUTOLOG [45] employs program analysis to generate comprehen-
sive runtime log sequences without actual system execution, enabling 
log-based anomaly detectors to achieve improved performance over ex-
isting datasets. LogPrompt [46] utilizes large language models (LLMs) 
and advanced prompt strategies to address the limitations of exist-
ing approaches in terms of interpretability and adaptability to new 
domains.

Xu Junjielong et al. [26] introduce a novel automatic logging frame-
work that utilizes the in-context learning paradigm of large language 
models. This approach demonstrates superior logging accuracy while 
significantly reducing the computational resources typically required 
for model tuning.

Dynamic clustering is the process of assigning log lines to classes 
that refer to their original events. DivLog [47] leverages diverse log 
samples and constructing prompts with appropriate examples, address-
ing limitations of traditional parsers that rely on heuristics or lim-
ited training data. Zeyang Ma et al. [48] investigate the effective-
ness of large language models, specifically Flan-T5-small, Flan-T5-base, 
LLaMA-7B, and ChatGLM-6B, in improving log parsing efficacy over 
traditional approaches, highlighting the model size and training size 
impact, and discussing the mixed results of pre-training on log parsing 
performance.
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2.3. Userspace tracing in IoT device development

IoT developers face unique challenges when debugging resource-
constrained embedded systems, particularly when working with RTOS 
and low-power wireless protocol stacks. Symbolic debuggers provide 
some help, but the task is still complex and challenging. Other than 
breakpoints and tracing, these tools provide little advanced help. Over 
the past decade, many tracing tools have emerged in the software stack, 
and the debugging process can be largely automated if explicit support 
is provided for these tasks.

Kprobes [49] dynamically modifies the kernel code on the x86 
architecture to provide the ability to insert custom detection based 
on breakpoints or based on dynamic jumps. Breakpoints in both of 
these approaches can have some performance impact, and neither of 
these approaches guarantees access to local variables in the middle of 
functions that the compiler has optimized. SystemTap [50] is based on 
Kprobes and Linux Kernel Markers to provide a scriptable language for 
creating probes. Adel Belkhiri et al. [51] introduce a comprehensive 
tracing-based framework for DPDK applications to collect and ana-
lyze performance data, enabling practitioners to diagnose performance 
anomalies and optimize application efficiency with minimal overhead.

3. Methodology

3.1. Overview

In Log2Evt, we specialize in extracting security-critical events from 
IoT devices by analyzing firmware execution paths, treating log mes-
sages as contextual markers within constrained embedded environ-
ments. As shown in Fig.  2, our methodology employs three IoT-
optimized phases. In the source location phase, we deploy lightweight 
probes by analyzing interactions between IoT firmware and logging 
mechanisms: for logging frameworks, we identify framework-specific 
interface functions, while for direct file logging, we monitor Virtual 
File System (VFS) write operations and authenticate target logs through 
inode verification. The dataflow trajectory tracing phase then bridges 
static logging points with dynamic execution context using SystemTap 
as a real-time collector, which deploys Kprobes to capture complete 
call stacks during function execution, preserving critical runtime in-
formation often lost in offline logging systems. This dual capture of 
structured log data and concurrent execution paths enables precise 
event attribution. Finally, the event chain integration phase transforms 
raw trajectories into semantic events through hierarchical tree con-
struction and relational analysis, where our segmentation algorithm 
clusters correlated logs while filtering noise, effectively elevating low-
level log sequences to comprehensible system events through structural 
pattern recognition and multi-level aggregation. This pipeline ensures 
event reconstruction maintains both execution context and opera-
tional semantics through continuous instrumentation-to-interpretation 
synchronization.
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Fig. 2. Overview of Log2Evt.
3.2. Source location

A fundamental challenge in log-based auditing is accurately at-
tributing log messages to their originating execution contexts —
essential for reconstructing meaningful system events from fragmented 
logs. Traditional approaches typically rely on static program analysis or 
predefined logging rules, which present two inherent limitations: they 
cannot adapt to dynamically generated logs in modern componentized 
systems with varying logging mechanisms across software layers, and 
they fail to capture the causal relationships between log entries and 
their triggering execution paths, particularly when logs are routed 
through intermediate services. These shortcomings compromise audit 
accuracy.

Our key insight is that all log generation must ultimately interface 
with system-level I/O operations, regardless of the logging mechanism 
used — whether direct file writes or framework-mediated outputs. 
By instrumenting this critical junction, we establish a unified moni-
toring layer that preserves execution context without requiring prior 
knowledge of application-specific logging implementations.

As illustrated in Fig.  2, our implementation operationalizes this 
insight through dual monitoring strategies. For applications writing 
directly to files, we intercept VFS operations to trace back to the 
originating program’s call stack. When logs are routed through frame-
works like Syslog, we instead target the final interface functions that 
bridge applications to the logging service. This bifurcated approach 
ensures comprehensive coverage while maintaining system integrity — 
monitoring points are selected at the last common boundary before 
log data leaves application control, thus capturing authentic execution 
contexts without perturbing normal operations.

The initial step involves identifying the specific programs requiring 
monitoring. Log data can originate from diverse sources, including 
but not limited to application operations, system activities, network 
communications, database transactions, and security events. These logs 
are typically captured through various monitoring mechanisms such 
as system audit tools, network packet capture utilities, application 
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instrumentation, and dedicated logging frameworks. These log entries 
commonly contain essential process identifiers, and execution path 
information, which form the basis for subsequent analysis.

For programs that generate log files directly, the data writing pro-
cess typically occurs through VFS. VFS provides a standardized in-
terface that enables applications to perform file operations. As Fig.  3 
illustrates, when a program needs to write or read data, it first initiates 
the operation in user mode and passes the data to VFS. The approach 
then transitions to kernel mode, where VFS executes sys_write/sys_read 
functions to transmit the data to the underlying file system. Finally, the 
data is written to disk storage.

Since log messages are passed to VFS through chained function 
calls, by monitoring the write function of VFS, we can directly obtain 
the corresponding call stack at the time of writing when the program 
executes the write.

In the alternative logging approach, messages are routed through 
logging frameworks like Syslog on Linux systems. Syslog employs User 
Datagram Protocol (UDP) or Transmission Control Protocol (TCP) pro-
tocols for message transmission. Unlike direct file writing where call 
stacks can be traced through VFS, applications utilizing Syslog first 
transmit messages via socket connections to the Syslog daemon, which 
then writes them to files through VFS. This indirect routing prevents 
direct VFS monitoring from capturing the originating program stack. 
When attempting to trace function call chains as in the previous sce-
nario, VFS monitoring can only detect the logging service’s activities, 
failing to capture the message forwarding process from the source 
application to the logging service, as illustrated in Fig.  4.

Programs typically implement an interface function to interact with 
the logging framework. This function processes all logging events ac-
cording to predefined configurations and formatting rules, then for-
wards them to the framework by invoking public library functions such 
as syslog().

In the scenario described in Section 1, PAM (Pluggable Authen-
tication Modules) manages remote login authentication through SSH 
protocol for remote shell access. PAM’s logging output is directed to 
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Fig. 3. Function call path of VFS.
Fig. 4. Traceability of the log service.

the SECURE log file located in /var/log/ via the Rsyslog framework. 
As illustrated in Fig.  5, when processing the log message requirement 
‘‘user ingroup nopasswdlogin’’ not met by user ‘‘niki’’, the call trace 
terminates at pam_vsyslog(). Since this function serves as PAM’s fi-
nal logging interface, monitoring it enables accurate capture of both 
message content and corresponding stack traces.

This monitoring approach can be extended to other applications uti-
lizing logging frameworks, provided system developers can identify the 
interface functions responsible for framework communication during 
program execution.

3.3. Dataflow trajectory tracing

Our fundamental insight recognizes that meaningful event recon-
struction requires continuous yet lightweight capture of execution 
trajectories, representing the specific, ordered sequence of functions, 
methods, or key code segments executed by the program leading up 
to a particular state or event. This capture must be synchronized with 
log generation. Rather than instrumenting entire codebases or relying 
on sampled profiles, we strategically trace control flow at the narrow 
interface between program logic and log emission mechanisms.

Our implementation realizes this through Kprobes — a dynamic 
kernel instrumentation mechanism — orchestrated via SystemTap’s ab-
straction layer. Unlike static tracing frameworks that require persistent 
code modifications, Kprobes enable hot-pluggable monitoring points in-
serted at runtime. This is crucial for auditing closed-source components 
or systems with frequent updates, where traditional recompilation-
based approaches are inadequate. SystemTap enhances this capability 
through its domain-specific language, allowing declarative specification 
of trace points while managing low-level complexities such as register 
preservation and context switching.

The tracing methodology deliberately avoids full-stack recording, 
instead focusing on two key dimensions:

Vertical Context: Captured through user/kernel-space stack unifi-
cation, preserving call hierarchy from application logic to system call 
execution.

Horizontal Correlation: Achieved via temporal synchronization 
between log writes and their preceding execution trajectories.
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3.3.1. Kprobes
Log2Evt implements dynamic program monitoring and custom in-

struction execution through the SystemTap framework, with Kprobes 
serving as the primary instrumentation mechanism. The approach 
enables users to establish monitoring points by strategically placing 
Kprobes and associating them with custom handler functions. Upon 
reaching a Kprobe point during kernel execution, the approach tem-
porarily diverts control flow to execute the corresponding handler 
function before returning to the normal execution path.

Kprobes provides kernel instrumentation mechanisms that enable 
the insertion of hooks into kernel functions, allowing user-defined code 
execution at these instrumentation points. As illustrated in Fig.  6, the 
Kprobes mechanism operates through the following sequence:

When registering a Kprobe point, the approach first creates a backup 
of the target instruction at the monitored location. It then replaces the 
original instruction’s entry point with a breakpoint instruction.

Upon CPU execution reaching the breakpoint instruction, a trap is 
triggered. The trap handler preserves the current CPU register state 
and invokes the designated trap processing function. This function 
establishes the Kprobes execution context and calls the user-registered 
pre_handler callback, passing both the struct Kprobes structure address 
and preserved CPU register data as parameters.

Kprobes executes the previously backed-up instruction in single-step 
mode, followed by invoking the user-registered post_handler function. 
The execution path then returns to the normal instruction stream 
following the probe point.

Leveraging Kprobes, Log2Evt implements monitoring points at
strategic locations within target program functions that precede log-
writing operations. When log-writing occurs, Log2Evt captures both the 
program’s current call stack trace and the corresponding log content, 
enabling comprehensive runtime analysis.

3.3.2. SystemTap
Log2Evt utilizes SystemTap as an abstraction layer over Kprobes to 

streamline the monitoring implementation. SystemTap provides a high-
level scripting interface that enables developers to create sophisticated 
analysis and monitoring scripts for problem diagnosis. As illustrated in 
Fig.  7, SystemTap translates administrator-provided scripts into Kprobe 
implementations through a multi-stage process. When a user submits 
a script file, SystemTap first generates an Abstract Syntax Tree (AST) 
through parsing. During the elaboration phase, it resolves symbolic 
references, transforms the code into C, and compiles it into a loadable 
kernel module. Finally, SystemTap loads the module into the kernel, 
initiates system monitoring, and establishes data channels to relay 
collected information to userspace.

3.3.3. Set Kprobes
SystemTap exposes the print_ubacktrace() function to capture and 

output the current user-space task’s call stack trace. Upon Kprobe 
trigger events, this function enables immediate stack trace extraction 
at the instrumentation point.

The analysis requires continuous stack monitoring to detect and 
record all runtime call stack modifications. The implementation places 
Kprobes at function entry points, executing instrumentation code upon 
each function invocation. When triggered, these probes capture the 
current call stack, providing a comprehensive view of the program’s 
call hierarchy.
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Fig. 5. Function call path of a login log.
Fig. 6. Workflow of Kprobes.
Fig. 7. Workflow of SystemTap.

Formally, let 𝐶 denote an atomic function call operation, and let 𝑠 =
{𝐶1, 𝐶2,… , 𝐶𝑚} represent an ordered trajectory sequence of function 
executions, comprising 𝑚 sequential calls. We define 𝑂𝑎 as the primary 
operation that executes print_ubacktrace() and emits trajectory 𝑠. 
Building upon 𝑂𝑎, we further define 𝑂𝑏 as an augmented operation 
that encapsulates both the base functionality and extends it to capture 
parametric log text, subsequently generating the log-path binary tuple 
𝑔 = {𝑠, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒}.

Let 𝐸 = {𝐶1, 𝐶2,… , 𝐶𝑛} be the original program execution sequence, 
where 𝑛 is the length of this sequence. Log2Evt inserts the operation 
𝑂𝑎, 𝑂𝑏 into all general functions and log recording functions of the 
target program, then 𝐸 becomes 𝐸′ = {𝐶1, 𝑂𝑎, 𝐶2, 𝑂𝑎,… , 𝑂𝑎, 𝐶𝑛}.

As detailed in the ‘‘Log Framework Case’’ in Fig.  4, when programs 
utilize logging frameworks, 𝑂𝑏 is instrumented at log recording function 
entry points. The 𝑂𝑏 operation executes prior to message propagation 
through the logging framework.

For the ‘‘Without Log Framework Case’’ described in Fig.  4, when 
programs perform direct file-based logging, Log2Evt implements VFS 
activity monitoring, constraining its scope to the target file through 
inode-based filtering.

Log2Evt implements SystemTap-based Kprobe instrumentation on 
VFS write operations. The probe activation is constrained to specific file 
operations through inode-based filtering, ensuring targeted monitoring.

Notably, despite the function call path traversing from the target 
program to the VFS (illustrated in Fig.  3), memory address analy-
sis enables precise delineation between the two execution contexts. 
This boundary identification facilitates accurate determination of the 
recording function’s memory address.
7 
Fig. 8. An example of Tree conversion.

3.4. Event chain integration

Reconstructing high-fidelity system events from interleaved logs and 
fragmented execution traces represents a fundamental challenge in log 
auditing. Traditional graph-based correlation methods struggle with 
two key limitations: they impose rigid parent–child dependencies ill-
suited for modern parallelized systems where logs may originate from 
concurrent threads, and they scale poorly with execution depth. These 
shortcomings enable attackers to evade detection by distributing attack 
footprints across shallow but broad execution branches.

Our insight pivots on three principles for robust event reconstruc-
tion: hierarchical causality preservation, adaptive granularity control, 
and linear-time scalability. Events manifest as clusters of causally re-
lated logs, bounded by shared execution ancestry rather than temporal 
adjacency. Segmentation thresholds must dynamically adapt to execu-
tion context depth to counter adversarial dispersion tactics. Practical 
auditing demands sub-quadratic complexity regardless of system scale 
or attack sophistication.

The proposed approach operationalizes these principles through a 
novel fusion of tree-based ancestry analysis and adaptive thresholding. 
Unlike prior tree construction methods that require complete execution 
traces, our differential tree conversion incrementally builds hierarchical 
models from partial trajectories — a critical adaptation for auditing 
long-running systems. By anchoring event boundaries to the lowest 
common ancestors of log-correlated nodes, we inherently account for 
parallel execution paths while maintaining deterministic segmentation.

Following trajectory acquisition, Log2Evt transforms the captured 
function call sequences into hierarchical tree structures through node 
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clustering. This transformation leverages the Common Ancestor algo-
rithm, which comprises three components: Tree Conversion, Tarjan-
LCA (Lowest Common Ancestor), and Event Segmentation algorithms.
Algorithm 1: Execution Path Tree Construction and Log Node 
Highlighting

Input: A sequence of function call trajectories 
𝑆 ← {𝑠1, 𝑠2,… , 𝑠𝑛}; A sequence of (log-path, 
log-message) groups 𝐺 ← {𝑔1,… , 𝑔𝑘};

Output: Program execution path tree 𝑇 ; Highlight log node set 
𝛼 ← {𝑁1,… , 𝑁𝑝}

// Initialize tree and supporting structures
1 Tree 𝑇 ← new Tree();
2 Node 𝑁 ;
3 Set 𝛼 ← ∅;

// Build tree structure from call trajectories
4 foreach path 𝑠𝑖 ← {𝐶1

𝑖 , 𝐶
2
𝑖 ,… , 𝐶𝑚

𝑖 } in 𝑆 do
5 Variable 𝑗 ← 1 if 𝑖 > 1 then

// If not the first path, find common 
prefix with 𝑠𝑖−1

6 while 𝑗 ≤ length(𝑠𝑖−1) and 𝑗 ≤ 𝑚 and 𝐶𝑗
𝑖  points to 𝐶

𝑗
𝑖−1 do

7 𝑗 + + ; // Calls match, extend common 
prefix

8 𝑁 ← 𝑇 .locateNode({𝐶1
𝑖 ,… , 𝐶𝑗−1

𝑖 }) ; // Move 𝑁 to end 
of common prefix in 𝑇

9 while 𝑗 ≤ 𝑚 do
// Add remaining calls from 𝑠𝑖 as new nodes

10 𝑁 ← 𝑁.addSon(𝐶𝑗
𝑖 ) ;

11 𝑗++ ;

// Attach log messages and identify highlight 
nodes

12 foreach group 𝑔𝑖𝑑𝑥 ← (path𝑖𝑑𝑥,message𝑖𝑑𝑥) in 𝐺 do
13 𝑁 ← 𝑇 .findNode(path𝑖𝑑𝑥) ; // Find node in 𝑇  for 

this log’s path
14 if 𝑁 ≠ null then

// If path exists in tree
15 𝑁.appendLogMessage(message𝑖𝑑𝑥) ;
16 𝛼.add(𝑁)

17 return 𝑇 , 𝛼

3.4.1. Tree conversion algorithm
Given a function call trajectory sequence 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑛} and its 

corresponding binary log-path grouping sequence 𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑘}, 
Log2Evt constructs a hierarchical tree structure where nodes responsi-
ble for log message generation are distinctly marked, as illustrated in 
Fig.  8.

To address this challenge, we perform a traversal of sequences 𝑆
and 𝐺 to construct the program execution tree. Let 𝐶𝑗

𝑖  denote the 
𝑗th function invocation within trajectory 𝑠𝑖. The process, formalized 
in Algorithm 1, encompasses three primary phases. First, the differ-
ential analysis phase compares adjacent trajectories to identify their 
first divergent node (lines 4–7). Subsequently, the tree construction 
phase incorporates these identified differences into the tree structure 
through child node insertion operations (lines 8–11). Finally, during the 
node annotation phase, log-related nodes are identified using the log-
path binary grouping, marked accordingly, and augmented with their 
corresponding log messages (lines 12–16).

Multiple tree matches for a function call path 𝑠, which is tied to a 
log entry in group 𝑔, arise when identical call sequences execute repeat-
edly during a program’s runtime. Such repetitions occur, for example, 
in loops or through frequently called subroutines. Each execution, 
while structurally identical, represents a distinct temporal instance. 
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Algorithm 2: Tarjan-LCA
Input: execution path tree 𝑇 ; Highlight log node set 

𝛼 ← {𝑁1, 𝑁2,… , 𝑁𝑛}
Output: LCA node set 𝛽 ← {𝑀1,𝑀2,… ,𝑀𝑛−1}

// Initialize data structures
1 Query 𝑞𝑢𝑒𝑟𝑦;
2 Bool Array 𝑚𝑎𝑟𝑘𝑒𝑑;
// Definition of union-find helper functions

3 def Find(𝑢):
// Finds representative of the set containing 

𝑢 with path compression
4 return 𝑢 points to ancestor[𝑢] ? 𝑢 ∶ (ancestor[𝑢] ←

Find(ancestor[𝑢])) ; // If 𝑢 is not its own 
ancestor, recursively find and update

5 def Union(𝑢, 𝑣):
// Merges the sets containing 𝑢 and 𝑣

6 return ancestor[Find(𝑢)] ← Find(𝑣) ; // Set ancestor of 
𝑢’s representative to 𝑣’s representative

// Main Tarjan-LCA algorithm
7 def Tarjan_LCA(𝑢):
8 ancestor[Find(𝑢)] ← 𝑢 ;
9 for 𝑣 ∈ 𝑢.son do
10 Tarjan_LCA(𝑣) ; // Recursively call LCA for 

child 𝑣
11 Union(𝑢, 𝑣) ; // Merge the set of 𝑣 into the set 

of 𝑢
12 ancestor[Find(𝑢)] ← 𝑢 ; // Ensure 𝑢 remains the 

representative of the merged set
13 marked[𝑢] ← True ;
14 foreach 𝑁𝑖 ∈ 𝛼 do

// Iterate through highlight nodes to form 
query pairs (𝑁𝑖, 𝑁𝑖+1)

15 if 𝑁𝑖+1 ← 𝑢 and marked[𝑁𝑖] ← True then
// If 𝑢 is one node of a query (𝑁𝑖, 𝑢) and 𝑁𝑖

is already marked
16 𝑀𝑖 ← ancestor[𝑁𝑖] ; // The LCA of (𝑁𝑖, 𝑢) is the 

current ancestor of 𝑁𝑖

// Call main algorithm to start the process
17 Tarjan_LCA(𝑇 .root) ; // Begin LCA computation from 

the root of the tree 𝑇

To resolve this, we employ chronological ordering. This means a log 
entry is matched to the instance of path 𝑠 in the execution tree 𝑇
that corresponds to the log’s actual time of generation. This time is 
typically determined by log timestamps or the log’s sequential order. 
The rationale is to ensure each log entry is linked to its unique, tem-
porally accurate execution context within 𝑇 . This precise mapping is 
vital for maintaining the integrity of event reconstruction, particularly 
for analyzing the ordered operations common in AIoT systems. Our 
approach presumes sufficient temporal information is available for such 
deterministic mapping.

3.4.2. Tarjan-LCA algorithm
Following the transformation of function call trajectory sequence 𝑆

and log-path binary groups 𝐺 into tree structure 𝑇  with highlighted 
node-set 𝛼, event integration proceeds through analysis of common 
ancestor maximization between adjacent highlighted nodes. The de-
termination of maximum common ancestors reduces to the Lowest 
Common Ancestor (LCA) problem, where the LCA depth represents the 
maximum value. Given that each function transition corresponds to a 
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unique tree node, resulting in substantial tree dimensionality, Log2Evt 
implements the Tarjan-LCA algorithm to compute the LCA node-set 𝛽 =
{𝑀1,𝑀2,… ,𝑀𝑛−1}, where 𝑀𝑗 represents the LCA of adjacent nodes 𝑁𝑗
and 𝑁𝑗+1. Leveraging Concurrent Set operations, the computation of 𝛽
achieves time complexity 𝑂(𝑁 + 𝑄), where 𝑄 denotes the total query 
count.
Algorithm 3: Event Segmentation

Input: LCA node set 𝛽 ← {𝑀1,𝑀2,. . . ,𝑀𝑛−1}; Program 
execution path tree 𝑇 ; Highlight log node set 
𝛼 ← {𝑁1, 𝑁2,… , 𝑁𝑛}; Threshold ratio 𝑅𝐴

Output: Event sequences {𝐸1, 𝐸2,… , 𝐸𝑐𝑜𝑢𝑛𝑡}

// Initialize variables and array
1 Variable 𝑐𝑜𝑢𝑛𝑡, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;
2 Array 𝑑𝑒𝑝𝑡ℎ ;
3 𝑐𝑜𝑢𝑛𝑡 ← 0 ;
4 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0 ;
// Calculate the depth of each LCA node and the 

initial threshold
5 foreach 𝑀𝑖 in 𝛽 do

// Iterate through each LCA node
6 𝑑𝑒𝑝𝑡ℎ[𝑖] ← 𝑇 .depth(𝑀𝑖) ; // Get depth of LCA node 𝑀𝑖

in tree 𝑇
7 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝑑𝑒𝑝𝑡ℎ[𝑖] ;
8 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑅𝐴 ; // Calculate depth and get 

final threshold
// Initialize the first event sequence with the 

first highlight node
9 𝐸0.insert(𝑁1) ;
// Segment events based on depth and threshold

10 foreach 𝑑𝑒𝑝𝑡ℎ[𝑖] in 𝑑𝑒𝑝𝑡ℎ do
// Iterate through calculated depths of 𝑀𝑖

11 if 𝑑𝑒𝑝𝑡ℎ[𝑖] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
// If LCA depth is greater than threshold, 

start a new event
12 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1 ;
13 𝐸𝑐𝑜𝑢𝑛𝑡.insert(𝑁𝑖+1) ; // Add the next highlight node 

𝑁𝑖+1 to the current event 𝐸𝑐𝑜𝑢𝑛𝑡

In Algorithm 2, we define functions Find and Union (lines 3–6) 
that form the foundation of the Tarjan-LCA algorithm. For each ver-
tex 𝑢 encountered during depth-first search traversal, we consider a 
subtree of 𝑇  rooted at 𝑢 (line 8). The Tarjan_LCA function initializes 
by designating 𝑢 as the ancestor of its disjoint set. For each adjacent 
vertex 𝑣 connected to 𝑢, the algorithm recursively invokes Tarjan_LCA, 
followed by a Union operation on 𝑢 and 𝑣, subsequently re-establishing 
𝑢 as the set’s ancestor (lines 9–13). Upon completing the traversal of 𝑢’s 
descendants, the algorithm marks 𝑢 as processed and queries the LCA 
utilizing the marked vertex array (lines 14–16). Finally, the highlighted 
node-set 𝛼 is enqueued into the query queue, and the Tarjan-LCA 
algorithm initiates its execution from the root of the program execution 
tree 𝑇  (line 17).

3.4.3. Event segmentation algorithm
The process of segmenting raw log sequences into meaningful, high-

level events begins by analyzing the structural relationships between 
consecutive log entries. Following the application of Algorithm 2, we 
first determine the Lowest Common Ancestor (LCA) for every pair of ad-
jacent highlighted nodes in the sequence. The depth of this LCA within 
the program’s execution path tree is a critical piece of information; it 
serves as a proxy for the semantic relatedness between the two nodes. A 
shallow LCA, corresponding to a smaller depth value, indicates that the 
nodes share a recent ancestor and are likely part of the same localized 
operation. Conversely, a deep LCA suggests their common ancestor is 
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far up the execution hierarchy, implying the nodes belong to distinct 
functional contexts.

With this structural information established, Algorithm 3 leverages 
these LCA depths to partition the log stream. The fundamental premise 
of this algorithm is that a significant increase in the LCA depth between 
consecutive log nodes signals a transition from one high-level event 
to another. To formalize this, the algorithm first computes a dynamic 
partitioning threshold. As detailed in lines 5–7, it iterates through the 
set of all LCA nodes, 𝛽, summing their respective depths. This sum is 
then scaled by a user-defined ratio, 𝑅𝐴, to produce the final 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 
This 𝑅𝐴 parameter provides crucial flexibility, allowing the sensitivity 
of the segmentation to be tuned; a higher 𝑅𝐴 will result in coarser, 
larger events, while a lower value will produce more fine-grained event 
boundaries.

The segmentation procedure itself begins by initializing the first 
event sequence, 𝐸0, with the very first highlighted log node, 𝑁1 (line 
8). Subsequently, the algorithm iteratively traverses the pre-computed 
LCA depths (lines 9–13). For each step in the iteration, it compares 
the LCA depth between the current node and the next against the 
calculated 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. If the depth value is less than or equal to the 
threshold, it signifies contextual continuity, and the subsequent node, 
𝑁𝑖+1, is appended to the current event, 𝐸𝑐𝑜𝑢𝑛𝑡. However, if the depth 
exceeds the threshold (line 10), it indicates a contextual break. In this 
case, the algorithm concludes the current event and initiates a new one 
by incrementing the event counter, 𝑐𝑜𝑢𝑛𝑡 (line 11). The node 𝑁𝑖+1 is 
then assigned as the first entry in this newly created event sequence. 
This process is repeated until all highlighted nodes have been assigned, 
resulting in a complete partitioning of the log sequence into a set of 
discrete, semantically coherent events.

4. Evaluation of Log2Evt

To evaluate the effectiveness of our proposed approach, we con-
ducted comprehensive experimental analysis across four primary mod-
ules:

• Theoretical analysis: We evaluate Log2Evt against two baseline 
approaches. Our system achieves (𝑁) complexity versus base-
lines’ (𝑁𝐷), providing enhanced flexibility through program 
execution tree analysis.

• Functional experiments: We demonstrate the operational workflow 
of Log2Evt using an SSH login case study, visualizing call stack 
sequences through flame graph analysis [52]. Additionally, we 
assess the sensitivity of the threshold parameter 𝑅𝐴 on system 
performance.

• Efficacy experiments: We evaluate the system’s performance
through comparative analysis using established metrics includ-
ing Purity, Rand Index, and Fowlkes–Mallows Index, bench-
marking against behavior pattern alignment-based and rule-based 
matching approaches.

• Time and space occupation experiments: We examine both the-
oretical and empirical performance characteristics of Log2Evt, 
including computational complexity analysis and empirical time 
consumption measurements.

We present the experiment results from Sections 4.1 to 4.5, respec-
tively.

4.1. Theoretical analysis

This section presents a comparative analysis between our proposed 
technique Log2Evt and two established baseline models. We systemat-
ically evaluate these models to provide a comprehensive assessment of 
their performance and methodological characteristics.
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Fig. 9. Comparison of Log2Evt and the previous matching approach.
Table 2
Comparison in terms of complexity. (𝑁 : sequence length of log messages, 𝐷: 
number of detectable event types.)
 Approaches Space complexity Time complexity 
 Pre-process Post-process Sum  
 Log2Evt – (𝑁) (𝑁) (𝑁)  
 [29] (𝐷) (𝑁𝐷) (𝑁𝐷 +𝐷) (𝑁𝐷)  
 [28] (𝐷) (𝑁𝐷) (𝑁𝐷 +𝐷) (𝑁𝐷)  

• Liu et al. [29] propose a hierarchical approach that begins with 
activity mining to transform low-level event logs into abstract 
logs. These abstract logs capture user actions, which are subse-
quently analyzed using established process discovery techniques 
to derive user behavior models.

• Khan et al. [28] present an object-oriented framework for event 
log analysis. Their methodology employs association rule mining 
on object-based event log representations. The extracted rules 
are then transformed into temporal event sequences, with causal 
inference techniques applied for validation.

Both Liu et al. [29] and Khan et al. [28] employ rule-based matching 
techniques to establish mappings between logs and events. Liu et al. 
further enhance efficacy and efficiency through the application of 
Petri nets. In contrast, our proposed approach, Log2Evt, augments the 
analysis by incorporating function call information captured during 
program execution, in addition to the log message content. Table  2 
presents a comparative analysis of Log2Evt and the baseline models in 
terms of time and space complexity, where 𝑁 represents the sequence 
length of log messages and 𝐷 denotes the number of detectable event 
types.

Regarding preprocessing requirements, Liu et al. [29] and Khan 
et al. [28] both necessitate predefined matching templates, resulting 
in space complexity that scales linearly with the number of detectable 
events. In contrast, our approach, Log2Evt, determines log message 
relationships by analyzing common ancestor patterns in the program 
execution tree, eliminating the need for explicit matching templates.
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The sublinear-time design of Log2Evt provides inherent scalabil-
ity advantages as log volumes grow. Nevertheless, highly distributed 
IoT deployments with concurrent device operations present distinctive 
challenges. Maintaining real-time analysis capabilities becomes increas-
ingly demanding when coordinating execution paths across large-scale 
heterogeneous infrastructures, where resource-constrained devices co-
exist with high-capacity nodes. To preserve responsiveness in such 
environments, future implementations could incorporate distributed 
coordination mechanisms. Edge gateways might perform preliminary 
event reconstruction before forwarding consolidated metadata to cen-
tralized systems. This layered strategy would retain the core method-
ology while adapting to the hierarchical nature of operational IoT 
networks.

While Liu et al. [29] and Khan et al. [28] focus exclusively on 
log text analysis, Log2Evt encompasses both log text and function 
call transitions, resulting in higher computational complexity and time 
requirements. However, our experimental evaluation demonstrates that 
this additional computational overhead is justified by the substan-
tial improvements in detection efficacy compared to both baseline 
approaches.

From a theoretical perspective, Log2Evt demonstrates enhanced 
flexibility through its integration of dynamic debugging techniques, 
contrasting with the rule-based event matching approaches employed 
by [28,29]. As illustrated in Fig.  9, Log2Evt achieves event clustering 
by analyzing the positional relationships of log output functions within 
the program execution tree, eliminating the need to consider boundary 
conditions and variant operations.

The implications of this theoretical framework extend beyond its 
analytical capabilities to its practical performance and scalability. The 
architectural design, centered on a strategic separation of duties be-
tween on-device data gathering and backend analysis, is not merely a 
conceptual choice but a foundational element that ensures efficiency in 
resource-constrained IoT environments.

This performance profile is best understood by examining its core 
components. On the end devices, the Log2Evt component functions 
as a minimalist observer, with its sole responsibility being to note 
when specific software activities occur and to report these observations. 



T. Li et al. Journal of Systems Architecture 168 (2025) 103578 
Fig. 10. Flame graph of two login events.
Table 3
Log datasets characteristics.
 Log source Entry count Message type ground truth  
 Loghub (OpenSSH) 655,146 Obtained from He et al. [53]a 
 Loghub (Linux) 25,567 Obtained from He et al. [53]a 
 Linux Application Log Dataset 21,760 Available onlineb  
a Loghub, https://github.com/logpai/loghub.
b Linux Application Log Dataset, https://github.com/czz19981215/Linux-Application-
Log-Dataset.

By offloading all complex calculations and data interpretation, the 
processing overhead is kept exceptionally low, preventing interference 
with a device’s primary functions. The memory footprint is similarly 
minimal and, crucially, constant, as the system does not need to store a 
growing history of events on the device itself. This makes the approach 
theoretically sound for even the most stringent memory limitations.

In contrast, all computationally intensive tasks are handled by the 
backend analysis engine. While operating in a resource-rich environ-
ment, the algorithms for event reconstruction and pattern identification 
are still chosen for efficiency to ensure that the analysis process remains 
timely even as data volume grows. This architectural separation is 
also what makes the framework inherently scalable. The on-device 
component operates in isolation, allowing the system to support a 
growing number of devices without creating a cascading load. The 
greater data throughput from a larger network is managed by the 
backend’s ability to be scaled horizontally, for instance, by distributing 
the analytical workload across a cluster of servers.

Therefore, the principles established in our theoretical analysis 
provide a robust blueprint for a system that is not only sound in its 
logic but also viable in practice. This strong theoretical grounding in 
efficiency and scalability sets the stage for the empirical validation of 
these performance characteristics in the subsequent sections.

4.2. Experiment setting

The experimental evaluations were conducted on a computing plat-
form with the following specifications: CentOS Linux 7 (kernel ver-
sion 3.10.0–123.el7.x86_64), SystemTap version 4.0/86, Intel Core i7-
6800K CPU, and 16 GB DDR4 RAM.

Given that Log2Evt necessitates access to runtime program informa-
tion, evaluation using pre-existing log datasets is not feasible. Instead, 
we utilized a custom log dataset, as detailed in Table  3, for our analysis. 
The log samples from the Linux Application Log Dataset were employed 
to benchmark our proposed approach against established baselines, as 
detailed in Table  4.

Log2Evt performs event sequence segmentation on log datasets, 
which, along with the baseline approaches, can be conceptualized 
as clustering methodologies. The effectiveness of these approaches is 
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evaluated using standard clustering metrics: Purity, Rand Index, and 
Fowlkes–Mallows Index.

𝑃𝑢𝑟𝑖𝑡𝑦 is a straightforward and interpretable metric widely em-
ployed for evaluating clustering performance. This measure quanti-
fies clustering efficacy by first identifying the most predominant class 
within each cluster, then summing the count of these dominant class 
members across all clusters, and finally normalizing by the total num-
ber of data points. Formally, given a set of clusters 𝑀 and a set of 
classes 𝐷, both partitioning 𝑁 data points, 𝑃𝑢𝑟𝑖𝑡𝑦 can be mathemati-
cally expressed as: 𝑃𝑢𝑟𝑖𝑡𝑦 = 1

𝑁
∑

𝑚∈𝑀 max𝑑∈𝐷 |𝑚 ∩ 𝑑|.
The Rand Index (𝑅) quantifies the similarity between two data 

clustering configurations. Consider a set 𝑆 = {𝑜1,… , 𝑜𝑛} containing 𝑛
elements, with two distinct partitions: 𝑋 = {𝑋1,… , 𝑋𝑟} dividing 𝑆 into 
𝑟 subsets, and 𝑌 = {𝑌1,… , 𝑌𝑠} dividing 𝑆 into 𝑠 subsets. The following 
definitions establish the foundation for calculating this index:

• True Positives (𝑇𝑃 ): Number of element pairs in 𝑆 that are 
clustered together in both 𝑋 and 𝑌 .

• True Negatives (𝑇𝑁): Number of element pairs in 𝑆 that are 
separated in both 𝑋 and 𝑌 .

• False Positives (𝐹𝑃 ): Number of element pairs in 𝑆 that are 
clustered together in 𝑋 but separated in 𝑌 .

• False Negatives (𝐹𝑁): Number of element pairs in 𝑆 that are 
separated in 𝑋 but clustered together in 𝑌 .

The Rand Index (𝑅) is defined as: 𝑅 = (𝑇𝑃 +𝑇𝑁)∕(𝑇𝑃 +𝐹𝑃 +𝑇𝑁 +
𝐹𝑁),where 𝑇𝑃+𝑇𝑁 represents the total number of concordant element 
pairs between configurations 𝑋 and 𝑌 , while 𝐹𝑃 + 𝐹𝑁 represents the 
discordant pairs.

The Fowlkes-Mallows Index (𝐹𝑀) is an external evaluation metric 
used to quantify the similarity between two clustering configurations 
or between a clustering and a benchmark classification. This index 
is particularly useful in assessing confusion matrices. A higher 𝐹𝑀
value indicates greater similarity between the compared clusterings or 
between the clustering and the benchmark. The 𝐹𝑀 index is defined 
as the geometric mean of precision and recall: 𝐹𝑀 =

√

𝑃𝑃𝑉 ⋅ 𝑇𝑃𝑅 =
√

𝑇𝑃
𝑇𝑃+𝐹𝑃 ⋅ 𝑇𝑃

𝑇𝑃+𝐹𝑁 , where 𝑇𝑃𝑅 is the true positive rate, also called 
sensitivity or recall, and 𝑃𝑃𝑉  is the positive predictive rate, also known 
as precision.

4.3. Functional experiments

The SSH protocol is widely used as a secure remote login protocol, 
and its experiments are representative and of high research value. In 
this section, the experiments evaluate the feasibility of Log2Evt and the 
impact of threshold 𝑅𝐴 on efficacy by analyzing successive SSH login 
sequences.

In the feasibility experiment, two logins were made to the host via 
the WinSCP software at 22:04:13 and 22:04:26. The log file recording 

https://github.com/logpai/loghub
https://github.com/czz19981215/Linux-Application-Log-Dataset
https://github.com/czz19981215/Linux-Application-Log-Dataset
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Fig. 11. The common ancestors of the target log set.
Table 4
Tested components and log sources.
 Test components Log path Description  
 PAM (1.1.8) /var/log/secure User authentication library suite  
 Samba (4.10.16) /var/log/samba/ SMB protocol implementation  
 Vsftpd (3.0.2) /var/log/vsftpd.log FTP server for Unix-like systems  
 Networkmanager (0.9.9.1) /var/log/message Network interface configuration daemon 
Table 5
Logs of two successful logins.
 Time Content  
 22:04:13 Accepted password for root from 192.168.221.1 port 9866 ... 
 22:04:13 pam_unix(sshd:session): session opened for ...  
 22:04:13 subsystem request for sftp by user root  
 22:04:26 Accepted password for root from 192.168.221.1 port 9877 ... 
 22:04:26 pam_unix(sshd:session): session opened for ...  
 22:04:26 subsystem request for sftp by user root  

the login behavior is located in /var/log/secure, and the logs of the two 
successful logins are shown in Table  5.

SSH login behavior is done through PAM (Pluggable Authenti-
cation Modules), and PAM completes logging by calling the rsyslog 
logging framework. From the logging framework call relationship, it 
is necessary to monitor the pam_vsyslog() function located in linux-
pam-master/libpam/pam_syslog.c during the log source location phase, 
and its function prototype is ‘‘void pam_vsyslog (const pam_handle_t 
*pamh, int priority, const char *fmt, va_list args)’’.

After converting the obtained set of program’s call stacks into a 
tree structure by Algorithm 1, the sequence of function call traces 
corresponding to the logs is mapped into highlighted nodes. To better 
represent the program’s operation, the structure is visualized using the 
flame graph.

The flame graph is a visual profiler that creates an interactive SVG 
that shows a collection of stacked traces. It has the following features:

• The stack is represented as a column of boxes, where each box 
represents a function (stack frame)

• The 𝑦-axis shows the stack depth from the root node at the bottom 
to the leaf node at the top, the top box represents the function on 
the CPU when the stack trace is collected, and the function below 
the function is its parent.

• The 𝑥-axis spans the stack collection, indicating the passage of 
time.
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As shown in Fig.  10, the left and right sides have the same pattern, 
corresponding to the same login behavior twice, and the resulting logs 
are mapped to the same set of stack frames in both sets. This visual-
ization shows that the program performs the same process twice and 
outputs the same log messages when performing two login operations.

Subsequently, after calculation of highlighted nodes by Algorithm
2, as shown in Fig.  11, the numbers of common ancestors between 
adjacent highlighted nodes on this tree is calculated, which are 7, 4, 
2, 7, 4. The respective depths of these highlighted nodes are 1, 4, 6, 
1, 4. Taking 𝑅𝐴 = 0.35, by Algorithm 3, the threshold is calculated 
to be 5.6, so it is decided that logs 3 and 4 do not belong to the same 
event.Log messages 1, 2, 3 are classified to event 1, and log messages 4, 
5, 6 are classified to event 2. The output results are consistent with the 
operation flow and prove the approach’s feasibility. 

4.4. Efficacy experiments

In the execution path analysis conducted by Log2Evt, Algorithm
3 employs a critical threshold ratio, denoted as 𝑅𝐴, for the purpose 
of event classification. To establish the classification criterion, we first 
identify 𝛽 as the set of LCA nodes relevant to the log messages under 
consideration. A threshold value is then computed. This computation 
involves multiplying the ratio 𝑅𝐴 by the sum of the depths of all nodes 
𝑀𝑖 within the set 𝛽. This specific calculation is formally expressed in 
from equation: 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑅𝐴 ∗

∑

𝑀𝑖∈𝛽 𝑑𝑒𝑝𝑡ℎ(𝑀𝑖).
The threshold ratio 𝑅𝐴 represents a critical trade-off. A low 𝑅𝐴

value imposes a stringent, or shallow, depth threshold, which causes 
the algorithm to partition log sequences more frequently. While this 
produces fine-grained event sequences, it also introduces the risk of 
over-segmentation, wherein a single logical operation is erroneously 
fragmented. Conversely, a high 𝑅𝐴 value establishes a lenient thresh-
old, leading to the creation of broader, coarse-grained events. Al-
though this approach provides a high-level overview, it risks under-
segmentation, where distinct activities are improperly merged. As 
demonstrated in our experiments, the optimal 𝑅𝐴 value must be 
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Fig. 12. Effect of 𝑅𝐴 on Log2Evt’s performance across multiple log datasets and evaluation metrics.
selected to balance these extremes, aligning the event granularity with 
the application’s inherent logical structure.

While the 𝑅𝐴 parameter governs the outcome, the system’s perfor-
mance is also dependent on the efficiency of the LCA computation. This 
represents a key design choice rather than a tunable hyperparameter. A 
naive, brute-force LCA calculation would render the system unscalable. 
Our deliberate selection of the Tarjan-LCA algorithm, a highly opti-
mized offline method with near-linear time complexity, is foundational 
to our approach. This choice ensures that the event integration phase 
remains efficient enough for large-scale log analysis, a decision that 
prioritizes performance without altering the correctness of the final 
event classification.

In Fig.  11, 𝑅𝐴 = 0.35 is used as a sample, but in practice, the 
𝑅𝐴 values for obtaining the best results are different for different log 
samples. As an important variable directly related to the threshold, the 
variation of 𝑅𝐴 can significantly affect the score.

In this experiment, the manually divided event sequence is used as 
the standard answer compared to the analysis results. This experiment 
compares the 𝑃𝑢𝑟𝑖𝑡𝑦, 𝑅 and 𝐹𝑀 as the index with the following 
approaches: behavior pattern alignment-based matching approach rep-
resented by [29], and the rule-based matching approach represented 
by [28].

This experiment evaluates [28,29] and Log2Evt based on 𝑃𝑢𝑟𝑖𝑡𝑦, 𝑅
and 𝐹𝑀 . The results are shown in Table  6. Log2Evt has a certain degree 
of improvement in the above metrics compared with the alignment-
based matching approach [29] and rule-based matching approach [28].

In the threshold experiments, we evaluate the efficacy of Log2Evt 
at 𝑅𝐴 equals to 0.2, 0.4, 0.6, 0.8 and 1.0, respectively, by evaluating 
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the criteria 𝑃𝑢𝑟𝑖𝑡𝑦, 𝑅, and 𝐹𝑀 based on this log sample. The results 
are shown in Fig.  12. As illustrated in the figure, all three metrics 
demonstrate notable sensitivity to variations in the 𝑅𝐴 threshold. 
Specifically, 𝑃𝑢𝑟𝑖𝑡𝑦 exhibits a gradual decline as 𝑅𝐴 increases beyond 
0.4, while 𝑅 shows relatively stable performance until 𝑅𝐴 reaches 0.6, 
after which it experiences a sharp decrease. The 𝐹𝑀 score, being a 
harmonic mean of precision and recall, follows a similar trend to 𝑃𝑢𝑟𝑖𝑡𝑦
but with more pronounced deterioration at higher 𝑅𝐴 values. From the 
experiment results, the choice of 𝑅𝐴 greatly impacts the performance 
of Log2Evt, and the best efficacy is achieved with 𝑅𝐴 around 0.4 for 
this log sample.

4.5. Time and space occupation experiments

The time required to perform an operation is one of the metrics to 
measure the effectiveness of an algorithm. In addition, Log2Evt records 
all the program traces to the memory for analysis. So the space usage 
of Log2Evt needs to be tested to evaluate the feasibility of its use.

To evaluate the time consumption and space occupation of Log2Evt
a long sequence of operations with repeatable and strictly consis-
tent characteristics is applied to the log samples, and the results are 
averaged. These cases’ time consumption and space occupation are 
evaluated using this approach following the actual application scenario.

In this section of the experiment, the same operations are executed 
1000 times for each application scenario, evaluating the time com-
plexity and space usage by the algorithm run time and the size of 
the recorded program trace file. In order for multiple login attempts 
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Table 6
Efficacy experiment results.
 Condition PAM Samba Vsftpd Networkmanager

 𝑃𝑢𝑟𝑖𝑡𝑦 𝑅 𝐹𝑀 𝑃𝑢𝑟𝑖𝑡𝑦 𝑅 𝐹𝑀 𝑃𝑢𝑟𝑖𝑡𝑦 𝑅 𝐹𝑀 𝑃𝑢𝑟𝑖𝑡𝑦 𝑅 𝐹𝑀  
 Log2Evt 1.00 1.00 1.00 0.90 0.95 0.75 0.95 0.99 0.92 0.85 0.81 0.80  
 [29] 0.91 0.93 0.88 0.81 0.97 0.77 0.89 0.99 0.83 0.39 0.55 0.36  
 [28] 0.86 0.91 0.85 0.74 0.95 0.65 0.87 0.99 0.78 0.34 0.54 0.33  
Fig. 13. CDFs of time and space consumption for a single event.
Fig. 14. Time to record call stacks.

to not be blocked, for PAM, the 𝑀𝑎𝑥𝐴𝑢𝑡ℎ𝑇 𝑟𝑖𝑒𝑠 configuration file in
/etc/ssh/sshd_config needs to be changed to 1000.

The experimental results are shown in Fig.  13. For all test samples, 
the average space occupied by the logged data for each operation is 
between 25 KB and 50 KB, and the algorithm execution time is between 
500 μs and 1000 μs. 

At the same time, since Log2Evt needs to configure the sequence 
of probes in the target application, it needs to consider the time to 
configure the sequence in the program and the impact of probes on 
the program execution performance. 

For the evaluation of the time to record program’s call stacks, we 
place timers in each probe and print out the CPU time taken by each 
probe in the logged data. As shown in Fig.  14, the time taken for each 
execution of the code in the probe is mainly distributed between 2500 
ns and 17000 ns, with PAM taking the least time and Samba taking the 
most time, which is related to the length of the printed stack.

For evaluating the time to configure the probe, we place a timer at 
the beginning of the bash script and the beginning of the SystemTap 
to count the time from executing the script to configuring all probes. 
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Fig. 15. Time to configure probes.

As shown in Fig.  15, the time used to configure probes is mainly 
distributed between 3000 ms and 25000 ms, among which Vsftpd takes 
the least time and Samba takes the most time, which is related to the 
number of functions of the program.

Based on the experimental results presented in Fig.  16, we con-
ducted a systematic analysis of temporal and spatial characteristics 
across four application scenarios (PAM, Samba, Vsftpd, and Network-
manager) with controlled operational repetitions (1000–4000 execu-
tions). The boxplots reveal statistically significant performance dis-
tributions across two primary dimensions: temporal performance and 
spatial efficiency.

The algorithm demonstrates sub-millisecond latency across all sce-
narios, with interquartile ranges indicating stable temporal predictabil-
ity. PAM exhibits the most consistent temporal distribution, suggest-
ing optimized performance for authentication operations. Conversely, 
Samba displays wider dispersion, potentially due to its complex file-
sharing protocol stack. Notably, temporal scaling remains sublinear as 
operational repetitions increase from 1000 to 4000, confirming the 
algorithm’s efficient time complexity.
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Fig. 16. Boxplots of time and space consumption for events with different times.
Memory consumption per operation remains constrained within 
25–50 KB, exhibiting near-constant growth characteristics. Network-
manager demonstrates the most stable allocation pattern, while Vsftpd 
shows moderate variance. The 95th percentile of spatial consumption 
never exceeds 50 KB, even under maximum operational load, validating 
the design’s memory-efficient architecture.

5. Discussion

The integration of execution path tracing with IoT log analysis, 
as proposed in Log2Evt, introduces a novel paradigm for enhanc-
ing observability in resource-constrained smart systems. By correlat-
ing firmware runtime context with device logs, this approach bridges 
the gap between fragmented sensor telemetry and actionable secu-
rity insights. While evaluations demonstrate efficacy in lab-based IoT 
testbeds, scalability challenges and IoT-specific deployment barriers 
require deeper scrutiny.

5.1. Internal validity in IoT contexts

IoT hardware and RTOS heterogeneity: The reliance on dynamic 
tracing tools like eBPF introduces dependencies on specific micro-
controller architectures and real-time operating systems . Proprietary 
firmware in industrial IoT devices or locked-down consumer gadgets 
may block runtime instrumentation, limiting real-time path tracing. 
For example, low-power LoRaWAN sensors with stripped debugging 
interfaces cannot capture call stack traces during energy-saving sleep 
modes.

Concurrency limitations in distributed IoT workflows: The
method assumes execution context coherence within single-device
firmware. However, IoT operations like multi-sensor data fusion or 
edge-cloud synchronization involve asynchronous, distributed work-
flows. In such cases, call stacks from a Raspberry Pi edge node may 
fail to propagate context to associated LoRaWAN gateways, causing log 
correlation gaps during cross-device attacks.

Resilience to Log Noise and Adversarial Manipulation: Log2Evt 
demonstrates inherent robustness against common forms of log noise 
and adversarial manipulation. Its resilience stems from the core prin-
ciple of correlating logs with their actual, dynamically captured code 
execution paths. Intentionally injected log noise, if not generated by 
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a legitimate and instrumented code path, will fail to correlate and is 
thus naturally filtered out. Forging logs with misleading call stacks 
presents a more sophisticated challenge, but this would require an 
attacker to gain sufficient privileges to manipulate the low-level tracing 
mechanism itself, at which point the system is likely already fully 
compromised. While a high volume of noise could degrade perfor-
mance before being filtered, the accuracy of event reconstruction re-
mains high against attacks that cannot control the underlying execution 
environment.

5.2. External validity in IoT deployments

Resource constraints and performance balance: Despite effi-
ciency optimizations, implementing full execution path tracking on 
embedded microcontrollers may significantly increase computational 
load, threatening real-time guarantees in industrial control systems. For 
battery-powered IoT nodes, the trade-off between tracking granularity 
and energy consumption becomes an unavoidable design contradic-
tion, requiring dynamic balance between data accuracy and device 
longevity.

Real-world IoT log complexity: Evaluations used sanitized logs 
from homogeneous device fleets, but operational IoT environments mix 
structured and unstructured logs. Environmental interference and third-
party black-box components introduce noise unaccounted for in current 
models, potentially masking stealthy attacks like firmware downgrade 
exploits.

Robustness to data obfuscation: The validity of the Log2Evt 
framework extends to environments with encrypted logs or restricted 
tracing because its core mechanism relies on the structural fingerprint 
of the code execution path, not solely on log content. While this 
approach preserves the ability to reconstruct a skeletal event narrative, 
it inherently faces limitations, namely a loss of semantic richness from 
unreadable messages and potential ambiguity if the execution trace 
itself is incomplete.

Applicability to Real-Time Detection: The Log2Evt framework is 
conceptually adaptable to runtime anomaly detection because its core 
data collection method, which relies on dynamic kernel instrumenta-
tion, captures execution paths in real time. This provides the necessary 
live data stream for on-the-fly analysis. However, the computational 
expense of the full event reconstruction and relational analysis pipeline 
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introduces a significant latency trade-off. In its current form, this over-
head makes the complete process better suited for deep postmortem 
forensics rather than immediate, low-latency threat detection.

5.3. Future work

Our future research will advance the Log2Evt framework by fo-
cusing on three interconnected areas: enhancing its utility in privacy-
restricted settings, strengthening its resilience against sophisticated 
attacks, and adapting it for real-time threat detection.

First, we will address the challenge of analysis in privacy-restricted 
environments by developing a more resilient hybrid framework. We 
plan to enhance Log2Evt by fusing the available structural data with 
other system telemetry, such as network flows, and employing proba-
bilistic models to handle ambiguity. Furthermore, we will investigate 
the application of advanced privacy-preserving technologies, including 
homomorphic encryption, to enable direct analysis of encrypted logs 
and traces, thereby maintaining data confidentiality throughout the 
event reconstruction process.

Building on this, to further harden Log2Evt against sophisticated 
adversarial attacks, our future work will focus on developing a robust 
integrity validation framework. We plan to move beyond simple cor-
relation by implementing anomaly detection directly on the execution 
traces themselves, building models of legitimate call stack patterns to 
identify forged or unusual paths. This will be complemented by a cross-
validation system that correlates events constructed by Log2Evt with 
data from independent sources, such as network intrusion detection 
systems, to verify their authenticity. This multi-layered approach will 
enable the system to not only detect but also actively flag and isolate 
sophisticated adversarial manipulations.

Finally, to make these enhanced security capabilities practical for 
immediate threat response, we will focus on adapting Log2Evt for 
real-time anomaly detection by designing a tiered analysis framework. 
This involves developing a lightweight, real-time triage component for 
instant threat flagging based on execution path signatures, comple-
mented by a near-real-time deep analysis layer for more complex event 
reconstruction. We plan to build this system using stream processing 
engines for efficient data handling and will integrate online machine 
learning algorithms to dynamically model normal system behavior and 
accurately detect deviations.

By addressing these IoT-centric limitations — through adaptive 
tracing for heterogeneous hardware and noise-resilient correlation
algorithms — future work could enable robust intrusion detection 
across smart cities, healthcare IoT, and Industry 4.0 deployments.
6. Conclusion

Cyberspace is increasingly targeted by stealthy attacks, particularly 
in IoT systems where adversaries exploit vulnerabilities in intercon-
nected smart devices. To address the forensic challenges posed by 
massive, fragmented logs from distributed sensors, gateways, and edge 
nodes, we propose Log2Evt, which can construct high-level events from 
low-level log messages, helping users locating attack-related log entries 
more quickly and accurately.

Log2Evt is shown to have higher efficacy in specifying test cases 
compared to the matching-based representation approaches. However, 
depending on the design of the program, the classification approach 
based on the maximum number of common ancestors has the theoreti-
cal possibility of outputting low efficacy results. Due to the debugging 
mechanism, Log2Evt is only applicable to programs with DebugInfo. 
For future work, we will improve the data structure in the Common 
Ancestor algorithm, for example, using a hashing algorithm to increase 
computational efficiency and robustness in the face of large-scale sys-
tems. In addition, inspired by the excellent performance of Kprobes 
and the SystemTap framework, we will investigate its application in 
the field of network security in more depth.
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[30] Edyta Brzychczy, Milda Aleknonytė-Resch, Dominik Janssen, Agnes Koschmider, 
Process mining on sensor data: a review of related works, Knowl. Inf. Syst. (2025) 
1–34.

[31] Octavio Loyola-González, Process mining: software comparison, trends, and 
challenges, Int. J. Data Sci. Anal. 15 (4) (2023) 407–420.

[32] Shameer K. Pradhan, Mieke Jans, Niels Martin, Getting the data in shape for 
your process mining analysis: An in-depth analysis of the pre-analysis stage, 
ACM Comput. Surv. (2025).

[33] Guanjun Liu, Petri Nets: Theoretical Models and Analysis Methods for Concurrent 
Systems, Springer Nature, 2022.

[34] Anna A Kalenkova, Wil MP van der Aalst, Irina A Lomazova, Vladimir A 
Rubin, Process mining using BPMN: relating event logs and process models, in: 
Proceedings of the ACM/IEEE 19th International Conference on Model Driven 
Engineering Languages and Systems, 2016, pp. 123–123.
17 
[35] Ezequiel O. Ramos, Rogério Rossi, Process mining applied in a software project 
development with SCRUM and prom, Eur. J. Eng. Technol. Res. 8 (5) (2023) 
17–24.

[36] Michela Vespa, Elena Bellodi, Federico Chesani, Daniela Loreti, Paola Mello, 
Evelina Lamma, Anna Ciampolini, Marco Gavanelli, Riccardo Zese, Probabilistic 
traces in declarative process mining, in: International Conference of the Italian 
Association for Artificial Intelligence, Springer, 2024, pp. 330–345.

[37] Yintong Huo, Yuxin Su, Cheryl Lee, Michael R. Lyu, SemParser: A semantic parser 
for log analytics, in: 2023 IEEE/ACM 45th International Conference on Software 
Engineering, ICSE, IEEE, 2023, pp. 881–893.

[38] Weibin Meng, Federico Zaiter, Yuzhe Zhang, Ying Liu, Shenglin Zhang, Shimin 
Tao, Yichen Zhu, Tao Han, Yongpeng Zhao, En Wang, Yuzhi Zhang, Dan Pei, 
LogSummary: Unstructured log summarization for software systems, IEEE Trans. 
Netw. Serv. Manag. 20 (3) (2023) 3803–3815.

[39] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong 
Huo, Pinjia He, Jiazhen Gu, Michael R Lyu, Lilac: Log parsing using llms with 
adaptive parsing cache, Proc. the ACM Softw. Eng. 1 (FSE) (2024) 137–160.

[40] Marco Pegoraro, Bianka Bakullari, Merih Seran Uysal, Wil MP van der Aalst, 
Probability estimation of uncertain process trace realizations, in: International 
Conference on Process Mining, Springer, Cham, 2022, pp. 21–33.

[41] Aleksei Pismerov, Maxim Pikalov, Applying embedding methods to process 
mining, in: Proceedings of the 2022 5th International Conference on Algorithms, 
Computing and Artificial Intelligence, 2022, pp. 1–5.

[42] Siyu Yu, Yifan Wu, Zhijing Li, Pinjia He, Ningjiang Chen, Changjian Liu, Log 
parsing with generalization ability under new log types, in: Proceedings of the 
31st ACM Joint European Software Engineering Conference and Symposium on 
the Foundations of Software Engineering, 2023, pp. 425–437.

[43] Xiaoyun Li, Hongyu Zhang, Van-Hoang Le, Pengfei Chen, Logshrink: Effective log 
compression by leveraging commonality and variability of log data, in: Proceed-
ings of the 46th IEEE/ACM International Conference on Software Engineering, 
2024, pp. 1–12.

[44] Siyu Yu, Pinjia He, Ningjiang Chen, Yifan Wu, Brain: Log parsing with 
bidirectional parallel tree, IEEE Trans. Serv. Comput. 16 (5) (2023) 3224–3237.

[45] Yintong Huo, Yichen Li, Yuxin Su, Pinjia He, Zifan Xie, Michael R Lyu, Autolog: 
A log sequence synthesis framework for anomaly detection, in: 2023 38th 
IEEE/ACM International Conference on Automated Software Engineering, ASE, 
IEEE, 2023, pp. 497–509.

[46] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yuhang 
Chen, Yanqing Zhao, Hao Yang, Yanfei Jiang, Interpretable online log analysis 
using large language models with prompt strategies, in: Proceedings of the 
32nd IEEE/ACM International Conference on Program Comprehension, 2024, pp. 
35–46.

[47] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, Pinjia He, DivLog: 
Log parsing with prompt enhanced in-context learning, in: Proceedings of the 
IEEE/ACM 46th International Conference on Software Engineering, 2024, pp. 
1–12.

[48] Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun Chen, Shaowei Wang, 
Llmparser: An exploratory study on using large language models for log parsing, 
in: Proceedings of the IEEE/ACM 46th International Conference on Software 
Engineering, 2024, pp. 1–13.

[49] Jim Keniston, Kernel probes, 2022, https://docs.kernel.org/trace/kprobes.html. 
(Accessed January 2025).

[50] Frank Ch. Eigler, Systemtap, 2005, https://sourceware.org/systemtap/. (Accessed 
January 2025).

[51] Adel Belkhiri, Martin Pepin, Mike Bly, Michel Dagenais, Performance analysis of 
DPDK-based applications through tracing, J. Parallel Distrib. Comput. 173 (2023) 
1–19.

[52] Brendan Gregg, The flame graph, Commun. ACM 59 (6) (2016) 48–57.
[53] Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu, Loghub: a large collection 

of system log datasets towards automated log analytics, 2020, arXiv preprint 
arXiv:2008.06448.

[54] Yebo Feng, Jiahua Xu, Lauren Weymouth, University blockchain research initia-
tive (UBRI): Boosting blockchain education and research, IEEE Potentials 41 (6) 
(2022) 19–25.

Teng Li received the B.S. degree in School of Computer 
Science and Technology from Xidian University, China in 
2013, and Ph.D. degree in School of Computer Science and 
Technology from Xidian University, China in 2018. He is 
currently a Professor at the School of Cyber Engineering, Xi-
dian University, China. His current research interests include 
wireless and networks, distributed systems and intelligent 
terminals with focus on security and privacy issues.

https://www.sciencedirect.com/science/article/pii/S138376212400167X
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb11
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb12
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb13
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb14
https://www.sciencedirect.com/science/article/pii/S138376212300070X
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb16
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb17
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb18
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb19
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb20
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb21
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb22
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb23
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb24
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb25
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb26
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb27
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb28
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb28
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb28
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb29
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb30
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb31
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb31
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb31
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb32
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb33
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb33
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb33
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb34
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb35
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb36
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb37
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb38
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb39
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb40
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb41
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb42
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb43
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb44
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb44
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb44
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb45
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb46
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb47
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb48
https://docs.kernel.org/trace/kprobes.html
https://sourceware.org/systemtap/
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb51
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb52
http://arxiv.org/abs/2008.06448
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54
http://refhub.elsevier.com/S1383-7621(25)00250-4/sb54


T. Li et al. Journal of Systems Architecture 168 (2025) 103578 
Baichuan Zheng received his B.S. degree in School of Cyber 
Engineering from Xidian University, China in 2024, where 
he is pursuing the M.S. degree. His current research interests 
include IoT security, log analysis, network security, and 
federated learning.

Yebo Feng is a research fellow in the College of Computing 
and Data Science (CCDS) at Nanyang Technological Uni-
versity (NTU). He received his Ph.D. degree in Computer 
Science from the University of Oregon (UO) in 2023. His 
research interests include network security, blockchain se-
curity, and anomaly detection. He is the recipient of the 
Best Paper Award of 2019 IEEE CNS, Gurdeep Pall Graduate 
Student Fellowship of UO, and Ripple Research Fellowship. 
He has served as the reviewer of IEEE TDSC, IEEE TIFS, 
ACM TKDD, IEEE JSAC, IEEE COMST, etc. Furthermore, he 
has been a member of the program committees for interna-
tional conferences including SDM, CIKM, and CYBER, and 
has also served on the Artifact Evaluation (AE) committees 
for USENIX OSDI and USENIX ATC.

Xiaowen Quan received the M.S. degree in software en-
gineering from Tsinghua University. His research interests 
include application security and network measurement.
18 
Jiahua Xu is Associate Professor in Financial Computing, 
and Programme Director of the MSc Emerging Digital 
Technologies at UCL. She is also affiliated to the UCL 
Centre for Blockchain Technologies. Her research focuses 
on blockchain economics and decentralized finance. She has 
published in Usenix Security, ACM IMC, FC, IEEE ICDCS 
and IEEE ICBC. She has reviewed for Advances in Complex 
Systems, Computer Networks, Transactions on the Web and 
Cities.

Yang Liu received the B.S. degree in computer science and 
technology from Xidian University, in 2017. He is now an 
associate professor at school of Cyber Engineering, Xidian 
University. His research interests cover formal analysis of 
authentication protocols and deep learning neural network 
in cyber security.

Jianfeng Ma received the B.S. degree in computer science 
from Shaanxi Normal University in 1982, and M. S. degree 
in computer science from Xidian University in 1992, and the 
Ph. D. degree in computer science from Xidian University 
in 1995. Currently he is the directer of Department of 
Cyber engineering and a professor in School of Cyber 
Engineering, Xidian University. He has published over 150 
journal and conference papers. His research interests include 
information security, cryptography, and network security.


	Log2Evt: Constructing high-level events for IoT Systems through log-code execution path correlation
	Introduction
	Related Work
	Process mining
	Log clustering
	Userspace Tracing in IoT Device Development

	Methodology
	Overview
	Source location
	Dataflow trajectory tracing
	Kprobes
	SystemTap
	Set Kprobes

	Event chain integration
	Tree conversion algorithm
	Tarjan-LCA algorithm
	Event Segmentation algorithm


	Evaluation of Log2Evt
	Theoretical analysis
	Experiment setting
	Functional experiments
	Efficacy experiments
	Time and space occupation experiments

	Discussion
	Internal validity in IoT contexts
	External validity in IoT deployments
	Future work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


