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Abstract—Receiving calls is one of the most universal functions
of smartphones, involving sensitive information and critical
operations. Unfortunately, to prioritize convenience, the cur-
rent call receiving process bypasses smartphone authentication
mechanisms (e.g., passwords, fingerprint recognition, and face
recognition), leaving a significant security gap. To address this
issue, we propose SCR-Auth, a secure call receiver authentication
scheme for smartphones that leverages outer ear echoes. It
sends inaudible acoustic signals through the earpiece speaker
to actively sense the call receiver’s outer ear structure and
records the resulting echoes using the top microphone. These
echoes are then analyzed to extract unique outer ear bio-
metric information for authentication. It operates implicitly,
without requiring extra hardware or imposing additional burden.
Comprehensive experiments conducted under diverse conditions
demonstrate SCR-Auth’s effectiveness and security, showing an
average balanced accuracy of 96.95% and resilience against
potential attacks.

Index Terms—Call receiver authentication, outer ear echoes,
smartphone, user security and privacy.

I. INTRODUCTION

HONE calls are one of the most widely used and trusted
communication forms on smartphones [1], often involving
sensitive information and critical operations, such as access-
ing health records [2] or authorizing financial transactions
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(a) An incoming call

(b) Call receiver authentication

Fig. 1. Illustration of SCR-Auth. When a call comes in, the earpiece speaker
and top microphone serve as an active sonar, authenticating the call receiver’s
identity by analyzing echoes from the outer ear.

[3]. While smartphones have adopted various authentication
mechanisms to prevent unauthorized access, including pass-
words [4], fingerprint recognition [5], and face recognition
[6], the call receiving process remains an exception. Prioritiz-
ing convenience, incoming calls bypass these authentications,
allowing anyone with physical access to the smartphone to
answer even if it is locked, which fails to meet essential
security standards. Therefore, it is crucial to develop an
effective call receiver authentication mechanism that ensures
only the legitimate smartphone owner can answer incoming
calls while maintaining convenience.

Our work focuses on earpiece-based call reception, in which
users hold the smartphone to the ear when answering a call.
This mode remains essential in privacy-sensitive, constrained,
or urgent situations, where loudspeaker or earphone options
are inappropriate or unavailable [7]. Several existing efforts
may be adapted for earpiece-based call receiver authentication
[11], [12], [13], [14], [15], [16], [17], [18], [19], [22]. Behav-
ioral biometrics methods, such as detecting smartphone pickup
gestures [11], [12], [13] or sliding interactions [14], [15], often
suffer from low reliability due to behavioral variability [20].
Other approaches focus on ear physiological characteristics,
capturing ear images with a camera [16], [17] or pressing the
ear against a capacitive touchscreen [18], [19]. However, these
approaches require additional user actions, root privileges, or
favorable lighting conditions, which limit their practicality.

In this paper, we propose SCR-Auth, a secure call receiver
(SCR) authentication method for smartphones based on outer
ear echoes. During the natural earpiece-based call receiving
process, SCR-Auth emits acoustic sensing signals through
the smartphone’s earpiece speaker, as illustrated in Fig. 1.
These signals interact with the user’s outer ear, undergoing
absorption and reflection before reaching the top microphone.
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The resulting echoes carry distinct outer ear biometric infor-
mation (e.g., auricle shape, ear canal geometry, and tissue
properties), which is unique to each individual and can be
analyzed for authentication. SCR-Auth achieves seamless and
implicit authentication without requiring extra hardware or
imposing additional burden, ensuring a smooth call receiving
experience.

Realizing SCR-Auth in practice faces several challenges.
Firstly, due to the multipath effect, the signals captured by
the smartphone’s built-in microphone include not only outer
ear echoes, but also direct path signals and environmental
reflections. These signal components overlap in both frequency
and phase, making it difficult to effectively filter the inter-
ference caused by the direct path signals and environmental
reflections. Secondly, outer ear echoes are sensitive to the
relative position between the ear and smartphone due to altered
signal propagation properties. This sensitivity leads to unstable
echo patterns, making reliable feature extraction a challenge.

To address the first challenge, we propose a two-step
denoising method. The process begins with a bandpass filter
to remove ambient noises, followed by the Magnitude-Phase
Spectrogram Subtraction (MPSS) method to suppress inter-
ference. Specifically, for each signal segment derived through
synchronization and segmentation, we compute both magni-
tude and phase spectrograms. A reference segment is then
chosen, which primarily contains direct path signals and
environmental reflections, free from outer ear echoes. Based on
the selected reference segment, we construct differential spec-
trograms in both the magnitude and phase domains, effectively
mitigating unwanted interference. To counteract the position
variability between the ear and smartphone, we design a
learning-based feature extractor. We first train a Convolutional
Neural Network (CNN) model using multi-user data collected
under diverse natural smartphone positions at call reception.
Through supervised learning, the CNN model is guided to
focus on identity-related features while disregarding secondary
factors, such as changes in the relative position between the
ear and smartphone. Based on the idea of transfer learning,
we then transfer the pre-trained model as a generalized feature
extractor to obtain reliable features. Finally, SCR-Auth adopts
a user-specific one-class classification model to verify the
legitimacy of the call receiver.

In summary, the contributions of this paper are as follows:

e We propose SCR-Auth, a novel call receiver authen-
tication scheme for smartphones that leverages outer
ear echoes, enabling secure and implicit authentication
without the need for extra hardware or user burden.

e To eliminate ambient noise, as well as interference from
the direct path signal and environmental reflections, we
propose a specially designed two-step denoising method,
encompassing bandpass filtering and spectrogram differ-
encing. To further enhance system robustness against
smartphone position changes, we introduce a pre-trained
neural network model that leverages transfer learning to
extract reliable features.

e We conduct comprehensive experiments under various
conditions to evaluate the effectiveness of SCR-Auth,
e.g., ambient noises, different postures, different periods,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

smartphone positions and device models. The results
show that SCR-Auth can achieve a balanced accuracy of
96.95% and a equal error rate of 1.53%. We demonstrate
the security of SCR-Auth by evaluating its resistance to
common attacks. Our source code is available at https://
github.com/luojiazhishu/SCR-Auth.

II. RELATED WORK

In this section, we review related works on call receiver
authentication for smartphones. Additionally, we explore
recent advancements in the field of acoustic sensing.

A. Call Receiver Authentication

Authenticating the identity of the call receiver is essential
for ensuring both security and privacy on smartphones. Call
receiver authentication methods can be broadly categorized
into two types: behavioral biometrics-based and physiolog-
ical biometrics-based methods. Table I summarizes several
representative approaches to call receiver authentication on
smartphones.

Behavioral biometrics-based methods authenticate the call
receiver by analyzing their behavior during phone call inter-
actions [11], [12], [13], [14], [15], [22]. These approaches
commonly use motion sensors to capture movement patterns,
such as how a user picks up the smartphone and positions it
to their ear, to verify their identity. However, these methods
often require users to follow specific movement patterns and
suffer from low accuracy due to the inherent variability and
uncontrollability of user behavior [20].

Physiological biometrics-based methods focus on the unique
physiological features of the ear to distinguish users. For
example, ear images captured using the smartphone camera
during a call are employed for authentication [16], [17], [23],
[24], [25]. However, these methods are sensitive to environ-
mental conditions, such as low light intensity. Additionally,
active user cooperation is often required to obtain a clear
and complete image of the ear. The smartphone touchscreen
can also serve as a capacitive sensor to capture a user’s
earprint [18], [19], [26]. However, they require the user to
active position their ear tightly and fully on the smartphone
screen to capture capacitive readings, changing user’s call
receiving habits. Moreover, these methods necessitate rooting
the smartphone and modifying the touchscreen module in the
kernel source. Additionally, some methods utilize acoustic
signals to sense the ear [21], [27]. However, these methods
rely on measuring the ear’s transfer function for authentication,
which is highly sensitive to the smartphone’s position. As a
result, they encounter substantial challenges in maintaining
accuracy when the smartphone’s position varies, limiting their
practical applicability in real-world scenarios. Recent studies
have explored the use of earphones to assist in authentication
on smartphones. However, these methods necessitate hard-
ware modifications to existing earphones and the integration
of additional sensors, such as cameras [8] or inward-facing
microphones [9], [10], [28], [29], [30], which increases costs
and leads to incompatibility with commercial earphones. Fur-
thermore, they require users to constantly carry earphones,
significantly compromising convenience and practicality.
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TABLE I
COMPARISON OF REPRESENTATIVE CALL RECEIVER AUTHENTICATION METHODS ON SMARTPHONES

. e No extra Little usage  No root Resilient across
Device System Distinctiveness 1 .o .. 3 .. 4 Accuracy Error rate
hardware' constraint= privileges® diverse conditions

Conti ef al. [11] Hand movements v X v X N/A ~ 7%

Fahmi et al. [16] Entire ear image v X v X 92.5% N/A

Smartphones | Bodyprint [18] Entire ear capacitive image v X X X 99.52% 7.8%
Itani et al. [21] Image & Pinna responses v X v X N/A 1.6%

SCR-Auth (ours) Inaudible outer ear echoes v v v v 96.95% 1.53%

. EarAuthCam [8]  Upper part of ear image X v v v 84.1% 8.36%
With earphones | ) Feho [9] Audible ear canal echoes x v v v 94.52%  N/A

T

Our method does not require any additional hardware or
impose extra burden. It demonstrates resilience to changes
in smartphone position and remains effective under various
environmental conditions.

B. Acoustic Sensing

Acoustic sensing has garnered significant attention in recent
years and finds applications across diverse domains. Leverag-
ing the capabilities of speakers and microphones, it enables
environment sensing [31], [32], [33], the monitoring of human
activities such as hand tracking [34], [35], [36], lip reading
[37], [38], [39], and breathing monitoring [40], [41]. Addition-
ally, acoustic sensing has demonstrated potential in identifying
human physiological biometrics, such as hands [42], [43], [44]
and faces [45], [46], [47].

For instance, Cai et al. [32] employ dual microphones to
estimate the speed of air-borne sound propagation, allowing
for the inference of ambient temperature. Echotrack [34]
determines the distance from the hand to the speaker, enabling
continuous hand tracking using triangular geometry. Lu et al.
[37] extract distinctive behavioral features of users’ speaking
lips through acoustic signals. EchoHand [43] complements
camera-based hand geometry recognition by integrating active
acoustic sensing for the other hand. EchoPrint [45] fortifies
face authentication against presentation attacks by emitting
inaudible acoustic signals to capture 3D facial features.

Our work uses the inaudible acoustic signal to sense the
outer ear without interfering with the normal voice conversa-
tion. Moreover, it provides implicit protection before the call
is answered and supports continuous authentication.

III. PRELIMINARIES
A. Outer Ear Echoes

The outer ear, as the external part of the auditory system,
serves as the primary interface between the human body
and the acoustic environment. As depicted in Fig. 2(a), it
comprises two main components: the auricle and the ear
canal. The auricle, composed of cartilage and skin, presents a
complex three-dimensional morphology with folds, ridges, and
contours that vary significantly across individuals [48]. The
ear canal, a narrow tube leading to the eardrum, also exhibits
variations in geometry (e.g., length and curvature) and wall

: No extra hardware implies that only commodity smartphones are used, without the need for additional devices or sensors.

: Little usage constraint indicates that there are no requirements on movement patterns, additional gestures or usage environments.

: No root privileges means that there is no need to root the smartphone or modify the kernel source.

: Resilient across diverse conditions means that the method is robust in various situations, such as different environments and user postures.

= Direct path siganl
= Reflected siganls
Ear canal

Auricle

(a) Outer ear structure (b) Echo signal composition

Fig. 2. Tllustration of the outer ear structure and the resulting echo signal
composition, including both direct and reflected paths shaped by the auricle
and ear canal.

composition (e.g., cartilage and bone) across populations [49].
These physiological characteristics affect how acoustic signals
are absorbed, reflected, and propagated within the outer ear,
resulting in user-unique echo responses.

As shown in Fig. 2(b), when the sensing signal s(¢) is
emitted from the speaker, it propagates through multiple paths:
the direct path to the microphone, and various reflected paths
involving the auricle and ear canal. The signal received by the
microphone r(¢) can thus be modeled as:

() = (hgirect () + hear(1)) * (1) + n(7) ey
Here, hgirect(f) and A, (7) represent the impulse responses of the
direct and outer ear-reflected paths, respectively. n(f) denotes
ambient sounds, and * denotes the convolution operator.

To understand how outer ear echoes encode user-specific
characteristics, we focus on A, (1), which can be modeled as
a discrete multipath channel:

N
hear(t) = ) i6(t = 7)) )

i=1

Each path i corresponds to a specific acoustic reflection influ-
enced by the user’s auricle or ear canal. «; is the attenuation
factor for path i, which is influenced by the outer ear’s geom-
etry and tissue composition. 7; is the time delay associated
with path i, governed by the propagation distance determined
by auricle shape and ear canal geometry. The resulting outer
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Top microphone

Earpiece
speaker

Bottom microphone ~ Main speaker

Fig. 3. The typical layout of speakers and microphones on smartphones.

ear echoes re,(f) are given by:

N
Fear() = hear(t) * 5() = ) ais(t — 7)) 3)
i=1
To analyze how the outer ear modifies the frequency-domain
characteristics of the echoes, we apply the Fourier transform
to Eq. 3, yielding:

N
Rear(f) = Hea( 1S (f) = Y aiS (f)e /" )

i=1
This expression reveals how each reflection path introduces a
frequency-dependent transformation to the original signal: the
magnitude is scaled by «;, while the phase is shifted by 2z f7;.
As a result, the echo spectrum R.,(f) is a complex-valued sig-
nal exhibiting user-specific variations in both magnitude and
phase across frequencies. Accordingly, we represent outer ear
echoes using the magnitude spectrum |R.,(f)| and phase spec-
trum /R, (f), which together capture the combined effects of
all reflection paths. These frequency-domain representations
serve as the foundation for extracting outer ear biometrics in

our system.

B. Motivating Examples

We present a toy example to explore the feasibility of
distinguishing between different call receivers based on outer
ear echoes. Two users are employed to simulate the call
answering process. The Google Pixel 3a is selected as the
authentication device, and acoustic data is collected at a
sampling rate of 48 kHz.

Specifically, we utilize the earpiece speaker to emit inaudi-
ble sensing signals and analyze the resulting echoes from the
outer ear using the microphone. The sensing signal is a 25-
millisecond chirp, ranging from 17 kHz to 23 kHz. After
deriving the ear-related signals, we compute their magnitude
and phase spectrums. The results are shown in Fig. 4. Fig.
4(a) and Fig. 4(c) present the magnitude and phase spectrums
for two instances of the same user, respectively. Fig. 4(b) and
Fig. 4(d) show the magnitude and phase spectrums for user
1 and user 2, respectively. We observe that the profiles of
two instances for the same user match each other closely. In
contrast, the profiles for the two users differ in both magnitude
and phase. These results demonstrate the feasibility of using
outer ear echoes for authentication, motivating the design of
SCR-Auth.
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C. Speaker and Microphone Selection

Fig.3 illustrates the typical layout of speakers and micro-
phones on modern commercial smartphones. These devices
are generally equipped with two speakers: a main speaker
positioned at the bottom and an earpiece speaker located
near the ear [50]. They also include two microphones: one
at the bottom and another at the top for noise cancellation
[51]. For our system, we select the earpiece speaker and the
top microphone for sending and receiving signals, as their
proximity to the ear supports better sensing.

IV. OVERVIEW OF SCR-AUTH

In this section, we first present the overview of SCR-Auth.
Then we introduce the threat model and design goals.

A. System Overview

The basic idea of SCR-Auth is to utilize the speaker and
microphone on a smartphone for outer ear acoustic sensing,
and then analyze outer ear biometric features from the received
echo signals to authenticate the call receiver. It consists of two
phases: enrollment and authentication. In the enrollment phase,
SCR-Auth builds the authentication model of the legitimate
user. In the authentication phase, SCR-Auth use the built
model to determine whether the call receiver is legitimate.

Fig. 5 illustrates the workflow of SCR-Auth, consisting
of four key modules: the data capturer, data preprocessor,
feature extractor, and authenticator. The data capturer uti-
lizes the smartphone’s earpiece speaker and top microphone
as an active sonar system. It sends inaudible chirp signals
and captures the resulting echoes. The data preprocessor
first synchronizes and segments the echo signals through a
correlation-based approach. A two-step denoising process is
subsequently applied, which involves the use of a bandpass
filter followed by the Magnitude-Phase Spectrogram Subtrac-
tion (MPSS) method. This approach eliminates ambient noises
and other interferences, thereby enhancing the signal from
the outer ear. The feature extractor first performs spectrogram
analysis to obtain normalized differential spectrograms. Then
it extracts the reliable features using a pre-trained CNN model
based on transfer learning. The authenticator trains a one-class
classification model during the enrollment phase based on the
collected samples from the legitimate user. After enrollment,
the model determines whether the user is legitimate.

B. Threat Model

For the sake of privacy and convenience, call receivers
typically adopt the earpiece mode on smartphones to answer
calls, holding the smartphone against their ear and listening
through the earpiece speaker [52]. In this paper, we focus on
this natural and realistic call-answering scenario. We assume
that the attacker has temporary physical access to the victim’s
smartphone when an incoming call occurs, such as in cases of
theft or when the device is left unattended. The attacker’s goal
is to bypass the proposed call receiver authentication system
in order to answer the call and potentially perform sensitive
operations. Based on the attacker’s capabilities and goals, we
consider the following attacks:
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Fig. 4. The acoustic profiles of outer ear echoes for two users. (a) Magnitude spectrums for the same user at two times. (b) Magnitude spectrums for two
users. (c) Phase spectrums for the same user at two times. (d) Phase spectrums for two users.
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Fig. 5. Workflow of SCR-Auth.

e Zero-effort attack. The attacker has no prior knowledge of
the legitimate user and simply attempts to hold the smart-
phone to his/her own ear, hoping to pass authentication
by chance.

e Mimicry attack. The attacker attempts to impersonate
the legitimate user through: (i) Behavioral mimicry, by
observing the user during authentication and imitating the
smartphone’s placement; and (ii) Physical spoofing, by
using a fabricated silicone fake ear to deceive the system.

e Replay attack. The attacker eavesdrops on acoustic signals
during a legitimate authentication process (e.g., using
a hidden microphone nearby) and replays the recorded
audio to the target smartphone via a speaker.

Other advanced attacks, such as signal injection attacks,
are outside the threat model considered in this work, as
they require privileged hardware access or specialized external
equipment. We provide a further discussion in Section VIII.

C. Design Goals

We think a suitable authentication scheme for a call receiver

should satisfy the following goals:

e Accurate and secure: The scheme should reliably authen-
ticate the legitimate user with a high success rate while
accurately rejecting unauthorized users. It should also
defend against common attacks.

e Implicit: The authentication process should not impose
additional burden and interfere with normal voice con-
versations.

e Universal: It should work on standard commodity smart-
phones, without requiring additional hardware or root
privileges, making it scalable for widespread deployment.

e Robust: The scheme should be resilient across varying
conditions, such as ambient noises, different postures,
different periods, and devices.

V. DESIGN OF SCR-AUTH

SCR-Auth consists of four modules: data capturer, data
preprocessor, feature extractor, authenticator. In this section,
we provide a detailed explanation of each module.

A. Data Capturer

SCR-Auth leverages the smartphone’s earpiece speaker to
emit acoustic sensing signals and the top microphone to
receive corresponding echoes. The data capture process inte-
grates seamlessly with the natural call-receiving procedure.
Specifically, when a call comes in, the user presses the accept
button to answer, which serves as the trigger for the system.
Upon this action, the earpiece speaker begins emitting inaudi-
ble sensing signals, while the top microphone continuously
records the resulting echoes for further processing.

SCR-Auth employs chirp signals as acoustic sensing signals,
characterized by a continuously varying frequency over time.
Chirp signals are well-suited for acoustic sensing applications
due to their excellent auto-correlation properties [53]. Fig.6
illustrates a designed chirp signal used in this study. Research
indicates that the upper limit of the human hearing range for
adults typically lies between 15-17 kHz [54]. Most smart-
phones support a maximum sampling rate of 48 kHz [43],
which limits the sensing signal’s maximum frequency to below
24 kHz in compliance with the Nyquist sampling theorem [55].
To ensure a broad sensing range while remaining imperceptible
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Fig. 7. The pilot signal for synchronizing the smartphone speaker and
microphone.

to users, we adopt the 25-millisecond chirp signal sweeping
from 17 kHz to 23 kHz, a range commonly used in acoustic
sensing applications [49]. The first and last 120 samples of the
chirp are tapered using a Hamming window to reduce potential
acoustic annoyance [56]. The interval between two chirps is set
to 25 milliseconds, resulting in a sensing signal that alternates
between a 1200-sample chirp and a 1200-sample silent period.

B. Data Preprocessor

After capturing the acoustic signals, we proceed with a
series of preprocessing steps: synchronization, segmentation,
and denoising.

1) Signal Synchronization and Segmentation: To ensure
precise segmentation of the acoustic signals, we propose a
two-step synchronization approach that aids in the alignment
of the signals for further analysis.

Initially, a pilot signal is appended before the sensing
sequence to provide coarse synchronization between the
smartphone’s speaker and microphone [57]. This pilot signal
consists of three 500-sample chirps, sweeping from 22 kHz to
18 kHz. An example of the transmitted pilot signal is shown in
Fig.7(a), with the corresponding received pilot signal depicted
in Fig.7(b). By detecting the presence of this pilot, we can
identify the starting point of the sensing process during the call
reception. Once coarse synchronization is achieved, the system
proceeds to divide the received signals into 50-millisecond
segments, each corresponding to a single sensing event.

In the second step, a finer level of synchronization is
applied within each segment to counteract any timing drifts
or distortions caused by the transmission channel. For each
segment, a matched filter is used to precisely determine the
arrival time of the transmitted chirp signal [58]. Specifically,
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Fig. 8. An example of the cross-correlation result.

the cross-correlation C,, between a received signal segment
r(f) and the transmitted chirp signal s(¢) is calculated, as
expressed in Eq. 5.

Cyy = r(t) = s*(=1) (%)

Here, * denotes the convolution operator, and s*(—¢) is the
complex conjugate of s(—). Fig. 8 illustrates an example of the
cross-correlation result. The index of the highest peak of the
cross-correlation result is identified as the start point. Based on
the length of the chirp signal, we finally derive 1200-sample
segments.

2) Signal Denoising: Due to the multipath effect, the
received signals include not only outer ear echoes, but also
direct path signals and environmental reflections. Addition-
ally, ambient noises are inevitably introduced during sound
propagation. In this study, we propose a two-step denoising
approach that combines bandpass filtering with magnitude-
phase spectrogram subtraction (MPSS) to effectively suppress
unwanted interference.

In the first step, we address ambient noises by applying a
Butterworth bandpass filter to remove out-of-band interference
[59]. The filter’s cutoff frequencies are set at 17 kHz and
23 kHz, corresponding to the expected frequency range of the
chirp signal. This selective filtering ensures that only the rel-
evant frequency components are retained, thereby improving
the signal-to-noise ratio.

In the second step, we apply the MPSS method to suppress
the interference from direct path signals and environmental
reflections. The key idea is to carefully choose a refer-
ence segment that primarily contains direct path signals and
environmental reflections, devoid of outer ear echoes. Since
interference components, such as direct path signals and
static objects reflections, remain consistent during sensing. By
subtracting these interference components, we can highlight
echoes from the outer ear.

By analyzing the process of call reception, we select the the
first signal segment, captured immediately after the user clicks
the “accept” button, as the reference segment. At this point,
the smartphone is typically stationary and has not yet been
placed on the ear. Once the smartphone is positioned on the
ear, changes in the received signal can be attributed to echoes
from the ear. The reference segment plays two crucial roles:
it acts as a template for the direct path signal, eliminating the
need for a quiet environment to detect this signal, and provides
a baseline for environmental interference during the call.

To perform MPSS, we use the Short-Time Fourier Trans-
form (STFT) [60] to compute the magnitude and phase
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Fig. 9. Normalized magnitude and phase spectrograms for two users. (a) A magnitude spectrogram for user 1. (b) A magnitude spectrogram for user 2.

(c) A phase spectrogram for user 1. (d) A phase spectrogram for user 2.

spectrograms for each signal segment, then construct differ-
ential spectrograms based on the selected reference segment.
Denoting the magnitude spectrogram as S,, and the phase
spectrogram as S,, the combined magnitude-phase spectro-
grams can be expressed as Spec = [S,,;S,]. The differential
spectrogram, represented as ASpec = [AS,;AS,], is then
calculated according to the Eq. 6:

(6)

where Spec, represents the spectrograms of the reference
segment, and Spec, corresponds to the spectrograms of one
sensing segment. The differential spectrogram serves as the
foundation for feature extraction.

ASpec = |Spec, — Spec,|

C. Feature Extractor

In this section, we perform spectrogram analysis and use
a pre-trained convolution neural network model to extract
reliable features.

1) Spectrogram Analysis: The acoustic signals captured by
the top microphone undergo complex interactions with the
user’s outer ear, including absorption and reflection. These
interactions are primarily governed by the unique physiolog-
ical characteristics of the auricle and ear canal, such as their
shape, geometry, and tissue composition. As shown in the
theoretical analysis (Section III-A), the outer ear causes user-
specific attenuation and propagation delays across different
frequency components of the echoes. To capture these effects,
we focus on the magnitude and phase spectrograms: the
magnitude spectrogram reflects frequency-selective attenuation
shaped by the outer ear’s geometry and material properties,
while the phase spectrogram encodes the propagation delays
introduced by user-specific acoustic paths. Together, these rep-
resentations preserve user-discriminative outer ear biometric
information.

Based on the output of the preprocessor, we construct
the normalized differential spectrogram, which includes both
magnitude and phase spectrograms. We first reduce computa-
tional overhead by focusing on informative spectral regions,
followed by min-max normalization [61] to scale all values
to the range [0, 1]. Specifically, we retain only the frequency
components above a threshold f;,., which is empirically set
to 12 kHz. Given a sampling rate of f; = 48 kHz and an
FFT size of Nys; = 256, the corresponding FFT bin index is
calculated as I, = M = 64. The refined differential
spectrogram is denoted as ASpecemp = [AS,; AS,,], where
ASyr = ASy (e 3, 2) and AS . = AS (I 2, 7). This results in

TABLE II
THE STRUCTURE OF OUR BASE CNN MODEL

Layer  Layer type Output shape  # Param
1 Conv2D + ReLU (63,156,16) 304

2 Conv2D + ReLU  (61,154,16) 2,320

3 Max Pooling (30,77,16) 0

4 Dropout (30,77,16) 0

5 Conv2D + ReLU  (28,75,32) 4,640

6 Conv2D + ReLU  (26,73,32) 9248

7 Max Pooling (13,36,32) 0

8 Dropout (13,36,32) 0

9 Conv2D + ReLU  (11,34,16) 4,624
10 Conv2D + ReLU  (9,32,16) 2,320
11 Max Pooling (4,16,16) 0

12 Dropout (4,16,16) 0

13 Flatten (1024) 0

14 Dense + ReLU (128) 131,200
15 Dropout (128) 0

16 Dense + Softmax  (30) 3,870

a spectrogram of size 65 x 158 x 2. Finally, the normalized
spectrogram ASpec,,,,, is computed as:

ASpec,,,, — min(aSpec,,,,)

ASpec )

norm —

max(aSpec,,,,) — min(aSpec,,,,)

As an example, we present the normalized magnitude and
phase spectrograms of two users in Fig. 9. We can observe
that spectrograms show differences for different users. These
spectrograms are later used as inputs for model training.

2) Learning-Based Feature Extraction: To extract reliable
features from magnitude-phase spectrograms, we design a
learning-based feature extractor to mitigate the variability
caused by smartphone position changes. The foundation of
this extractor is a convolutional neural network (CNN) with
superior capabilities in feature extraction and representation
[62], [63]. Leveraging multi-user data collected under diverse
natural smartphone positions during call reception, we train
the CNN model using supervised learning to extract identity-
related features while disregarding secondary factors, such as
changes in the relative position between the ear and smart-
phone. Based on transfer learning [64], we remove the final
layer of the pre-trained CNN and use the output from the
15th layer (as detailed in Table II) as a generalized feature
extractor. This approach enables the network to effectively
capture effective features of the outer ear.

Table II presents the architecture of our base CNN model,
which is designed with multiple convolutional layers to effec-
tively extract features. Each two-dimensional convolutional
(Conv2D) layer employs the rectified linear unit (ReLU) as its
activation function, mitigating the vanishing gradient problem.
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Fig. 10. Pairwise Euclidean distance heatmaps of feature vectors before (left)
and after (right) CNN-based feature extraction.

The max-pooling layer is used to down-sample the data from
the previous activation layer, which reduces the data dimension
and saves computational costs. Dropout layers are added after
the max pooling layers to prevent overfitting. The final layer of
the model is a dense layer with a softmax activation function,
which outputs the probability distribution for each class. The
kernel sizes for the Conv2D and max pooling layers are set
to 3 x 3 and 2 x 2, respectively. The whole model contains
158,526 parameters.

The base CNN model is trained using data from 30 partic-
ipants, with each contributing 500 acoustic samples. Aligned
with natural call reception habits, participants are asked to
place the smartphone down and pick it up again, simulating
a variety of smartphone positions. We employ the Adam
optimizer for parameter optimization and use categorical
cross-entropy as the loss function. The training process is
performed with a batch size of 50 over 10 epochs. Once
trained, the base model serves as the foundation of our feature
extractor, eliminating the need for retraining when applied
to unseen users. Leveraging the concept of transfer learning,
we transform the pre-trained base model into a generalized
feature extractor by removing its final layer (i.e., the 16th
layer) and retaining the preceding layers. This transformation
results in a lightweight 659 kB feature extractor, optimized for
deployment on mobile devices. Finally, the feature extractor
generates a 128-dimensional feature vector, which is utilized
in each authentication process to ensure efficient performance.

To analyze how the CNN contributes to feature extraction
and investigate the effectiveness of the extracted features,
we conduct a comparative analysis between the input and
output representations across different users. Each sample
is initially represented as a magnitude-phase spectrogram of
shape 65 x 158 x 2, and is mapped to a 128-dimensional
embedding through the CNN. We compute pairwise Euclidean
distances among 200 samples (4 users x 50 samples each)
under two settings: (i) based on raw spectrograms, and (ii)
based on CNN-extracted embeddings. The resulting distance
matrices are visualized as heatmaps in Fig. 10, where both
axes represent the 200 feature vectors. Brighter (whiter) colors
indicate smaller distances, while darker (bluer) colors indicate
larger distances. The results demonstrate that, compared to raw
spectrograms, CNN-extracted features exhibit improved intra-
class compactness and inter-class separability. This confirms
that the CNN effectively learns user-discriminative features
while suppressing irrelevant variations.
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D. Authenticator

In our scenario, the training dataset exclusively consists
of samples from the legitimate call receiver. Therefore, the
authentication task can be formulated as a one-class classifi-
cation problem, also known as a novelty detection problem
[65]. During the enrollment phase, we use the feature vectors
extracted by the pre-trained CNN-based model to train a one-
class classifier for the legitimate user. During authentication,
the classifier determines whether the incoming sample origi-
nates from the legitimate user. We consider two standard nov-
elty detection methods for this task: one-class support vector
machine (OCSVM) [66] and local outlier factor (LOF) [67].

VI. DATA COLLECTION

To collect the experiment data, we develop an Android data
collection app. We use the earpiece speaker to send inaudible
sensing signals and the top microphone as the receiver. After
receiving approval from our university’s institutional review
board (IRB), we started our data collection. We recruited 37
participants, aged from 20 to 27 (graduate and undergraduate
students), including 19 males and 18 females. We explicitly
informed the participants that the purpose of the experiments
was to authenticate the receiver of a call. Similar to answering
a call, participants were required to click the start button and
picked up the smartphone toward their ear. They were allowed
to make slight adjustments to the smartphone’s position to
cover different situations. In our data collection, we compiled
the following 8 datasets.

A. Dataset-1

This dataset is used to train our CNN-based feature extrac-
tion model. We recruited 30 participants to collect acoustic
signals on Google Pixel 3a. For each of them, we collected
500 acoustic signals. In total, we collected 30 x 500 = 15,000
acoustic signals for CNN model training.

B. Dataset-2

This dataset is utilized to evaluate the overall performance
of our system, which is collected under basic settings. We
collected acoustic sensing data from 30 participants on Google
Pixel 3a. Participants were seated naturally in a quiet environ-
ment. We collected 500 acoustic signals for each participant.
Besides, we collected acoustic sensing data from 7 unseen
participants to evaluate the performance of the CNN-based
feature extraction model for new users. We collected 500
acoustic signals for each new participant.

C. Dataset-3

To evaluate the performance of continuous authentication,
we collected acoustic sensing data from two situations: lis-
tening and speaking. Therefore, we recruited 5 participants
and performed acoustic sensing every ls. We collected 600
acoustic signals for each participant while they were solely
listening and another 600 acoustic signals while they were
speaking. In total, we collected 5 x 600 x 2 = 6,000 acoustic
signals for dataset-3.
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D. Dataset-4

To evaluate the influence of ambient noises, we use a laptop
as the noise source to simulate the noisy environment. The
laptop played the song Human Sound/Restaurant2’ at 50%
volume, which contains common noises in daily life. The
sound pressure in this noise environment is about 60-62dB.
30 participants performed this experiment. We collected 500
acoustic signals for each participant in the noisy environment.
Dataset-4 involves 30 x 500 = 15,000 acoustic signals.

E. Dataset-5

To evaluate the authentication performance over time, we
collected data from different time periods. Dataset-2 is col-
lected in the first round of collection. For 30 participants, we
collected data one week and two weeks after the first collection
round. For each round of collection, the acoustic signals are
30 x 500 = 15,000. We finally got 30,000 acoustic signals for
dataset-5.

F. Dataset-6

To evaluate the influence of human postures, we consider
four common postures: sitting, standing, walking, and running.
Dataset-2 was collected under the sitting posture. In this
dataset, we recruited 10 participants and collected acoustic
data for standing, walking, and running postures. For each
participant, we collected 250 acoustic signals for each posture.
Finally, we obtained 10 x 3 x 250 = 7,500 acoustic signals.

G. Dataset-7

To evaluate the impact of different smartphone positions,
we conducted controlled experiments involving variations in
both angle and distance. Specifically, we considered four tilt
angles and four distances between the smartphone and the
ear. Three participants were recruited, and for each angle and
each distance setting, 500 acoustic signals were collected per
participant. In total, we obtained 3 x (4 + 4) x 500 = 12,000
acoustic signals.

H. Dataset-8

To evaluate the performance of our system on different
devices, we collected acoustic data on two extra smartphones:
Google Pixel 4 and Vivo S12. 10 participants are recruited
to do this experiment. For each participant, we collected
500 acoustic signals on each device. As a result, we got
10 x 2 x 500 = 10,000 acoustic signals.

1. Dataset-9

To evaluate the system’s resilience against various attacks,
we collected four attack datasets using a Google Pixel 3a:
i) Dataset-9A (Zero-effort attack): Seven participants, without
prior knowledge, attempted to guess how legitimate users
hold the smartphone. We collected 7 x 500 = 3,500 acoustic
signals. ii) Dataset-9B (Behavioral mimicry attack): The same
participants observed and imitated the smartphone placement
of legitimate users. We got another 7 x 500 = 3,500 signals.
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TABLE III

MEAN/STANDARD DEVIATION OF BAC(%), EER(%), AND AUC UNDER
TwoO DIFFERENT ONE-CLASS CLASSIFIERS

Classifier | Mean/Std BAC ~ Mean/Std EER ~ Mean/Std AUC
OCSVM 96.95/1.45 1.53/1.35 0.9982/0.0025
LOF 96.13/3.18 1.90/1.56 0.9972/0.0034

iii) Dataset-9C (Fake ear attack): A fabricated silicone ear
was used to spoof the system, resulting in 2,000 acoustic sig-
nals. iv) Dataset-9D (Replay attack): We pre-recorded 2,000
legitimate acoustic signals and replayed them to the target
smartphone using a speaker to simulate replay attacks.

VII. EVALUATION

In this section, we report the evaluation results of the
proposed system. We first present the evaluation metrics, and
show the overall performance of SCR-Auth. Additionally, we
evaluate its effectiveness under different settings and security
against attacks. Finally, we present the authentication latency
of our system.

A. Evaluation Metrics

There are four possible results of classification: True accep-
tance (TA), True rejection (TR), False acceptance (FA), False
rejection (FR). We use the following metrics to evaluate the
performance of SCR-Auth. True acceptance rate is defined as
TAR = #AFR, which measures the proportion of samples
classified as positive among legitimate user samples. True
rejection rate is defined as TRR = TRQ—RFA, which measures
the proportion of samples classified as negative among illegal
user samples. Balanced accuracy (BAC) is the average of true
acceptance rate and true rejection rate, which is defined as
BAC = %(TAR + TRR). It is used to evaluate the accuracy
of imbalanced datasets. A higher BAC means better perfor-
mance of the system. False acceptance rate (FAR = %
represents the rate at which illegal samples are wrongly
accepted. False rejection rate (FRR = FRi—RTA) represents the
rate at which legitimate samples are wrongly rejected. Receiver
operation characteristic (ROC) shows dynamic changes of
TAR against FAR at different classification thresholds. The
area under the ROC curve (AUC) is used to measure the
probability that prediction scores of legitimate users are higher
than illegal users. Equal error rate (EER) is the point on the
ROC curve, where FAR is equal to FRR. A larger AUC and
lower EER mean better performance of the system.

B. Overall Performance

1) Performance of Different Classifiers: We use 30 users in
dataset-2 to evaluate the authentication effectiveness of SCR-
Auth. We employ a 5-fold cross-validation for each user to
split the data and train a one-class classifier. Then we test the
classifier model using the remaining data of the user as well
as data from other users.

This study considers two types of one-class classifiers: one-
class support vector machine (OCSVM) and local outlier factor
(LOF). Parameters such as the kernel, y, and v significantly
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TABLE IV
MEAN/STANDARD DEVIATION OF BAC(%), EER(%), AND AUC FOR NEW
USERS
Classifier | Mean/Std BAC ~ Mean/Std EER  Mean/Std AUC
OCSVM 96.48/1.63 2.78/1.95 0.9955/0.0043
LOF 93.49/4.59 2.89/2.21 0.9946/0.0063

impact the results for OCSVM, while for LOF, we consider
the n_neighbors parameter. We employ grid search to find the
best parameter combinations for each classifier. Ultimately, we
determine that the radial basis function kernel works best for
OCSVM, with y = ‘scale’ and v = 0.01. For LOF, the optimal
n_neighbors value is 3. Fig. 11 presents the ROC curves of
the two classifiers with the best parameters. The AUC for
OCSVM is 0.9983, and for LOF, it is 0.9973. A higher AUC
value suggests better system performance. The results indicate
that the OCSVM classifier outperforms the LOF classifier.
Table III shows the mean and standard deviation of BAC,
EER, and AUC metrics under two classifiers. OCSVM demon-
strates superior BAC and EER metrics compared to LOF,
thus we select it as our classifier for subsequent evaluations.
This experiment reveals that SCR-Auth achieves an average
BAC of 96.95% and an EER of 1.53% using the OCSVM
classifier. These results indicate that SCR-Auth is effective in
distinguishing users.

2) Per-User Breakdown Analysis: To evaluate the perfor-
mance of SCR-Auth across 30 different users, we present the
BAC of each user under the OCSVM classifier, as shown in
Fig. 12. Notably, user #25 achieves the highest BAC of 98.5%,
marking the best case among all participants. While the per-
formance of SCR-Auth varies across users, the BAC for every
user exceeds 95%, demonstrating the overall effectiveness of
SCR-Auth.

3) Performance of Feature Extractor on Unseen Users: To
evaluate the performance of the CNN-based feature extractor

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025
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on new users, we use data from 7 unseen participants, as
described in dataset-2, who are not included in the CNN
model’s pre-training. We use 5-fold cross-validation to split
the data. Then we train a one-class SVM (OCSVM) classifier
and a local outlier factor (LOF) classifier for each participant.
Table IV shows the mean and standard deviation of BAC,
EER, and AUC metrics for new users under two classifiers.
The BACs for OCSVM and LOF are 96.48% and 93.49%,
respectively. Compared to results in Table III, the BAC falls
0.47% for OCSVM and falls 2.64% for LOF. For the OCSVM
classifier, the BAC is over 96%, demonstrating the feature
extractor’s effectiveness for new users. Although the feature
extractor is trained on limited data, it is still available to a
wide range of users.

4) Performance of Continuous Authentication: We analyze
two common situations to evaluate the performance of con-
tinuous authentication. During the process of answering a
call, the receiver will be in one of two states: listening to
the caller or speaking to the caller. We train on dataset-2
and test on dataset-3 for evaluation. The results are shown
in Fig. 15. For listening and speaking states, the BACs are
96.89% and 95.73%, respectively. The EERs are 2.39% and

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 11,2025 at 02:54:24 UTC from IEEE Xplore. Restrictions apply.



SUN et al.: SCR-Auth: SCR AUTHENTICATION ON SMARTPHONES USING OUTER EAR ECHOES

BAC(%)

100 30
95 F25
90 F20 ~

x
85 I BAC | 5 E
80 [ EER | 102
75 L5
70 0

Quiet Noisy

Fig. 16. The BAC and EER performance under different noise conditions.

100 30
95 r25

90 20 ~

x

B BAC | 55

|Sa)

% B ERR |
75 r5
70 0

Week 1 Week 2 Week 3

BAC(%)
joe]
a1

Fig. 17. The BAC and EER performance at different time periods.

3.46%, respectively. The experimental results show that SCR-
Auth is available for continuous authentication.

C. Impact Factors Study

1) Impact of Ambient Noises: To assess the impact of
ambient noise on system performance, we compare the results
under different noise conditions. In this experiment, dataset-2,
which is collected in a quiet environment, is used for training.
We then evaluate the system’s performance on both dataset-
2 (for quiet conditions) and dataset-4 (for noisy conditions).
Fig. 16 shows the BACs and EERs in both quiet and noisy
environments. The BACs are 96.95% and 96.09%, and the
EERs are 1.53% and 3.45%, respectively. These results present
that SCR-Auth is available for different noise conditions.

2) Impact of Training Dataset Size: To investigate the
impact of training set size, we change the amount of training
data points for each user on dataset-2. Specifically, for each
user, we vary the training data points from 10 to 400 in steps
of 10 or 50 to train a one-class SVM classifier. Then we test
on the rest of the data. Fig. 13 shows the BAC and EER
for different training set sizes. As the size of the training
set increases from 10 to 400, the BAC rises from 64.35%
to 96.94%. The EER falls to 1.49% from 2.73% when the
training set size increases from 10 to 400. That may be because
the classifier can learn a better boundary with more legitimate
data. The BAC is over 90% with 80 training data points and
is over 95% with 200 training data points. With 50 training
data points, the EER is less than 2%. These results show that
our system is practical on mobile devices.

3) Impact of Different Postures: To evaluate the impact of
different postures, we use 10 participants’ data in dataset-2
and dataset-6. The data in dataset-2 is collected when the
participant is sitting. Dataset-6 contains data on standing,
walking, and running. We take turns selecting one posture for
training and testing the other postures for each participant.
For example, we train on sitting posture data and test on
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sitting, standing, walking, and running posture data. Similarly,
we train on the other three postures. Fig. 14 shows the BAC
of SCR-Auth under different postures. For example, when we
use sitting data for training and testing on the rest of the data,
the BACs for the four postures are 97.28%, 95.11%, 94.43%,
and 91.55%, respectively. As observed, the highest BAC is
achieved when the posture during both training and testing
remains the same. The results further reveal that SCR-Auth
performs better in sitting, standing, and walking postures than
in running. In fact, receiving a call while running is relatively
uncommon. Excluding the ‘running’ condition, SCR-Auth
achieves a BAC of over 94% in all other postures, underscoring
its applicability across diverse postures.

4) Impact of Different Smartphone Positions: To evaluate
the performance of our system under varying smartphone
placements, we conducted a dedicated experiment involving
three participants. In Dataset-7, we varied two key parame-
ters: the tilt angle of the smartphone and its distance from
the ear canal. Specifically, we considered four tilt angles:
30°, 40°, 50°, and 60° counterclockwise from the vertical
orientation (0°). In addition, we tested four distances between
the smartphone and the ear: 0 cm, 1 cm, 2 cm, and 3 cm.
For angle variation evaluation, the authentication model was
trained using data collected at 30°, and tested separately
on the remaining angles. The resulting BACs are 98.12%,
97.14%, 96.55%, and 95.78%, with corresponding EERs of
091%, 1.74%, 1.97%, and 3.51%. For distance variation,
the model was trained using data at O cm and tested on
data from other distances. The resulting BACs were 97.57%,
97.01%, 93.24%, and 91.32%, with EERs of 1.07%, 1.81%,
6.72%, and 8.45%. As shown in Fig. 18, the system maintains
strong authentication performance across all tested angles and
distances within 2 cm, consistently achieving BAC above
95% and EER below 5%. However, performance begins to
degrade when the distance exceeds 2 cm. This degradation
may be attributed to the fact that participants naturally tend
to place the smartphone within 0-2 cm of the ear during
normal usage. To enhance robustness against more extreme
placement variations, SCR-Auth can be extended to support
model updating based on newly collected samples.

5) Performance Over Time: In this experiment, dataset-2 is
used for training, while testing is performed on both dataset-2
and dataset-5. Specifically, data in dataset-2 is collected during
the first week, and data from the subsequent two weeks is
included in dataset-5. Fig. 17 shows the BACs and EERs
across different weeks. For weeks 2 and 3, the BACs are
95.77% and 95.42%, while the EERs are 4.51% and 4.78%,
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TABLE V

MEAN/STANDARD DEVIATION OF BAC(%), EER(%), AND AUC FOR
THREE DIFFERENT DEVICES

Device Mean/Std BAC ~ Mean/Std EER~ Mean/Std AUC
Pixel 3a 97.32/1.55 0.85/0.80 0.9994/0.0011
Pixel 4 97.62/1.47 0.86/1.29 0.9989/0.0027
Vivo S12 95.20/1.19 4.03/1.02 0.9926/0.0036

respectively. Compared to week 1, the BACs for week 2 and
week 3 show slight drops of 1.18% and 1.53%. This decrease
may be attributed to changes in users’ postures while holding
the device. To address this issue, SCR-Auth can be designed
to update the authentication model using newly collected data,
which is known as the model updating mechanism [68].

6) Impact of Different Devices: We collected data from
three smartphones to evaluate the performance on different
devices. Specifically, we use Dataset-2, which was collected
using the Pixel 3a, and Dataset-8, which contains data from
both the Pixel 4 and Vivo S12. For each device, we use
the fixed CNN-based feature extractor and train a new one-
class SVM for each user using data collected on that device.
This mimics the real-world scenario where a user switches to
a new device and goes through a lightweight re-enrollment
process by providing a small number of samples. As shown
in Table V, the mean BACs for the Pixel 3a, Pixel 4, and Vivo
S12 are 97.32%, 97.62%, and 95.20%, respectively, and the
corresponding average EERs are 0.85%, 0.86%, and 4.03%.
The results indicate the effectiveness of our system on different
devices.

D. Evaluation of Attack Resistance

To evaluate the system’s security against four types of
attacks, we test the authentication model trained on Dataset-
2 using attack samples from Dataset-9. The false acceptance
rate (FAR) is adopted to quantify the percentage of illegitimate
samples that were mistakenly accepted. In addition, we ana-
lyze the distribution and kernel density estimation (KDE) of
the prediction scores for each attack using a Gaussian kernel
to visualize the statistical characteristics of the outputs.

1) Zero-Effort Attack: In this scenario, attackers randomly
place the smartphone against their own ear. The system yields
a FAR of 0.94% with a mean prediction score of -0.399,
indicating a low likelihood that random attempts can bypass
authentication. This result highlights the discriminative power
of the biometric features extracted from outer ear echoes.

2) Mimicry Attack: We evaluate two forms of mimicry: (i)
behavioral mimicry attack, and (ii) fake ear attack. In the
behavioral mimicry attack, attackers observe the legitimate
user and attempt to replicate the smartphone placement. This
results in a FAR of 1.40% and a mean prediction score of
-0.416. In the fake ear attack, a fabricated silicone ear is used
to spoof the system, yielding a FAR of 1.05% and a mean
score of -0.429. Despite these efforts, both attacks exhibit low
success rates. This is primarily because SCR-Auth captures
not only the structural geometry of the outer ear, but also its
tissue and material properties, which are difficult to replicate
via visual observation or physical fabrication.
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Fig. 19. The kernel density of attack dataset’s prediction scores under four
different attack types.

TABLE VI

BYPASSED SAMPLES, FAR(%) AND MEAN PREDICTION SCORES UNDER
FOUR DIFFERENT ATTACKS

Attack Bypassed samples ~FAR  Prediction scores
Zero-effort attack 33(3500) 0.94 -0.399
Behavioral mimicry 49(3500) 1.40 -0.416
Fake ear attack 21(2000) 1.05 -0.429
Replay attack 31(2000) 1.55 -0.348

3) Replay Attack: In this scenario, attackers replay pre-
recorded legitimate signals through a speaker. The system
records a FAR of 1.55% and a mean prediction score of
-0.348. This is primarily because replayed signals fail to
reproduce the real-time physical interactions, such as the
phone-to-ear distance and angle. In addition, the recording
and playback process introduces distortions and amplifies
environmental reflections, which degrade the fine-grained echo
features essential for accurate authentication.

The consistently low FARs across all four attack types,
as shown in Table VI and Figure 19, demonstrate the effec-
tiveness of SCR-Auth in resisting a wide range of practical
spoofing threat.

E. Authentication Latency

We define the authentication latency of our system as
the time from recording the received signal to producing
the authentication result. Therefore, it consists of time for
three modules: data preprocessing, feature extraction, and
classification. We developed a prototype system named SCR-
Auth on Android to evaluate the authentication latency. We
evaluate one sensing process and compute the average latency
from 50 tries. On Google Pixel 3a, the average authentication
latency for the three modules is 82.8ms, 57.6ms, and 69.6ms,
respectively. In total, SCR-Auth requires 0.21s to complete
authentication.
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VIII. DISCUSSION

This section discusses the limitations of our current work
and outlines directions for future improvement.

Our study focuses on a realistic call-answering scenario
where users hold the smartphone to the ear in earpiece mode.
We acknowledge that SCR-Auth does not support all usage
modes. However, earpiece mode remains highly relevant in
practical situations such as ensuring privacy in public spaces,
responding quickly to urgent calls, or when earphones are
unavailable. Our goal is to secure this meaningful yet often
overlooked call-answering modality. SCR-Auth may reject
a legitimate user who registers with one ear but attempts
authentication with the other. In future work, we plan to extend
the system to support bilateral ear modeling.

When users switch smartphones, only the lightweight
one-class SVM requires retraining, while the CNN-based
feature extractor remains fixed. This design supports fast
and user-friendly re-enrollment. To further enhance cross-
device adaptability, we aim to investigate advanced tech-
niques such as device-invariant feature learning and domain
adaptation.

We evaluate the system’s resilience against four types of
practical attacks, assuming adversaries have temporary access
to the device during incoming calls. While more advanced
threats such as signal injection are theoretically possible, they
typically require privileged hardware access and specialized
equipment, which are beyond the threat model of this work.
Future research could explore integrating liveness detection
mechanisms to counter such attacks.

SCR-Auth is designed to operate seamlessly during the
natural act of answering a phone call, without requiring any
additional user interaction. During our experiments, partic-
ipants did not report noticeable discomfort or interruption,
suggesting good compatibility with natural behaviors. The
authentication latency measured in Section VII-E indicates that
the system can complete verification promptly, without intro-
ducing perceptible delay. Future work will include broader
user experience studies to systematically evaluate perceived
usability, satisfaction, and trust in real-world scenarios.

While our experiments involved a group of participants and
three smartphones, larger-scale studies are essential to con-
firm SCR-Auth’s applicability in diverse real-world scenarios.
Future work will expand the user base and device diversity to
further assess the system’s performance.

IX. CONCLUSION

In this paper, we propose SCR-Auth, a secure and implicit
call receiver authentication scheme for smartphones that lever-
ages outer ear echoes. SCR-Auth utilizes the earpiece speaker
to emit inaudible sensing signals and the top microphone to
record echoes. In particular, we propose a specially designed
two-step denoising method that combines bandpass filtering
with magnitude-phase spectrogram subtraction (MPSS) to
effectively suppress unwanted interference. Furthermore, we
design a learning-based feature extractor to counteract the
position variability, while a one-class classifier is used to verify
the legitimacy of the call receiver. Comprehensive experiments
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demonstrate that SCR-Auth achieves an average balanced
accuracy of 96.95% and can defend against potential attacks.
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