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Abstract—Blockchain sharding has emerged as a promising
solution to the scalability challenges in traditional blockchain
systems by partitioning the network into smaller, manageable
subsets called shards. Despite its potential, existing sharding
solutions face significant limitations in handling dynamic work-
loads, ensuring secure cross-shard transactions, and maintaining
system integrity. To address these gaps, we propose DynaShard,
a dynamic and secure cross-shard transaction processing mech-
anism designed to enhance blockchain sharding efficiency and
security. DynaShard combines adaptive shard management, a
hybrid consensus approach, and an efficient state synchronization
and dispute resolution protocol. Our performance evaluation,
conducted using a robust experimental setup with real-world
network conditions and transaction workloads, demonstrates
DynaShard’s superior throughput, reduced latency, and im-
proved shard utilization compared to the Fast Transaction
Scheduling in Blockchain Sharding (FTSBS) method. Specifically,
DynaShard achieves up to a 42.6% reduction in latency and a
78.77% improvement in shard utilization. These results high-
light DynaShard’s ability to outperform state-of-the-art sharding
methods, ensuring scalable and resilient blockchain systems. We
believe that DynaShard’s innovative approach will significantly
impact future developments in blockchain technology, paving the
way for more efficient and secure distributed systems.

Index Terms—Blockchain sharding, cross-shard transactions,
secure consensus, state synchronization, scalability

I. INTRODUCTION

Blockchain technology has emerged as a groundbreaking in-
novation that has transformed the landscape of digital transac-
tions, offering a decentralized, transparent, and secure frame-
work for various applications, including IoT-based systems [1–
6]. The core principles of blockchain, such as immutability,
transparency, and distributed consensus, have the potential to
revolutionize IoT networks by enhancing security, data in-
tegrity, and trust among devices and participants [7]. However,
the scalability of blockchain systems remains a significant
challenge, particularly for IoT applications that require high
transaction throughput and low latency [8]. The increasing
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number of IoT devices and transactions leads to longer con-
firmation times, higher transaction fees, and reduced overall
system performance [9]. To address this scalability challenge,
researchers have proposed various solutions, including off-
chain scaling techniques like payment channels [10–12] and
sidechains [13–15], as well as on-chain scaling approaches like
sharding [16, 17]. By improving scalability, these solutions can
enable the seamless integration of blockchain technology with
IoT systems, ensuring efficient and secure management of IoT
data and transactions.

Existing efforts. Blockchain sharding has gained significant
attention as a promising on-chain scaling solution that aims to
improve the throughput and latency of blockchain systems by
partitioning the network into smaller shards, each responsible
for processing a subset of transactions in parallel [16]. By
distributing the transaction processing workload across mul-
tiple shards, blockchain sharding enables the system to scale
horizontally, allowing for a higher transaction throughput and
lower confirmation times [18]. Several blockchain sharding
frameworks have been proposed in recent years, each address-
ing specific aspects of the sharding process. For instance, Elas-
tico [19] introduces a secure sharding protocol that utilizes a
distributed randomness generation process for shard formation
and a Byzantine fault-tolerant consensus mechanism within
each shard. OmniLedger [20] builds upon Elastico by incor-
porating a more efficient cross-shard transaction processing
mechanism based on atomic commits and a ledger pruning
technique to reduce storage overhead. RapidChain [21] further
improves the scalability of sharded blockchains by introducing
a fast and efficient cross-shard transaction verification scheme
that leverages intra-shard consensus and inter-shard gossiping.
These frameworks have laid the foundation for the develop-
ment of scalable and efficient blockchain sharding solutions.

Research gap. Despite the progress made in blockchain
sharding, several limitations and research gaps still exist,
presenting opportunities for further improvement. One major
challenge is the lack of dynamic and adaptive mechanisms
for managing shards based on the system’s workload [22, 23].
Most existing sharding frameworks rely on static shard con-
figurations, which can lead to suboptimal resource utilization
and performance, especially in the presence of fluctuating
transaction volumes and network conditions [24]. Another
significant challenge lies in ensuring the security and atom-
icity of cross-shard transactions [25]. Malicious actors may
attempt to exploit the distributed nature of sharded systems
by launching attacks such as double-spending, replay attacks,
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or shard-level collusion [26]. Existing cross-shard transaction
processing techniques, such as two-phase commit protocols
[27] and asynchronous consensus [23], provide some level of
protection against these attacks, but they often come at the cost
of increased complexity and communication overhead [22].
Furthermore, there is a lack of comprehensive frameworks
that integrate shard reconfiguration, state synchronization, and
dispute resolution mechanisms to ensure the overall secu-
rity and efficiency of sharded blockchain systems [28, 29].
Designing a holistic solution that addresses these challenges
while maintaining the core principles of decentralization,
transparency, and security is a non-trivial task that requires
careful consideration of various trade-offs and design choices.

DYNASHARD. To bridge the research gap, we propose
DYNASHARD, a dynamic and secure cross-shard transac-
tion processing mechanism. DYNASHARD combines adaptive
shard management, secure cross-shard transaction processing,
and efficient state synchronization and dispute resolution to
enhance scalability and resilience in blockchain systems. By
dynamically adjusting shard configurations based on workload,
it optimizes resource utilization and performance, adapting
to varying transaction volumes and network conditions. It
employs a hybrid consensus approach that integrates intra-
shard and inter-shard mechanisms to minimize coordination
overhead while ensuring transaction integrity and consistency.

Designing a dynamic and secure cross-shard transaction
processing mechanism involves several challenges. C1: Ef-
fective shard management requires monitoring workload and
resource usage to make informed decisions on splitting or
merging shards, necessitating an understanding of system
dynamics and future transaction predictions. C2: Secure and
efficient cross-shard transaction processing demands a pro-
tocol ensuring atomicity and consistency while minimizing
overhead, incorporating novel consensus mechanisms, cryp-
tographic techniques, and scalable data structures. C3: Robust
state synchronization and dispute resolution require decen-
tralized mechanisms to detect and resolve inconsistencies
and conflicts, integrating insights from distributed systems,
cryptography, game theory, and economics. DYNASHARD
addresses these challenges by introducing a comprehensive
framework that dynamically adjusts shard configurations based
on transaction volume and resource usage, employs a hybrid
consensus approach combining lightweight global consensus
with parallel intra-shard processes, and utilizes Merkle trees
alongside a decentralized dispute resolution protocol to main-
tain consistency and resolve conflicts in a trustless manner.

Novelty. The key novelty of DYNASHARD lies in its holistic
and adaptive approach to blockchain sharding, distinguishing
it from existing solutions. Unlike previous works that focus
on specific aspects such as shard formation [19], cross-shard
transaction processing [27], or consensus mechanisms [21],
DYNASHARD integrates all these components into a cohesive
and dynamic system. The novelty of DYNASHARD includes:
(i) continuously monitoring and adjusting shard configurations
based on system workload, offering an efficient and flexi-
ble sharding scheme adaptable to the evolving demands of
real-world blockchain applications; (ii) employing a hybrid
consensus approach to address the challenge of secure and

atomic cross-shard transaction processing, balancing global
coordination with local processing efficiency; and (iii) integrat-
ing adaptive shard management, secure cross-shard transaction
processing, and efficient state synchronization and dispute
resolution techniques.

In summary, this paper makes the following contributions:
• We propose DYNASHARD, an adaptive shard manage-

ment mechanism that dynamically adjusts shard configu-
rations based on transaction volume and resource usage,
ensuring optimal performance and resource utilization.

• We propose a secure and atomic cross-shard transaction
protocol using a hybrid consensus approach. This inte-
grates lightweight global consensus with parallel intra-
shard processes, reducing overhead while maintaining
transaction integrity and consistency.

• We develop an efficient shard state synchronization mech-
anism based on Merkle trees. This mechanism maintains
consistency across shards and incorporates a decentral-
ized dispute resolution protocol to resolve potential con-
flicts in a trustless and resilient manner.

• We perform comprehensive evaluation of DYNASHARD
through theoretical analysis and experimental simula-
tions. Results demonstrate improvements in throughput,
latency, and shard utilization compared to existing solu-
tions, validating its effectiveness and robustness.

II. RESEARCH BACKGROUND

This section briefs blockchain sharding, challenges .

A. Blockchain Sharding

Blockchain sharding is a technique designed to address
scalability challenges in blockchain systems by partitioning
the network into smaller subsets called shards. Each shard pro-
cesses a portion of the overall transactions, enabling parallel
execution and improved throughput. Let S = {s1, s2, . . . , sn}
represent the set of shards, where n is the total number of
shards. Transactions within each shard si are processed inde-
pendently, while cross-shard transactions require coordination
between shards. Sharding allows blockchain systems to scale
with the number of shards, improving transaction throughput
(TPS) and reducing latency (L) [16].

Several sharding frameworks have been proposed. Elas-
tico [19] introduced secure shard formation using proof-of-
work and Byzantine fault tolerance (BFT) within each shard.
OmniLedger [20] built on this by improving cross-shard
transaction processing and ledger pruning to reduce storage
needs. RapidChain [21] enhanced scalability through fast
cross-shard verification using intra-shard consensus and inter-
shard gossiping. These frameworks represent advancements in
blockchain sharding aimed at boosting system efficiency and
scalability.

B. Challenges in Blockchain Sharding

One major challenge in blockchain sharding is maintain-
ing security in the presence of malicious actors. Shard-level
attacks, such as single-shard takeovers [16] and cross-shard
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double-spending [26], can compromise system integrity. Solu-
tions to these risks include random shard assignment [19],
periodic shard reconfiguration [20], and fraud proofs [27].
Efficient cross-shard transaction handling is another challenge,
with protocols like two-phase commit [27] and asynchronous
consensus [23] ensuring transaction consistency, though they
introduce complexity and overhead. Recent advancements
focus on enhancing cross-shard transaction efficiency. For
example, SharPer [25] secures transactions using threshold
signatures and multi-party computation. Similarly, Qin et
al. [30] proposes a compact verification scheme using Merkle
proofs and SNARKs. These innovations help address perfor-
mance limitations, paving the way for more scalable, secure
blockchain systems.

III. DYNASHARD

This section presents overview and detail each module.

A. System Overview

DYNASHARD provides a dynamic and secure framework for
efficient blockchain sharding, consisting of three main mod-
ules: adaptive shard management, secure cross-shard transac-
tion processing, and shard state synchronization with dispute
resolution, as in Figure 1. The adaptive shard management
module continuously monitors transaction volume (vi) and
resource utilization (ui) for each shard, adjusting shard config-
urations based on predefined thresholds (τs for splitting and τm
for merging). Managing committee, selected through a secure
random process from various shards, ensures decentralization
and avoids collusion. Shard adjustments are further secured
through threshold-based verification, requiring cjjjjjjjjjjonsen-
sus among shard members to prevent unauthorized changes,
maintaining system’s decentralization and security.

The secure cross-shard transaction processing module en-
sures atomicity and security for transactions across multiple
shards using a hybrid consensus mechanism that combines
global and intra-shard consensus. This approach employs
threshold signatures and multi-party computation to prevent
double-spending attacks. Shard state synchronization and dis-
pute resolution are handled through a Merkle tree-based
structure, allowing fast verification and incremental updates.
Disputes are resolved in a decentralized manner using game-
theoretic incentives, ensuring valid transactions are processed
and malicious actors are penalized. Overall, DYNASHARD
effectively balances scalability, security, and decentralization.

B. Adaptive Shard Management

The adaptive shard management mechanism is designed
to optimize the performance and resource utilization of the
sharded blockchain system by dynamically adjusting the
number and configuration of shards based on the system’s
workload. Let S = {s1, s2, . . . , sn} denote the set of shards
in the system, where n is the total number of shards. Each
shard si is characterized by its transaction volume vi and
resource utilization ui. Resource utilization ui refers to the
percentage of available computational, storage, and network

resources being used by shard si. To manage these metrics
effectively, we define two threshold parameters, τs and τm,
representing the splitting and merging thresholds, respectively.
The splitting threshold τs is chosen based on system capacity
and workload expectations, typically ranging between 60%
and 90% resource utilization. Similarly, the merging threshold
τm is set between 20% and 40% to ensure underutilized shards
are merged. These thresholds are selected through empirical
analysis, balancing performance with system stability, and
include cooldown periods to prevent immediate re-triggering
of operations.

The adaptive shard management mechanism operates as
follows: For each shard si ∈ S, the system continuously
monitors its transaction volume vi and resource utilization
ui. If the transaction volume vi or resource utilization ui

exceeds the splitting threshold τs, i.e., vi > τs or ui > τs,
a shard splitting process is initiated. This process involves
dividing si into multiple smaller shards {si1, si2, . . . , sik},
ensuring that the resulting shards maintain full functionality
and consensus security. The goal is to distribute the workload
wi and resource demand di evenly across the new shards such
that

∑k
j=1 wij ≈ wi and

∑k
j=1 dij ≈ di, where wij and

dij represent the workload and resource demand of the new
shards, respectively. A workload-aware rebalancing algorithm
considers transaction patterns T and resource requirements R
to ensure balanced resource utilization.

Conversely, if the transaction volume vi and resource uti-
lization ui fall below the merging threshold τm for multiple
consecutive epochs, i.e., vi < τm and ui < τm, a shard
merging process is initiated. This process combines si with
other underutilized shards {sj1, sj2, . . . , sjl}, consolidating
resources and reducing the overall system overhead while
maintaining consensus security. The combined shard sc will
have a transaction volume vc =

∑l
k=1 vjk and resource

utilization uc =
∑l

k=1 ujk. After the merging or splitting
process, nodes and accounts are redistributed across the newly
formed shards using the workload-aware rebalancing algo-
rithm. This redistribution aims to further optimize the sys-
tem’s performance and resource utilization, ensuring balanced
and efficient operation across all shards while avoiding the
potential cycle of shard splitting and merging.

Algorithm 1 outlines the adaptive shard management pro-
cess in DYNASHARD, which dynamically adjusts shard con-
figurations based on transaction volume and resource uti-
lization. When a shard exceeds the splitting threshold (τs),
it is split into smaller shards, with transactions allocated
using a load-balancing algorithm based on account activity
to evenly distribute the workload and minimize cross-shard
interactions. Conversely, when transaction volume and re-
source utilization fall below the merging threshold (τm) for
multiple consecutive epochs, underutilized shards are merged
to consolidate resources and optimize system performance.
After splitting or merging, nodes, accounts, and transactions
are redistributed using a Greedy Load Balancing algorithm
to ensure efficient resource utilization and reduce cross-shard
transaction overhead.
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Fig. 1: Adaptive shard management mechanism depicting the splitting and merging of shards based on transaction volume and
resource utilization.

Algorithm 1 DYNASHARD Methodology
Input: Set of shards S = {s1, s2, . . . , sn}, splitting threshold τs (range: 60%-
90%), merging threshold τm (range: 20%-40%)

1: Initialization: Continuously monitor transaction volume vi and resource utilization
ui for each shard si

2: while true do
3: for each shard si ∈ S do
4: if vi > τs or ui > τs then
5: Split Shard:
6: Divide si into smaller shards {si1, si2, . . . , sim} based on workload

and resource demand
7: Distribute transactions across new shards based on account activity using

a load-balancing algorithm to minimize cross-shard interaction
8: Balance workload wi and resource demand di evenly across the resulting

shards
9: else if vi < τm and ui < τm for multiple consecutive epochs then

10: Merge Shards:
11: Identify underutilized shards {sj1, sj2, . . . , sjk} with similar trans-

action patterns
12: Combine si with {sj1, sj2, . . . , sjk} to consolidate resources and

minimize cross-shard transactions
13: Redistribute nodes, accounts, and transactions across newly formed shards using

a Greedy Load Balancing algorithm to reduce cross-shard dependencies

C. Secure and Atomic Cross-Shard Transaction Processing

To ensure the security and atomicity of cross-shard trans-
actions, we propose a hybrid consensus mechanism that com-
bines a lightweight global consensus with parallel intra-shard
consensus processes. The global consensus is responsible
for processing cross-shard transactions and maintaining a
consistent view of the system state G, while the intra-shard
consensus processes handle the validation and execution of
transactions within each shard si ∈ {s1, s2, . . . , sn}. This
dual-layered approach allows for efficient and secure handling
of transactions that span multiple shards, ensuring both local
and global consistency in the blockchain B.

Let T = {t1, t2, . . . , tm} denote the set of cross-shard
transactions, where each transaction ti involves a set of

input shards Ii = {si1, si2, . . . , sik} and output shards
Oi = {sj1, sj2, . . . , sjl}. The hybrid consensus mechanism
processes cross-shard transactions through several steps. First,
each input shard sj ∈ Ii validates the corresponding input
of transaction ti and generates a partial signature σj,i using
a threshold signature scheme. Formally, σj,i = Signsj (h(ti)),
where h(ti) is the hash of transaction ti. The output shards
Oi then collect these partial signatures from all input shards
and combine them to obtain a valid threshold signature Σi

for transaction ti. Mathematically, Σi = Combine({σj,i :
sj ∈ Ii}). This aggregated signature Σi provides a secure
confirmation that the transaction has been validated by the
necessary quorum of input shards.

Once the threshold signature Σi is obtained, the global
consensus protocol, executed by a subset of nodes from all
shards {s1, s2, . . . , sn}, validates Σi and reaches consensus on
the order and validity of cross-shard transactions. Formally,
let C = {c1, c2, . . . , cp} denote the subset of consensus
nodes. These nodes verify Σi and reach a consensus V(ti)
on transaction ti. If V(ti) is positive, the global state G is
updated, and the output shards Oi execute the corresponding
outputs of transaction ti atomically. The updated state G′
is then propagated to all shards through a state synchro-
nization protocol, ensuring a consistent view of the system
state across the entire blockchain network. This protocol
leverages threshold signatures and multi-party computation
to prevent unauthorized modifications and double-spending
attacks. The threshold signature scheme ensures transaction
validity only if a sufficient number of input shards approve
it, i.e., |{sj ∈ Ii : σj,i is valid}| ≥ Threshold. Multi-party
computation further enables secure and private computation
of cross-shard transaction outputs, maintaining the integrity
and confidentiality of the process.
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Algorithm 2 Secure and Atomic Cross-Shard Transaction
Processing

Input: Set of cross-shard transactions T = {t1, . . . , tm}
1: while there are unprocessed transactions in T do
2: for each transaction ti ∈ T do
3: Input Validation:
4: for each input shard sj ∈ Ii do
5: Validate input of transaction ti and generate partial signature σj,i =

Signsj (h(ti)) using threshold signature scheme

6: Output Collection:
7: Collect partial signatures {σj,i | sj ∈ Ii}
8: if {σj,i} are valid then
9: Combine partial signatures to obtain valid threshold signature Σi =

Combine({σj,i})
10: Global Consensus:
11: if global consensus protocol V(ti) validates Σi then
12: Reach consensus on order and validity of cross-shard transactions
13: State Update:
14: Update global state G′ and execute outputs of ti atomically in output

shards Oi

15: Propagate updated state G′ to all shards via state synchronization
protocol

Algorithm 2 outlines the process for secure and atomic
cross-shard transaction processing. It begins by iterating over
a set of cross-shard transactions T . For each transaction ti,
it performs input validation by having each input shard sj
validate the transaction and generate a partial signature using
a threshold signature scheme. These partial signatures are
collected and, if valid, combined into a threshold signature
Σi. This combined signature is then validated by the global
consensus protocol. If the global consensus confirms the
validity, the system reaches a consensus on the transaction’s
order and validity, updates the global state, and executes the
transaction’s outputs atomically in the output shards. The
updated global state is then propagated to all shards through a
state synchronization protocol, ensuring consistency across the
network. This process ensures that cross-shard transactions are
securely and atomically processed, maintaining the integrity
and consistency of the blockchain.

D. Shard State Synchronization and Dispute Resolution

To maintain consistency across shards and resolve potential
conflicts, we introduce an efficient shard state synchronization
protocol and a decentralized dispute resolution mechanism.
These components are crucial for ensuring the integrity and
reliability of the blockchain system as it scales. The shard
state synchronization protocol leverages a Merkle tree-based
data structure to enable fast verification and incremental up-
dates of shard states. This approach ensures that each shard
maintains an up-to-date view of the global state, G, minimizing
discrepancies and potential conflicts.

The synchronization protocol operates as follows: each
shard si ∈ {s1, s2, . . . , sn} maintains a local state tree Ti and
periodically computes its Merkle root Mi = MerkleRoot(Ti).
Shards exchange their Merkle roots Mi through a gossip proto-
col, which allows each shard to have a compact representation
of the global state G = {M1,M2, . . . ,Mn}. When a shard si
updates its local state T ′i , it propagates the updated Merkle root
M ′i = MerkleRoot(T ′i ) along with the corresponding Merkle
proof πi to all other shards. Upon receiving an updated Merkle
root M ′i and proof πi, each shard sj ∈ {s1, s2, . . . , sn} verifies

Algorithm 3 Shard State Synchronization and Dispute Reso-
lution

Input: Merkle root Mi for each shard si
1: while true do
2: for each shard si ∈ S do
3: Compute Merkle root Mi ← MerkleRoot(Ti)
4: Exchange Mi with other shards through gossip protocol
5: if update detected, i.e., M ′

i ̸= Mi then
6: Propagate updated M ′

i and proof πi to all other shards
7: if dispute detected for transaction Tx then
8: Initiate Dispute Resolution:
9: Disputing shard si broadcasts challenge C(Tx, Ei)

10: for each shard sj involved in transaction Tx do
11: Provide evidence Ej and signature σj

12: Verify validity of Tx using Ej and σj

13: Reach consensus V(Tx) via weighted voting process
14: if V(Tx) = invalid then
15: Roll back transaction Tx and update global state G
16: Penalize shards that approved invalid transaction Tx

the proof πi against its local state tree Tj and updates its view
of the global state G accordingly. This process ensures that
all shards remain synchronized and consistent with the overall
blockchain state B.

The decentralized dispute resolution mechanism is designed
to resolve conflicts and validate cross-shard transactions in
a decentralized manner. When a shard si detects a potential
conflict or invalid transaction Tx, it initiates a dispute res-
olution process. The disputing shard si broadcasts a chal-
lenge C along with evidence E of the conflict to all other
shards {s1, s2, . . . , sn}. Each shard sj involved in the disputed
transaction then provides its evidence Ej and signatures σj ,
allowing all shards {s1, s2, . . . , sn} to independently verify
the validity of the transaction Tx. Shards reach a consensus
on the validity of the disputed transaction through a voting
process V , where each shard’s vote vj is weighted based on
its stake wj or reputation rj . If a majority M of shards agree
on the invalidity of the transaction Tx, it is rolled back, the
global state G is updated accordingly, and shards that approved
the invalid transaction are penalized P .

Algorithm 3 outlines the shard state synchronization and
dispute resolution process, ensuring the integrity and con-
sistency of the blockchain across all shards. Each shard si
maintains a local state tree Ti and periodically computes its
Merkle root Mi. These roots are exchanged via a gossip
protocol to represent the global state G. When a state update
M ′i is detected, the updated root and proof πi are propagated,
verified, and used to update each shard’s view of the global
state. If a conflict or invalid transaction Tx arises, the disputing
shard broadcasts a challenge C with evidence E . All involved
shards submit evidence and signatures, and transaction validity
is determined through a weighted voting process V . If the
transaction is deemed invalid, it is rolled back, the global state
is updated, and the approving shards are penalized to ensure
honesty and security in the system.

IV. PERFORMANCE EVALUATION

In this section, we present the evaluation setup and perfor-
mance results.
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A. Experimental Setup

To evaluate the performance of DYNASHARD, we im-
plemented the dynamic cross-shard transaction processing
mechanism in a controlled experimental environment. Python
was used for control logic, while C++ handled performance-
critical components for efficiency. Built on an open-source
blockchain simulator, the system integrated transaction han-
dling, consensus mechanisms, and sharding operations. Cryp-
tographic functions, such as threshold signatures and multi-
party computation, utilized established libraries like OpenSSL
and libsecp256k1, with consensus protocols based on PBFT.
Shard reconfigurations followed specific rules: splitting occurs
when utilization exceeds a predefined upper threshold (τs),
while merging is triggered when utilization falls below a lower
threshold (τm). These dynamic adjustments balance workloads
and ensure efficient resource use, maintaining system perfor-
mance.

The experimental setup was designed to reflect real-world
conditions, conducted on a cluster of servers each equipped
with Intel Xeon E5-2690 v4 CPUs (2.6 GHz, 14 cores), 128
GB RAM, SSD storage, and Gigabit Ethernet for inter-server
communication. We simulated various network topologies and
communication delays using Mininet to test DYNASHARD’s
robustness under different network conditions. Transaction
workloads were generated with a custom-built transaction
generator, simulating different transaction rates and patterns to
mimic real-world blockchain usage scenarios. The evaluation
involved comparing DYNASHARD against FTSBS [31], with
performance metrics focused on throughput (transactions per
second, TPS), latency (time to process a batch of transactions),
and shard utilization. This comprehensive setup allowed us
to assess the effectiveness of DYNASHARD under varying
configurations and workloads, providing a detailed analysis
of its performance and robustness.

B. Throughput Analysis

The primary objective of this experiment is to measure
the transaction throughput of DYNASHARD under varying
numbers of shards and validators. This experiment aims to
demonstrate how well DYNASHARD scales and handles in-
creased transaction loads compared to FTSBS.

To evaluate DYNASHARD’s throughput, we varied the num-
ber of shards across different test runs, specifically using 30,
50, and 100 shards. Each shard had a fixed number of val-
idators to ensure consistency across different configurations.
The transaction rates were simulated to represent low, medium,
and high network loads, while various cross-shard transaction
ratios (0%, 40%, 80%) were tested to evaluate DYNASHARD’s
efficiency in handling cross-shard transactions. The primary
metric for this experiment was transactions per second (TPS),
which indicates the number of transactions the system can pro-
cess per second. We set up the blockchain network, generated
transactions at varying rates using a custom-built transaction
generator, and ran the network under each configuration. We
then recorded the TPS for both DYNASHARD and FTSBS and
compared the results to evaluate DYNASHARD’s performance
relative to FTSBS.
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Fig. 2: Throughput (TPS) under 30 shards and 500 validators
(a) and 1000 validators (b)

Figure 2 shows the throughput (TPS) performance of DY-
NASHARD and FTSBS with 30 shards under various cross-
shard transaction ratios and validator configurations. The
results indicate that DYNASHARD consistently outperforms
FTSBS across all tested conditions. For instance, with 500 val-
idators and no cross-shard transactions, DYNASHARD achieves
a throughput of 215.43 TPS compared to FTSBS’s 198.76
TPS, representing an 8.4% improvement. As the cross-shard
ratio increases, DYNASHARD maintains its performance ad-
vantage, with a notable throughput of 114.57 TPS at an 80%
cross-shard ratio, compared to FTSBS’s 95.21 TPS, which
is a 20.4% improvement. When the number of validators is
increased to 1000, DYNASHARD continues to demonstrate
superior performance, achieving 237.65 TPS at a 0% cross-
shard ratio and 120.45 TPS at an 80% cross-shard ratio,
compared to FTSBS’s 220.34 TPS and 102.76 TPS, respec-
tively. These results highlight DYNASHARD’s ability to handle
high transaction volumes and cross-shard transactions more
efficiently, making it a robust solution for systems with 30
shards.

Figure 3 details the throughput performance of DY-
NASHARD and FTSBS with 100 shards, 500 and 1000 val-
idators. presents the throughput performance of DYNASHARD
and FTSBS with 50 shards. The data reveals that DY-
NASHARD consistently achieves higher TPS compared to
FTSBS across different validator counts and cross-shard ratios.
With 500 validators and no cross-shard transactions, DY-
NASHARD achieves 236.59 TPS, surpassing FTSBS’s 217.85
TPS by 8.6%. This performance gap widens as the cross-shard
ratio increases, with DYNASHARD maintaining a throughput
of 125.26 TPS at an 80% cross-shard ratio, compared to
FTSBS’s 103.47 TPS, resulting in a 21.0% improvement.
When the validator count is increased to 1000, DYNASHARD
shows even more significant performance advantages, achiev-
ing 260.39 TPS at a 0% cross-shard ratio and 137.79 TPS
at an 80% cross-shard ratio, compared to FTSBS’s 239.61
TPS and 113.86 TPS, respectively. These results emphasize
DYNASHARD’s superior scalability and efficiency in handling
large transaction volumes and complex cross-shard interac-
tions within systems configured with 50 shards.

Figure 4 details the throughput performance of DY-
NASHARD and FTSBS with 100 shards, 500 and 1000 val-
idators. The findings indicate that DYNASHARD continues
to outperform FTSBS across various validator configurations
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Fig. 3: Throughput (TPS) under 50 shards and 500 validators
(a) and 1000 validators (b)
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Fig. 4: Throughput (TPS) under 100 shards and 500 validators
(a) and 1000 validators (b)

and cross-shard transaction ratios. With 500 validators and no
cross-shard transactions, DYNASHARD achieves 280.45 TPS,
outperforming FTSBS’s 250.76 TPS by 11.8%. As the cross-
shard ratio increases, DYNASHARD maintains its superior
performance, achieving 145.78 TPS at an 80% cross-shard
ratio compared to FTSBS’s 120.34 TPS, marking a 21.2%
improvement. When the validator count is increased to 1000,
DYNASHARD’s performance advantage becomes even more
pronounced, achieving 300.23 TPS at a 0% cross-shard ratio
and 160.34 TPS at an 80% cross-shard ratio, compared to
FTSBS’s 270.45 TPS and 130.45 TPS, respectively. These
results underscore DYNASHARD’s ability to efficiently manage
high transaction volumes and complex cross-shard transac-
tions, demonstrating its robustness and scalability in systems
with 100 shards.

By demonstrating higher throughput across various con-
figurations and workloads, this experiment underscores DY-
NASHARD’s effectiveness in optimizing resource utilization
and maintaining performance under increased transaction
loads. The results validate DYNASHARD’s design principles
and its ability to scale efficiently while handling complex
cross-shard transactions.

C. Latency Analysis

The objective of this experiment is to evaluate the latency
for processing a large batch of transactions under different
shard management strategies. This experiment aims to show-
case DYNASHARD’s ability to process transactions efficiently
and adapt to varying workloads, compared to the FTSBS
method.

To measure the latency, we processed a batch of 200,000
transactions under different shard management strategies: no
adjustment, moderate adjustment (e.g., nc = 1000, s = 20),
and aggressive adjustment strategies (e.g., nc = 500, s = 10).
Latency was measured as the total time taken to process the
entire batch of transactions. The system configuration included
a fixed number of shards and validators per shard, while the
adjustment strategies varied the frequency and conditions un-
der which shards would split or merge. The metrics focused on
the time taken to process the batch and the impact of different
shard management strategies on this time. The transactions
were generated using the custom-built transaction generator
to ensure consistency in the test conditions. By comparing the
latency under different strategies, we aimed to demonstrate
DYNASHARD’s efficiency in handling transaction bursts and
adapting to changing workloads.

The results, as shown in Table I, indicate that DYNASHARD
shows significant improvements over FTSBS, particularly with
more aggressive shard management strategies. Without any
adjustment, DYNASHARD processed the transactions in 1551.9
seconds, compared to FTSBS’s 1692.3 seconds, showing an
8.3% improvement. With moderate adjustment, DYNASHARD
reduced the processing time to 784.3 seconds, a 17.8% im-
provement over FTSBS’s 953.8 seconds. The most aggressive
adjustment strategy showed the highest improvement, with
DYNASHARD processing the transactions in 371.5 seconds,
compared to FTSBS’s 526.7 seconds, achieving a 29.5%
improvement. These results demonstrate DYNASHARD’s su-
perior ability to efficiently manage shard configurations and
process transactions quickly, particularly under varying and
high workloads.

These results highlight DYNASHARD’s effectiveness in re-
ducing transaction processing latency through adaptive shard
management. The ability to dynamically adjust shard con-
figurations allows DYNASHARD to handle transaction bursts
more efficiently, ensuring quicker processing times and better
resource utilization. This experiment underscores the practical
benefits of DYNASHARD’s adaptive approach, making it a
compelling choice for scalable and responsive blockchain
systems.

D. Shard Utilization Efficiency

The objective of this experiment is to assess the effective-
ness of DYNASHARD’s adaptive shard management mech-
anism in balancing shard workloads. This experiment aims
to demonstrate how well DYNASHARD optimizes resource
utilization compared to FTSBS.

To evaluate shard utilization efficiency, we monitored shard
utilization before and after adjustments under varying transac-
tion volumes. The experiment involved recording the average
distance to perfect utilization (a measure of how balanced
the workloads are across shards) before and after the shard
management adjustments. Different transaction volumes were
simulated to test the system under both low and high work-
loads. The metrics focused on the improvement in shard uti-
lization efficiency post-adjustment. The shard utilization data
was collected continuously, and adjustments were made based
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TABLE I: Comparison of Latency (seconds) for Processing 200,000 Transactions

Adjustment Strategy DYNASHARD FTSBS Improvement
No adjustment 1551.9 1692.3 8.3%

Light (nc = 1500, s = 30) 1120.5 1304.2 14.1%
Moderate (nc = 1000, s = 20) 784.3 953.8 17.8%
Aggressive (nc = 500, s = 10) 371.5 526.7 29.5%

Very Aggressive (nc = 250, s = 5) 190.2 295.6 35.7%
Ultra Aggressive (nc = 100, s = 2) 95.1 165.8 42.6%

on predefined thresholds for transaction volume and resource
usage. This setup allowed us to evaluate how effectively
DYNASHARD’s adaptive shard management mechanism could
balance the load across shards.

The results, presented in Table II, show that DYNASHARD
significantly improves shard utilization compared to FTSBS.
Before adjustment, DYNASHARD had an average distance to
perfect utilization of 3.44, which improved to 0.73 after adjust-
ment, representing a 78.77% improvement. In contrast, FTSBS
had a pre-adjustment distance of 3.58, improving to 1.72 post-
adjustment, indicating a 51.96% improvement. These results
demonstrate DYNASHARD’s superior ability to dynamically
balance workloads and optimize resource utilization across
shards. These results highlight DYNASHARD’s effectiveness
in optimizing shard utilization, ensuring balanced workloads
across the system. The adaptive shard management mechanism
allows DYNASHARD to dynamically adjust shard configura-
tions based on real-time metrics, leading to more efficient
resource utilization and improved overall system performance.

E. Security and Robustness Testing

The objective of this experiment was to evaluate DY-
NASHARD’s security features under various attack scenarios,
testing its robustness in maintaining system integrity. We sim-
ulated common attacks, including cross-shard double-spending
and shard-level collusion, using a setup with 50 shards, 500
validators, and 10% malicious nodes. Key security measures
such as threshold signatures and a decentralized dispute res-
olution mechanism were implemented. The results showed
that DYNASHARD successfully mitigated these attacks, with
a 0% success rate for double-spending and 98% accuracy
in identifying collusion attempts. The system demonstrated
a swift recovery time of 3.2 seconds and imposed penalties
that reduced malicious actors’ capabilities by 95%. These
findings highlight DYNASHARD’s resilience and effective-
ness in enhancing security, reducing latency, and optimizing
shard utilization, making it a robust and scalable solution for
blockchain sharding.

F. Comparative Analysis with FTSBS

The objective of this experiment is to directly compare DY-
NASHARD with FTSBS in terms of overall performance and
adaptability. This experiment aims to highlight the strengths
and potential improvements of DYNASHARD over the existing
FTSBS method.

To conduct a fair and comprehensive comparison, we stan-
dardized the experimental conditions for both DYNASHARD
and FTSBS. The setup involved identical hardware configu-
rations, including the number of shards, validators per shard,

and simulated network conditions. We conducted experiments
focusing on three primary metrics: throughput (TPS), latency
for processing transactions, and shard utilization efficiency.
Various transaction rates and cross-shard transaction ratios
were tested to evaluate how each system handles different
workloads. By measuring and comparing these metrics under
identical conditions, we aimed to provide a clear performance
comparison between DYNASHARD and FTSBS.

The throughput comparison shows that DYNASHARD con-
sistently achieves higher TPS across different configurations
and cross-shard transaction ratios. For example, with 50 shards
and 500 validators, DYNASHARD achieved 236.59 TPS at
a 0% cross-shard ratio, compared to FTSBS’s 217.85 TPS.
This trend continues as the cross-shard ratio increases, with
DYNASHARD maintaining its performance advantage.

Table I presents a detailed comparison of latency for
processing 200,000 transactions between DYNASHARD and
FTSBS under various adjustment strategies. The results in-
dicate that DYNASHARD consistently outperforms FTSBS
in terms of reducing latency. Without any adjustments, DY-
NASHARD achieves an 8.3% improvement over FTSBS. With
light adjustments (nc = 1500, s = 30), the improvement in-
creases to 14.1%. Moderate adjustments (nc = 1000, s = 20)
result in a 17.8% improvement, while aggressive adjustments
(nc = 500, s = 10) yield a significant 29.5% improvement.
Very aggressive adjustments (nc = 250, s = 5) enhance the
performance further with a 35.7% improvement, and ultra-
aggressive adjustments (nc = 100, s = 2) achieve the highest
latency reduction with a 42.6% improvement. These findings
demonstrate that DYNASHARD’s adaptive shard management
effectively reduces transaction processing time, especially
under more aggressive adjustment strategies, highlighting its
superior capability to handle varying workload conditions
efficiently.

The shard utilization efficiency comparison, as shown in
Table II, demonstrates that DYNASHARD achieves a more
significant improvement in balancing shard workloads. Before
adjustments, DYNASHARD had an average distance to perfect
utilization of 3.44, which was reduced to 0.73 after adjust-
ments, resulting in an improvement of 78.77%. In contrast,
the FTSBS method had an average distance of 3.58 before ad-
justments and 1.72 after, yielding an improvement of 51.96%.
These results indicate that DYNASHARD is more effective in
optimizing shard utilization compared to FTSBS.

These comparative results highlight DYNASHARD’s advan-
tages in throughput, latency, and shard utilization efficiency.
DYNASHARD’s adaptive shard management and efficient
cross-shard transaction processing contribute to its superior
performance and scalability. The ability to dynamically adjust
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TABLE II: Comparison of Shard Utilization Before and After
Adjustment

Method Before Adjustment After Adjustment Improvement
DYNASHARD 3.44 0.73 78.77%
FTSBS [31] 3.58 1.72 51.96%

shard configurations and maintain balanced workloads allows
DYNASHARD to handle higher transaction volumes and com-
plex cross-shard transactions more effectively than FTSBS.
This comprehensive comparison underscores DYNASHARD’s
potential as a robust and scalable solution for blockchain
sharding.

G. Shard Load Evaluation

To comprehensively evaluate DynaShard’s performance, we
conducted experiments focusing on shard load conditions,
assessing the system’s effectiveness in handling varying trans-
action loads by measuring throughput, latency, and shard
utilization efficiency across different scenarios. Specifically,
we simulated low, medium, and high transaction rates on
a network with 50 shards, where the low load condition
involved a transaction rate of 100 transactions per second
(TPS), the medium load condition utilized 200 TPS, and the
high load condition tested 300 TPS. The results, summarized
in Table III, demonstrate DynaShard’s capability to maintain
high performance under different load conditions. Specifically,
DynaShard consistently delivers high throughput and main-
tains low latency, with utilization efficiency remaining above
89%, showcasing its robust adaptability and effectiveness in
managing shard loads efficiently.

TABLE III: DynaShard Performance Under Different Shard
Load Conditions

Load Condition Throughput (TPS) Latency (s) Efficiency (%)
Low 280.5 0.85 95.2
Medium 260.4 1.25 92.8
High 240.7 1.65 89.5

H. Approximation Factor Analysis

The objective of this analysis is to compare the approx-
imation factors of DYNASHARD and FTSBS across various
shard graph topologies. This comparison aims to highlight the
computational complexity and efficiency of both methods in
different configurations.

Approximation factors are mathematical representations of
how close a scheduling algorithm is to the optimal solu-
tion in terms of computational complexity. Different shard
graph topologies present unique challenges and complexi-
ties for transaction scheduling. The table below (Table IV)
outlines the approximation factors for DYNASHARD and
FTSBS under four different shard graph topologies: General
Graph, Hypercube/Butterfly/g-dimensional Grid Graph, Gen-
eral Graph with random k, and Line Graph.

Upon examining the approximation factors, it is evident that
DYNASHARD exhibits slightly higher complexity compared
to FTSBS across all shard graph topologies. For a general
graph, DYNASHARD has an additional logD factor, resulting

in O(kd logD) compared to FTSBS’s O(kd). For Hypercube,
Butterfly, and g-dimensional grid graphs, DYNASHARD has
an approximation factor of O(k log2 s), which includes an
additional log s factor over FTSBS’s O(k log s).

In the case of a general graph where k is chosen randomly,
DYNASHARD’s approximation factor is O(k logD · (k +
log s) log s), which introduces an extra log s term compared
to FTSBS’s O(k logD · (k + log s)). For line graphs, DY-
NASHARD has a complexity of O(k

√
d logD · log2 s), adding

an additional log2 s factor to FTSBS’s O(k
√
d logD).

While DYNASHARD’s approximation factors indicate a
slightly higher computational complexity, it is crucial to con-
sider the broader context and the additional features offered
by DYNASHARD. These include adaptive shard management
capabilities and enhanced security measures against malicious
attacks, which are not present in FTSBS. The adaptive shard
management allows DYNASHARD to dynamically adjust the
number and configuration of shards based on the system’s
workload, optimizing resource utilization and performance.
Furthermore, the enhanced security measures protect against
various attacks, such as cross-shard double-spending and
shard-level collusion, ensuring the integrity and reliability of
the system.

Overall, although DYNASHARD exhibits slightly higher
approximation factors compared to FTSBS, the additional
computational complexity is justified by the significant im-
provements in adaptability, security, and overall system perfor-
mance. These additional benefits make DYNASHARD a more
comprehensive and robust solution for blockchain sharding,
capable of addressing the limitations of existing methods
and providing a balanced trade-off between performance and
security.

V. PROOF OF SECURITY AND LIVENESS

In this section, we present proof of security and liveness.

A. Security Proof

Definition of security and assumptions. Security is defined
as no two honest nodes decide on different values for the
same transaction. DYNASHARD uses a variant of the Practical
Byzantine Fault Tolerance (PBFT) protocol for global consen-
sus. In this setup, there are n total nodes, among which up to
f nodes can be faulty, with the system designed to tolerate up
to f < n

3 faulty nodes. This configuration ensures robust fault
tolerance and secure consensus in the presence of potential
node failures.

Proofs: 1. Pre-Prepare Phase: The leader node proposes a
value v and sends a ‘PRE-PREPARE‘ message to all replicas.
All honest nodes receive the same v because it is signed by
the leader.

2. Prepare Phase: Upon receiving the ‘PRE-PREPARE‘
message, each honest node sends a ‘PREPARE‘ message to
all other nodes. An honest node i enters the ‘prepared‘ state
if it receives 2f +1 ‘PREPARE‘ messages, including its own.

3. Commit Phase: Each node that enters the ‘prepared‘ state
sends a ‘COMMIT‘ message to all other nodes. An honest
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TABLE IV: Comparison of Approximation Factors between DYNASHARD and FTSBS

Shards Connected as FTSBS DYNASHARD
General Graph O(kd) O(kd logD)

Hypercube, Butterfly, and g-dimensional Grid Graph O(k log s) O(k log2 s)
General Graph where, k is chosen as random O(k logD · (k + log s)) O(k logD · (k + log s) log s)

Line Graph O(k
√
d logD) O(k

√
d logD · log2 s)

node i commits to v if it receives 2f+1 ‘COMMIT‘ messages,
including its own.

Since there are 3f + 1 nodes and f < n
3 , at least 2f + 1

‘PREPARE’ and ‘COMMIT’ messages will always be from
honest nodes. Therefore, if an honest node commits to v, then
2f + 1 honest nodes must have agreed on v. Since 2f + 1
constitutes a majority, no two different values can reach this
threshold simultaneously. Hence, all honest nodes will decide
on the same value v, ensuring security.

Security analysis of adaptive shard management. The
adaptive shard management dynamically adjusts shard config-
urations based on transaction volume and resource utilization.
By monitoring these metrics, DYNASHARD prevents mali-
cious actors from manipulating the shard splitting or merging
thresholds (τs, τm). The process is decentralized and uses a
verifiable workload-aware algorithm to redistribute nodes and
transactions, ensuring that faulty nodes cannot influence shard
management decisions.

Security of cross-shard transaction processing. DY-
NASHARD ensures atomic and consistent cross-shard trans-
actions through a threshold signature scheme that requires
approval from a quorum of shards. This prevents any single
shard from validating a transaction alone, mitigating risks
like double-spending and replay attacks. The hybrid consensus
mechanism, combining global and intra-shard validation, adds
multiple layers of protection, securing the transaction process
from adversarial disruptions.

Security of shard state synchronization and dispute
resolution. Shard state synchronization in DYNASHARD relies
on Merkle tree proofs to ensure the integrity and consistency
of the global state. These proofs are cryptographically secure,
allowing the system to detect tampering. In disputes, the
decentralized resolution mechanism ensures transparency, with
shards providing verifiable evidence. Game-theoretic incen-
tives and penalties enforce honest participation and secure the
dispute resolution process.

B. Liveness Proof
Definition of Liveness and assumptions: Every honest

node eventually decides on some value. Network conditions
are partially synchronous, meaning messages are eventually
delivered within some unknown bounded time. There are n
total nodes, among which f are faulty. The system can tolerate
up to f < n

3 faulty nodes.
Proofs: 1.Leader Election: The protocol includes a mecha-

nism to replace a faulty leader. If the current leader is detected
to be faulty (e.g., by failing to send a valid ‘PRE-PREPARE’
message), a view change is triggered. Honest nodes eventually
agree on a new leader through the view change protocol.

2.Progress in Synchronous Periods: In periods of syn-
chrony, messages are delivered within a known bounded time.

The newly elected leader (assumed to be honest) sends a
‘PRE-PREPARE’ message. Honest nodes receive the ‘PRE-
PREPARE’ message and move to the ‘PREPARE‘ phase.

3.Reaching Consensus: Honest nodes send ‘PREPARE’
messages and move to the ‘prepared’ state upon receiving
2f +1 ‘PREPARE’ messages. Honest nodes send ‘COMMIT’
messages and decide upon receiving 2f + 1 ‘COMMIT’
messages. Given n = 3f + 1, the system ensures that 2f + 1
messages are sufficient for progress.

4.Handling Faulty Nodes: If a faulty leader is elected, the
view change protocol ensures that a new leader is elected
until an honest leader is chosen. During synchronous periods,
an honest leader ensures that the protocol proceeds to the
‘COMMIT’ phase.

Therefore, since the protocol guarantees progress in periods
of synchrony and can replace faulty leaders, every honest node
will eventually decide on a value, ensuring liveness. By lever-
aging the PBFT protocol, DYNASHARD’s global consensus
mechanism guarantees that: (i) No two honest nodes ever
decide on different values, ensuring security; (ii) Every honest
node eventually decides on some value, ensuring liveness.
Thus, DYNASHARD achieves both security and liveness in its
global consensus protocol.

VI. RELATED WORK

In this section, we review the existing related literatures.

A. Blockchain Sharding Frameworks

Blockchain sharding has been proposed as a promising
solution to address the scalability issues of blockchain systems.
Elastico [19] is one of the earliest sharding frameworks, which
divides the network into smaller committees, each responsible
for managing a subset of transactions. However, Elastico
does not support cross-shard transactions and relies on a
trusted setup phase. OmniLedger [20] introduces a more secure
and decentralized sharding protocol, utilizing a distributed
randomness generation process and a Byzantine-resilient con-
sensus mechanism. RapidChain [21] further improves upon
OmniLedger by introducing a fast and efficient cross-shard
transaction verification scheme based on intra-shard consensus
and inter-shard gossiping.

Recent works have focused on enhancing the security
and efficiency of blockchain sharding frameworks. Monoxide
[23] proposes a novel sharding protocol that leverages asyn-
chronous consensus zones and a cross-shard exchange protocol
to improve the throughput and latency of cross-shard trans-
actions. Meepo [32] introduces a cross-epoch data exchange
and an efficient cross-shard transaction execution mechanism
based on remote procedure calls (RPCs) to optimize the per-
formance of sharded blockchains. BrokerChain [24] proposes
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a broker-based sharding framework that dynamically adjusts
the assignment of nodes to shards based on their workload
and resource utilization. However, these solutions do not fully
address the challenges of adaptive shard management and
secure cross-shard transaction processing in the presence of
malicious actors.

Additionally, several studies have explored the impact of
cross-shard transactions on blockchain sharding performance
[33]. For instance, [18] highlights the significant impact of
cross-shard transactions on sharding performance, primarily
through theoretical analysis and simulations. Our experiments
further reveal that imbalanced load can greatly degrade per-
formance, especially concerning user-perceived confirmation
delays.

B. Load Balancing in Blockchain Sharding

Load balancing is a critical issue in blockchain sharding.
Recent works [24, 34] have proposed various load balancing
mechanisms. For example, [35] introduces a load balancing
mechanism based on transaction load prediction and account
relocation algorithms. In [34], a load balancing framework is
proposed where objects are frequently reassigned into shards.
However, these works primarily focus on algorithm design for
account allocation, lacking practical implementation in real
sharding systems. LB-Chain contributes a secure and efficient
account migration mechanism, addressing the performance
degradation caused by load imbalance, validated through mea-
surement studies in real systems.

Load balancing has also been extensively studied in tradi-
tional distributed databases [36]. However, blockchain shard-
ing presents unique challenges due to the presence of Byzan-
tine nodes, necessitating higher security guarantees compared
to databases [37]. LB-Chain proposes secure migration mech-
anisms without a trusted coordinator, essential for balancing
load in blockchain sharding.

C. Cross-Shard Transaction Processing Techniques

Efficient and secure cross-shard transaction processing is
a critical component of any blockchain sharding framework.
Chainspace [27] introduces a novel cross-shard commit proto-
col based on two-phase commit and Byzantine fault-tolerant
consensus to ensure the atomicity and consistency of cross-
shard transactions. AHL [22] proposes an atomic cross-shard
transaction processing protocol that leverages a lock-free ap-
proach and a hierarchical consensus mechanism to improve
the performance and security of cross-shard transactions.

More recent works have explored advanced cryptographic
techniques to enhance the security and privacy of cross-
shard transaction processing. SharPer [25] utilizes threshold
signatures and multi-party computation to enable secure and
efficient cross-shard transaction verification and execution.
Synchro [38] introduces a zero-knowledge proof-based cross-
shard transaction protocol that ensures the privacy and integrity
of cross-shard transactions while maintaining high throughput
and low latency. Qin et al. [30] proposes a compact and
efficient cross-shard transaction verification scheme based

on Merkle proofs and succinct non-interactive arguments of
knowledge (SNARKs).

While these techniques provide valuable insights into the
design of secure and efficient cross-shard transaction process-
ing protocols, they do not fully address the challenges of
adaptive shard management and the need for a comprehensive
framework that integrates shard reconfiguration, state synchro-
nization, and dispute resolution mechanisms.

Our work aims to bridge this gap by proposing a dynamic
and secure cross-shard transaction processing mechanism that
combines adaptive shard management, a hybrid consensus
approach for cross-shard transactions, and efficient shard state
synchronization and dispute resolution techniques. By address-
ing the limitations of existing solutions and providing a holistic
framework for blockchain sharding, our work contributes to
the advancement of scalable, secure, and efficient blockchain
systems.

VII. DISCUSSION

The application of DYNASHARD in IoT environments can
significantly enhance the performance and security of IoT
networks. IoT systems often involve a vast number of de-
vices generating a high volume of transactions, necessitating
a scalable and efficient transaction processing mechanism.
DYNASHARD’s adaptive shard management mechanism dy-
namically adjusts the number and configuration of shards
based on the system’s workload, optimizing resource utiliza-
tion and maintaining high throughput and low latency, which
are critical for IoT applications. Moreover, DYNASHARD’s
secure and atomic cross-shard transaction processing protocol
ensures the integrity and consistency of transactions across
multiple shards, addressing the security concerns prevalent in
IoT networks. The efficient shard state synchronization and
decentralized dispute resolution mechanisms further enhance
the robustness and reliability of IoT systems by detecting
and resolving inconsistencies and conflicts in a trustless man-
ner. By integrating DYNASHARD, IoT networks can achieve
scalable, secure, and efficient transaction processing, enabling
real-time data management and fostering the growth of IoT
applications across various industries.

Syetem Overhead. A potential limitation of DYNASHARD
is the overhead from continuous monitoring and dynamic shard
adjustments. While this improves resource utilization, frequent
reconfigurations could affect system efficiency, especially with
fluctuating workloads. To address this, DYNASHARD adjusts
the reconfiguration frequency based on real-time workload pat-
terns, reducing unnecessary changes. This ensures the benefits
of adaptive shard management outweigh the overhead, keeping
performance impacts minimal.

Trade-off between flexibility and communication over-
head. The adaptive shard management mechanism introduces
a trade-off between flexibility and increased communication
overhead due to shard reconfigurations. To minimize perfor-
mance impact, DYNASHARD adjusts the frequency of shard
splitting and merging based on workload stability, reducing un-
necessary changes during fluctuating periods. Although recon-
figurations involve additional communication between shards,
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these optimizations ensure that the benefits in scalability and
resource utilization outweigh the overhead, maintaining overall
system efficiency.

Handling delays in fully asynchronous networks. In
fully asynchronous networks, the lack of guaranteed message
delivery times could delay shard reconfigurations and consen-
sus finality. This may impact system performance, especially
in scenarios requiring cross-shard transaction processing. To
address this, DYNASHARD could implement asynchronous
consensus protocols like Async BFT, which tolerate higher
delays while maintaining security and system integrity.

Energy and resource efficiency of DYNASHARD. In
terms of energy consumption, DYNASHARD’s adaptive shard
management reduces redundant operations, leading to more
efficient resource use. Additionally, its optimized consensus
mechanisms lower computational load compared to traditional
sharding systems. These features make DYNASHARD more
practical for large-scale real-world deployment, balancing per-
formance with energy efficiency.

Simulations align with previous works. While real-world
blockchain datasets such as Ethereum would provide valuable
insights, using these datasets for large-scale experimentation
poses significant logistical and resource challenges. Given the
need to evaluate a wide range of scenarios under controlled
conditions, we adopted simulations in our experimental setup.
This approach is consistent with previous works in the field,
allowing for standardized comparisons and replicable results.
The simulated environments were carefully designed to reflect
real-world blockchain behaviors, including transaction patterns
and network conditions, ensuring that our results remain
representative and applicable to real systems.

FTSBS aligns with transaction efficiency. The decision
to use FTSBS as a comparison for DYNASHARD stems from
its focus on optimizing transaction scheduling, which directly
aligns with the goals of DYNASHARD in enhancing cross-
shard transaction efficiency. FTSBS presents an up-to-date,
optimized approach for sharding environments, making it a
relevant benchmark for evaluating dynamic shard manage-
ment. Additionally, FTSBS’s strong emphasis on improving
throughput and latency makes it an appropriate baseline for
assessing performance improvements. While classical shard-
ing methods like OmniLedger, RapidChain, Monoxide, and
BrokerChain provide foundational contributions to the shard-
ing space, they focus more on shard formation, security
mechanisms, and specific consensus models rather than the
adaptive shard management targeted by DYNASHARD. Thus,
FTSBS offers a more direct and relevant comparison for the
performance aspects of DYNASHARD. However, future work
will incorporate a comparison with these classical methods
to provide a more comprehensive evaluation of DYNASHARD
across various sharding approaches.

While DYNASHARD presents a novel and comprehensive
approach to dynamic and secure cross-shard transaction pro-
cessing in blockchain systems, it is important to acknowledge
its limitations and identify potential areas for future research.
One limitation of DYNASHARD is its reliance on a trusted
setup phase for the initial shard configuration and the genera-
tion of cryptographic parameters. Although this is a common

assumption in many blockchain sharding protocols, it may
not be suitable for fully decentralized and trustless environ-
ments. Future work could explore techniques for distributed
key generation and secure shard initialization without relying
on a trusted setup, enhancing the decentralization aspect of
DYNASHARD.

Another limitation is the overhead introduced by the adap-
tive shard management mechanism, which requires continuous
monitoring and adjustment of the shard configuration based
on the system’s workload. While this overhead is justified
by the improved performance and resource utilization, it may
still impact the overall efficiency of the system, especially in
scenarios with highly fluctuating transaction volumes. Further
optimizations and heuristics could be developed to minimize
the overhead of shard management while maintaining its
benefits. Additionally, the security analysis of DYNASHARD
assumes a partially synchronous network model and a limited
adversarial power. In practice, blockchain systems may face
more sophisticated attacks and network conditions. Future
research could investigate the robustness of DYNASHARD
under various adversarial models and network assumptions,
such as fully asynchronous networks or adaptive adversaries
with evolving strategies.

In terms of cross-shard transaction processing, DY-
NASHARD focuses on ensuring the atomicity and consis-
tency of transactions across shards. However, the privacy and
confidentiality of cross-shard transactions are not explicitly
addressed in our current design. Integrating privacy-preserving
techniques, such as zero-knowledge proofs or secure multi-
party computation, into the cross-shard transaction processing
protocol could be an interesting direction for future work. Ad-
ditionally, the integration of DYNASHARD with other scaling
solutions, such as off-chain transaction processing or state
channels, could further enhance the scalability and perfor-
mance of blockchain systems while maintaining security and
decentralization properties. Finally, the implementation and
evaluation of DYNASHARD in a real-world blockchain system
would provide valuable insights into its practical feasibility
and performance. Future work could involve the development
of a prototype implementation of DYNASHARD and its de-
ployment on a testnet or mainnet environment to assess its
scalability, security, and usability in a realistic setting.

VIII. CONCLUSION

In this paper, we introduced DYNASHARD, a dynamic
and secure cross-shard transaction processing mechanism for
efficient blockchain sharding. DYNASHARD addresses key
limitations of existing sharding solutions through adaptive
shard management, secure cross-shard transaction processing,
and efficient state synchronization and dispute resolution.
Our evaluation demonstrated that DYNASHARD significantly
improves transaction throughput and latency while maintaining
high security and decentralization. The framework dynam-
ically adapts to workload changes, ensuring consistent and
reliable performance. Despite its promise, future work must
address challenges such as the reliance on a trusted setup
phase and the integration with other scaling solutions. Overall,
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DYNASHARD paves the way for scalable, resilient, and de-
centralized blockchain systems. The principles and techniques
introduced in DYNASHARD are poised to serve as a foundation
for future research and innovations in blockchain sharding.
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