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Abstract—Pump-and-Dump (PD) schemes pose a significant
threat to the stability and fairness of Decentralized Finance
(DeFi) markets, often resulting in substantial financial losses for
investors. The early and accurate detection of these schemes is
crucial for preserving trust in the rapidly expanding cryptocur-
rency ecosystem. However, existing detection methods primarily
rely on post-event analysis and heuristic-based approaches, which
are often inadequate for real-time and precise identification of PD
activities. In this paper, we present PUMPWATCHER, an innova-
tive framework that employs Graph Neural Networks (GNNs)
and contrastive learning to detect PD schemes by modeling
transaction behaviors within temporal graphs. PUMPWATCHER
integrates advanced transaction graph construction, temporal
GNNs, and contrastive learning techniques to enhance node
and edge representations, thereby improving the detection of
intricate and covert PD operations. We validate PUMPWATCHER
on a dataset from Uniswap, encompassing 924,508 transactions
across 858 tokens within December 2022. The results show that
PUMPWATCHER outperforms state-of-the-art models, achieving
a superior balanced accuracy of 92.3%, while significantly mini-
mizing false positives and negatives. These outcomes highlight its
potential to set a new standard in real-time detection of market
manipulation, paving the way for more secure and resilient DeFi
ecosystems.
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I. INTRODUCTION

LOCKCHAIN and DeFi has revolutionized the financial

industry by enabling peer-to-peer transactions without the
need for traditional intermediaries [1], [2], [3], [4], [5]. As
of May 2025, the total value locked (TVL) in DeFi reached
$ 250 billion [6], underscoring its significant impact. However,
the rapid growth and inherent anonymity of DeFi have also
made it a target for various forms of market manipulation
[7], [8]. Among these, pump-and-dump (PD) schemes [9],
[10], [11] are particularly concerning, as they involve artifi-
cially inflating the price of a cryptocurrency, often ERC-20
tokens [12], the primary form of DeFi crypto assets, through
coordinated buying, followed by a sudden sell-off to profit
from the manipulated prices [13]. These schemes not only
undermine the integrity of DeFi markets but also lead to
significant financial losses for unsuspecting investors, making
the detection and prevention of PD activities a critical area of
research.

Existing research on PD schemes in DeFi has concen-
trated on detecting abnormal trading behaviors and market
manipulation through various analytical approaches [9], [10],
[11], [14], [15], [16]. Initial studies utilized statistical models
and heuristic-based methods to identify price anomalies by
analyzing historical trading data and transaction patterns [9],
[14]. These methods, while effective in post-event analysis, are
limited by their reliance on pre-defined thresholds and rules,
which restricts their applicability for real-time detection. To
enhance detection accuracy, transnational features, e.g., trading
volumes, price movements, and social media activities are
incorporated with traditional machine learning classifiers [11],
[16]. However, these models often face scalability challenges,
particularly when applied across a wide array of ERC-20
tokens with varying liquidity and trading behaviors. Besides,
advanced deep learning-based approaches, including convo-
lutional and recurrent neural networks, have been explored
to capture temporal dynamics and complex dependencies in
trading data [15]. Despite their potential, these deep learning
models require extensive computational resources and large
datasets, limiting their practical use in rapidly evolving DeFi
markets.

A. Motivation

Despite growing research on detecting PD schemes, existing
methods suffer from key practical limitations. They often
rely on static thresholds or hand-crafted heuristics, which
struggle to adapt to the dynamic, fast-moving nature of DeFi
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markets [17]. Additionally, their dependency on large vol-
umes of labeled training data restricts scalability across the
diverse and ever-changing ERC-20 token landscape. Many are
also computationally intensive, limiting their applicability in
real-time scenarios. In contrast, our method combines graph
learning [18] and contrastive learning (CL) [19], [20] to model
evolving token behaviors with minimal supervision and high
generalization.

B. Our Approach

In this paper, we propose PUMPWATCHER, the first tem-
poral graph learning-based system for detecting PD in DeFi
markets. The key idea behind PUMPWATCHER is to leverage
temporal GNNs to characterize the evolving, graph-structured
behavior of token transactions, capturing both the structural
and temporal dependencies that are crucial for identifying
manipulative activities. To further enhance the detection accu-
racy, it integrates CL, which not only refines the learned rep-
resentations but also reduces the dependence on large labeled
training datasets. The framework operates by first constructing
detailed transaction graphs for each ERC-20 token, which
encapsulate the trading activities and interactions over time.
These graphs are then processed through the PD-GNN module,
where temporal dynamics are learned, followed by CL to
optimize the feature representations. Finally, the refined repre-
sentations are fed into a LightGBM classifier, which accurately
distinguishes between normal and PD-related transactions,
providing a robust solution for real-time PD detection in DeFi
ecosystems.

C. Practical Deployment

In real-world scenarios, PUMPWATCHER can be effectively
implemented as a real-time monitoring tool in DeFi platforms,
particularly on exchanges like Uniswap. It continuously cap-
tures and processes transaction data, constructing dynamic
transaction graphs for each ERC-20 token. These graphs
are analyzed by the PD-GNN model to detect emerging
PD schemes. By incorporating CL, PUMPWATCHER operates
efficiently with limited labeled data, making it adaptable
to various market conditions. Deploying PUMPWATCHER
directly on blockchain nodes or within exchange infrastructure
enables timely and accurate detection of PD activities, helping
maintain market integrity and protect investors. In real-testing,
PUMPWATCHER was deployed in MetaTrust to detect PD
schemes on Ethereum from August 1 to 20, 2024. It suc-
cessfully identified 7,562 PD transactions across 181 ERC-20
tokens. Additionally, PUMPWATCHER flagged 4,198 transac-
tions as suspicious, pending further investigation, with initial
validations by blockchain auditors indicating a high proba-
bility of PD activity. Notably, PUMPWATCHER contributed
to preventing potential investor losses estimated at $ 75,200.
All detected PD schemes were responsibly disclosed to Web3
security communities, including MetaTrust and ChainUp.

D. Novelty Over Existing Works

Compared to existing PD detection methods, PUMP-
WATCHER introduces several key innovations to achieve
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robust and accurate detection in open-world settings.
(i) PUMPWATCHER is the first framework to leverage temporal
GNN for PD detection in DeFi markets, effectively modeling
the dynamic and complex transaction behaviors over time.
(i) It employs novel temporal graph learning techniques
that capture both the structural and temporal dependencies
within transaction data, enabling more precise and timely
identification of manipulative activities. (iii) PUMPWATCHER
integrates CL to refine the learned representations, enhancing
the distinction between normal and fraudulent transactions
while reducing the reliance on large-scale labeled datasets,
thereby improving scalability and adaptability across diverse
ERC-20 tokens.

E. Contributions
We make the following contributions:

e We propose PUMPWATCHER, the first temporal GNN-
based system for detecting PD schemes in DeFi markets.
This approach effectively captures the evolving and
complex behaviors of token transactions over time.

e We develop PD-GNN, a temporal GNN model within
PUMPWATCHER that integrates structural and temporal
transaction features. By incorporating CL, it enhances
representation quality, improving PD detection accuracy
and reducing reliance on extensive labeled data.

e We compile a large publicly available dataset containing
924,508 transactions across 858 different tokens, with
approximately 13% of transactions labeled as PD.

e We conduct comprehensive evaluations of PUMP-
WATCHER using real-world DeFi transaction data and
comparison with existing methods. Results demonstrates
that PUMPWATCHER outperforms state-of-the-art PD
detections, significantly reducing false positives and neg-
atives. We also real-test PUMPWATCHER on Ethereum
and present case studies of real PD.

F. Code Availability

We aim to promote open, reproducible, and transparent
research among the academic research community. We pub-
lish the dataset and codebase of PUMPWATCHER, which
can be obtained at GitHub repository: https://github.com/
Confringo233/PumpWatcher.

II. BACKGROUND
In this section, we present background of PD and GNN.

A. Pump and Dump in DeFi

PD schemes in this work refer specifically to coordinated
manipulative behaviors where the price of a token is artifi-
cially inflated through synchronized buying activity and hype
generation, followed by a rapid sell-off for profit [8], [11].
While speculative trading and volatility are inherent features
of both traditional and decentralized markets, we focus on
cases where market participants intentionally deceive others,
often by spreading misleading information or executing trades
across multiple pseudonymous accounts, to create a false
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sense of demand [16], [21]. These manipulative behaviors
are particularly harmful in DeFi due to the absence of cen-
tralized oversight, rapid transaction speeds, and low liquidity,
which amplify the impact of even small amounts of capital.
Unlike in traditional markets, where such activities may be
mitigated by regulation or market mechanisms, DeFi markets
are vulnerable to PD schemes, leading to significant market
disruption, investor losses, and long-term systemic risks. These
events typically unfold in three stages: setup (accumulation),
pump (hype-driven surge), and dump (rapid liquidation), often
resulting in sharp price collapses and substantial losses for
late participants. By targeting this class of manipulations, our
work aims to improve transparency, reduce systemic risk, and
support fairer participation in decentralized financial systems.

It is important to distinguish PD behavior in DeFi from
similar speculative patterns observed in traditional finan-
cial markets [8], [21]. In regulated environments such as
equity markets, mechanisms like circuit breakers, centralized
surveillance, and legal consequences help contain the sys-
temic impact of short-term manipulative activity. Moreover,
PD-like behaviors in small-cap or penny stocks often occur
within a tightly monitored ecosystem, allowing for post-event
regulatory action. In contrast, DeFi ecosystems are open,
permissionless, and largely pseudonymous, lacking centralized
oversight or enforcement. This creates a unique vulnerability
where coordinated manipulation can be executed at scale,
often across multiple tokens and platforms, with minimal risk
of accountability. As a result, what might be considered a
fringe market anomaly in traditional finance can escalate into
a systemic risk in DeFi, undermining market integrity, investor
trust, and token utility.

The detection and prevention of PD schemes in cryp-
tocurrency markets have emerged as critical research areas.
Unlike traditional financial markets, which are regulated by
entities capable of monitoring and mitigating such activities,
the decentralized and pseudonymous nature of cryptocur-
rency trading introduces unique challenges. Researchers have
adopted various techniques to address these challenges, includ-
ing machine learning models that analyze trading patterns,
social media signals, and other market indicators. These
approaches are designed to identify anomalous trading behav-
iors and market conditions that signal the presence of a
PD scheme. The integration of diverse data sources and
advanced algorithms has demonstrated considerable potential
in enhancing the accuracy and timeliness of PD detection,
thereby offering better protection for investors and contributing
to the overall integrity of cryptocurrency markets.

B. Graph Neural Networks

GNNs are a class of neural networks tailored for graph-
structured data, which are prevalent in domains such as social
networks, knowledge graphs, traffic systems, and molecular
structures [22], [23]. Among GNN architectures, convolutional
GNNs are particularly noteworthy for their neighborhood
aggregation strategy, often referred to as message passing. This
approach iteratively refines node representations by integrating
a node’s feature vector with those of its neighbors, similar
to convolution operations in Convolutional Neural Networks
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Fig. 1. Overview of PUMPWATCHER.

(CNNs). This strategy enables GNNs to capture complex
dependencies within graph data, making them effective in
learning rich node and edge representations.

Formally, given a graph G = (V, E) with nodes v € V and
edges e € E, where each node v has a feature vector x,, the
GNN updates the node representation h" at layer k as:

h*+D) = o | WOR® 1 Z w®

neigh
ueN'(v)

k
W |,

where W®' and Wg"e)igh are learnable weight matrices, N (v)
denotes the neighbors of v, and o is a non-linear activa-
tion function. Initially, h” = x,. GNNs leveraging this
approach have achieved state-of-the-art performance across
domains such as point cloud classification [24], recommen-
dation systems [25], spam detection [26], [27], and molecular
applications [28], [29], making them particularly suitable for
tasks like detecting PD schemes in cryptocurrency markets.

III. PUMPWATCHER

This section presents overview and detail each module.

A. Overview

As illustrated in Figure 1, PUMPWATCHER consists of
four key modules: the Transaction graph builder, PD-GNN,
CL-based representation enhancer, and PD detector. The
Transaction graph builder constructs individual transaction
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graphs for each ERC-20 token, capturing unique trading char-
acteristics. The PD-GNN processes these graphs by integrating
temporal information to model the evolving dynamics of
transactions, enabling effective node representation learning.
The CL-based representation enhancer refines these represen-
tations through contrastive learning, improving the model’s
ability to distinguish between normal and PD-related activities.
Finally, the PD detector classifies transactions using Light-
GBM, a supervised learning algorithm trained on labeled data
indicating PD-related transactions, chosen for its efficiency
and accuracy in handling large-scale data, leading to precise
detection and mitigation of PD schemes in DeFi markets.

B. Transaction Graph Builder

This module transforms ERC-20 token transfer records into
temporal transaction graphs to capture the evolving trading
behavior of each token. Specifically, we construct one directed
graph per token, where each node represents a unique wallet
address that has participated in transactions involving the
token. Directed edges represent token transfers, with each
edge annotated by a timestamp, transaction value, and other
contextual features. The temporal nature of the graph allows
us to model trading behaviors over time, enabling the GNN
to learn both structural and dynamic transaction patterns.

To extract features from the incoming transaction data, we
first identify the involved account nodes. Then, based on the
node-sharing relationship between the new transaction and
the existing transaction graph, we determine whether new
nodes need to be added. Subsequently, a new edge is added
and annotated with relevant transaction attributes (including
transaction amount, time, token type, etc.). As illustrated in
Figure 2, the graph construction and update process involves
three scenarios:

e Both source and destination nodes are shared: a new edge
is added between the existing nodes.

e Only one node is shared: a new node is added, and an
edge is created between the new node and the existing
one.

e No node is shared: two new nodes are introduced, and an
edge is established between them.

Currently, edges are limited to direct token transfers i.e.,

transactions in which tokens move explicitly from one address
to another. We do not incorporate indirect relationships or

inferred links, such as intermediary wallets that may par-
ticipate in multi-hop paths between source and destination
accounts. While this design simplifies the graph structure
and improves computational tractability, we acknowledge that
modeling indirect or latent connections (e.g., via shared lig-
uidity pools or repeated trading partners) could reveal more
sophisticated manipulation strategies. Incorporating such inter-
mediary structures into temporal graph modeling presents a
promising direction for future research.

1) Data Preprocessing: The preprocessing of ERC-20
token transfer data involves several key steps to ensure data
quality. First, duplicate records and entries with incomplete
data are removed. Next, a logarithmic transformation is applied
to the transaction value to mitigate the impact of extremely
large transactions. Subsequently, transaction time is converted
to Unix timestamp and shifted based on the time of the first
transaction to enhance the consistency of temporal features.
Finally, a transaction graph is constructed from the prepro-
cessed data, where accounts are represented as nodes and
transactions as edges, providing a solid foundation for precise
analysis and PD detection.

2) Node Feature Extraction: Extracting relevant and effi-
cient features from blockchain data is crucial for robust
graph learning and the effective detection of PD schemes. We
calculate the static and dynamic features for nodes and edges
using NetworkX.! In detail, we extract the following features
for each node:

e Closeness centrality measures the reciprocal of the aver-
age shortest path distance to all other nodes, indicating the
node’s accessibility within the network. High closeness
centrality can signal central roles in transaction networks,
often exploited in PD schemes.

e Betweenness centrality captures how frequently a node
appears on the shortest paths between other nodes, reflect-
ing its role as a critical intermediary. Nodes with high
betweenness centrality may be orchestrating large-scale
transactions typical of PD activities.

o In-degree centrality measures the number of incoming
edges, showing the node’s ability to attract transactions.
A sudden increase in in-degree centrality could indicate
coordinated buying during the pump phase.

1 https://networkx.org/documentation/stable/reference/algorithms/centrality
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o Qut-degree centrality reflects the number of outgoing
edges, representing the node’s transaction initiation activ-
ity. High out-degree centrality might suggest a rapid
sell-off during the dump phase.

o Degree centrality is the total number of connected edges,
indicating a node’s overall engagement in the network.
Nodes with unusually high connectivity could be central
to PD schemes.

e FEigenvector centrality assesses a node’s influence based
on the centrality of its neighbors, highlighting connections
to highly influential nodes. High influence nodes may be
key players in market manipulation.

e Katz centrality considers both direct and indirect connec-
tions, emphasizing the importance of short and long paths.
This feature helps detect complex interaction patterns that
could indicate coordinated market manipulation.

e PageRank measures a node’s importance based on ran-
dom walks through the network, adjusted for network
structure. High pagerank could suggest a node’s pivotal
role in driving trading dynamics during a PD event.

o Trading partner diversity measures the variety of an
account’s trading partners, calculated as the ratio of
unique partners to total transactions. Low diversity could
signal a strategy to manipulate prices with a few accounts.

These features intuitively link to PD activities by highlight-
ing nodes that demonstrate unusual influence, connectivity, and
centrality, key indicators of the orchestrated behaviors typical
in PD schemes in DeFi markets.

3) Edge Feature Extraction: For all transactions collected
between two nodes, we extract the following key features to
enhance graph learning:

e [nteraction count measures the frequency of transactions
between two nodes, highlighting regularity or sudden
spikes that could indicate coordinated market manipula-
tion.

e Average transaction value provides the mean transaction
size between two nodes, helping to identify significant
deviations that may signal abnormal trading behavior
typical of PD schemes.

e Transaction volatility captures the variance in transaction
values, reflecting the stability or fluctuation of trading
amounts. High volatility can suggest erratic behavior,
often seen during pump or dump phases.

e Transaction magnitude directly assesses the value of each
transaction, crucial for detecting large, unusual transac-
tions that are characteristic of PD activities.

These features are designed to capture key aspects of trading
behavior that are often manipulated during PD schemes.
Regular interactions might suggest an established trading
relationship, while sudden spikes could indicate a coordinated
effort to influence the market. Large deviations in average
transaction value or high volatility may signal the inflow or
outflow of capital in a manner consistent with PD strategies.
The magnitude of individual transactions is critical for identi-
fying outliers that could represent attempts to artificially inflate
or deflate token prices. Collectively, these features enable
robust detection of suspicious activities within DeFi markets,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Algorithm 1 Temporal Graph Sampling in PD-GNN
Input: the input graph g, list of numbers of neighbors to
sample per edge type for each GNN layer neig,,,, filter
of the timestamp to sample ts, time of the transaction
time, initial node set for the first layer neighbor sampling
neighbor,
Output: list of sampled frontiers frontiers,
1. frontiers < [neighbor] /| Init frontiers list
2: for k € neig,, do
3: g’ « subgraph(g, neighbor) /| Extract neighbor sub-
graph
g’ remove _edges(g[time] > ts) // Time filter
5: neighbor « select topk(g’,neighbor, g[time], k) /|
Top-k sampling
6:  frontiers.append(neighbor) /| Store frontier
return frontiers

supporting the effectiveness of the PUMPWATCHER system in
identifying and mitigating PD schemes.

C. PD-GNN

The objective is to enhance the detection of PD schemes
in DeFi markets by learning transaction representations that
incorporate temporal information. This approach models the
dynamic nature of transactions, accounting for both their
structural and temporal evolution. By integrating temporal
features, the temporal PD-GNN can more effectively identify
sudden and suspicious activities indicative of PD schemes. The
process involves several key steps: temporal graph sampling,
memory updating, time encoding, and node embedding.

1) Temporal Graph Sampling: The model begins by sam-
pling subgraphs based on temporal information. Let G, =
(Vi, E,) represent the graph at a specific time ¢, where V; is
the set of nodes and E; is the set of edges. Given a set of
seed nodes S and a timestamp filter zs, the sampling process
constructs a subgraph G’ = (V’, E’) by selecting nodes and
edges before the timestamp filter zs from the most recent
transaction involving any node in S. This approach ensures that
the sampled subgraph accurately reflects the evolving nature
of transactions over time.

Algorithm 1 details the temporal graph sampling procedure
used in PD-GNN, which extracts subgraphs under temporal
constraints to enable time-aware learning. The algorithm takes
as input the graph g, a list neig,,, specifying the number of
neighbors to sample at each GNN layer, a timestamp filter ts,
the edge time attribute fime, and an initial node set neighbor
(referred to as the seed nodes S above) for the first layer. For
each value in neig,,, (corresponding to each GNN layer), the
algorithm first extracts a subgraph g’ containing the current set
of neighbor nodes. It then removes from g’ all edges whose
time attribute exceeds s, ensuring temporal consistency. Next,
for each node in the current neighbor set, the algorithm selects
the top k neighbors based on the temporal information, where k
is specified by the current value in neig,,;. The newly sampled
neighbors are stored as a frontier and appended to the frontiers
list. This process is repeated for all GNN layers, and finally,
the algorithm returns the list frontiers, which contains the
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sampled neighbor sets for each layer, forming the basis for
temporal subgraph construction in PD-GNN.

2) Memory Updating: The model maintains a memory
vector m;(t) for each node i, updated with each transaction.
For an interaction e;;(#) between nodes i and j at time ¢,
the memory update function utilizes a Gated Recurrent Unit
(GRU) as m;(1) = GRUQ@m;(t7), e;i(t)), where m;(t") repre-
sents the memory of node i before the interaction. This
captures long-term dependencies and transaction patterns by
storing historical behavior in memory vectors. For a new
node, its memory is initialized to a zero vector and updated
incrementally as new transactions occur.

3) Time FEncoding: The model encodes the timestamp
of each transaction using a finite Fourier series. The time
encoding function ®(¢) is defined as:

O(t) = [cos(wot + ¥o), cos(wit + 1), ..., cos(wut + Y¥,)],
(D
where w and ¢ are learnable parameters. This encod-
ing captures periodic patterns and temporal dependencies
in the transaction data. The use of a Fourier series allows the
model to learn multi-scale temporal information, enabling the
prediction and understanding of various temporal dynamics.
4) Message Passing and Aggregation: This step involves
propagating information between nodes to update their rep-
resentations. For an interaction event e;;(f) between a source
node i and a target node j at time f, a message msg(f) is
generated as follows:

msg(t) = concat(m;(t”), m;(t"), e;;(t), D(2)). 2)

This message updates the memory vectors of both the source
and target nodes, capturing the directionality and context of
the interaction.

The model also addresses the scenario where multiple events
involve the same node within a batch by using an aggregation
strategy. Given a set of messages msg;(t1),...,msg;(t,) for

events involving node i occurring at times #y,...,#, < t, the
aggregated message misg;(¢) is computed as:
msg;(t) = max(msg;(t1), ..., msg;(tp)). 3)

5) Node Embedding: The node embedding process gen-
erates time-aware embeddings by integrating temporal and
structural features. For a node i at time ¢, the embedding z;(¢)
is computed by aggregating messages from its neighbors:

) =0 D aij-concat (m;(t), e;j(0. @ (t - 1)) | @)
JEN ()

where o denotes a non-linear activation function, N (i) is the
set of neighbors of node i, and «;; represents the attention
weights, computed as:

exp(e;;)

== 5
D ke o exp(eix) ©)

Q;j
This attention mechanism prioritizes more relevant transac-
tions by assigning them higher importance in the embedding
computation.
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6) Edge Embedding: The edge embedding step updates
the representations of edges using the newly computed node
embeddings. For an edge ¢;;() between nodes i and j, where
zi(#) and z;(#) denote the embeddings of nodes 7 and j at time ¢,
the updated representation h;;(¢) is computed as:

h;j(t) = concat(z;(1), z;j(1), ;;(t)). (6)

These enhanced edge representations, integrating temporal
and structural information, improve the model’s ability to
detect PD schemes by capturing the evolving transaction
dynamics and complex interactions within the DeFi market.
The enhanced representations are then utilized in downstream
tasks such as detecting PD activities.

D. CL-Based Representation Enhancer

The CL-based representation enhancer aims to refine node
and edge representations using contrastive learning techniques.
The core idea is to enhance these representations by maxi-
mizing the similarity between positive samples (transactions
exhibiting normal behavior) and minimizing the similarity
between negative samples (transactions associated with PD
schemes). This contrastive learning approach effectively dis-
tinguishes between normal and anomalous activities, thereby
improving the model’s detection capabilities. The module
integrates contrastive learning into the GNN framework, allow-
ing the model to capture subtle differences in transaction
patterns that may indicate fraudulent behavior. This process
involves three main steps: sample creation, contrastive loss
computation, and representation optimization.

1) Sample Creation: Positive and negative pairs are gen-
erated from the transaction graph G = (V,E), where V and
E represent the sets of nodes and edges, respectively. For
each node i, positive pairs (i, j7) are created by selecting
neighboring nodes j* known or suspected to be involved in
PD schemes. Negative pairs (i, j~) are formed by selecting
nodes j~ that demonstrate normal transactional behavior. This
process ensures that the model learns to effectively differenti-
ate between normal and anomalous behaviors.

2) Contrastive Loss Computation: The contrastive loss £
for each pair is computed as follows. Given the embeddings
Zi, Zj+, and z;j- for nodes i, jT, and j, respectively, the loss
function £ is defined by:

1
L=Wp- ZW Z llzi = zj+113

ieSp Jjtesp
1 2
+ Wy - Z e Z llzi = zj-13
€Sy N JeSN
. 2
+ Wp - Z Z max (O, margin — ||z;+ — Zj-”z) ,

jteSpJjeSn

)

where S p and Sy are the sets of positive and negative samples.
Wp, Wy, and Wp are the weights assigned to the positive,
negative, and differentiating loss components, respectively.
Margin is a predefined threshold. || ||% measures the Euclidean
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distance between two vectors by computing the square root of
the sum of the squared differences between their components.
The first two terms of the contrastive loss minimize intra-
class distances for positive and negative pairs, while the third
enforces a margin between them, shaping the embedding
space to clearly separate normal and PD-related behaviors.
Gradients of the loss are computed via backpropagation and
flow through the temporal PD-GNN and contrastive encoder,
enabling updates to GNN weights, attention mechanisms, and
memory functions. This end-to-end optimization, performed
using adaptive moment estimation (Adam) or stochastic gra-
dient descent (SGD), allows the model to learn discriminative
temporal and structural features that generalize across diverse
trading patterns.

3) Representation Optimization: The node and edge rep-
resentations are updated by minimizing the contrastive loss.
Embeddings z; are optimized using SGD or other appropriate
optimization algorithms. The update rule is given by:

Zi < 2 =NV, L, ®)

where 7 is the learning rate, and V. L is the gradient of
the contrastive loss with respect to the embedding z;. This
iterative process refines the embeddings, making them more
discriminative for PD detection.

E. PD Detector

This module uses LightGBM, a gradient boosting frame-
work developed by Microsoft, as the downstream classifier
for detecting PD schemes. LightGBM is optimized for effi-
ciency and accuracy, particularly in handling large-scale,
high-dimensional datasets. It employs a histogram-based deci-
sion tree algorithm for faster training and low memory
consumption, making it ideal for processing large datasets in
memory-constrained environments. Additionally, LightGBM’s
optimized split algorithm and histogram approach enhance
accuracy by reducing loss function values. The framework
also supports parallel training, effectively utilizing multi-
core CPUs, which is crucial for large-scale datasets. These
attributes make LightGBM well-suited for the PD Detec-
tor module, ensuring efficient and accurate classification of
transactions as either normal or PD-related.

IV. PERFORMANCE EVALUATION
In this section, we report performance of PUMPWATCHER.

A. Experimental Setup

1) Dataset: Our dataset, developed in collaboration with
Uniswap [30] and MetaTrust [31], spans the one-month period
from December 1 to 31, 2022. All ERC-20 token transactions
were obtained from public sources using the Etherscan API,
covering the full Ethereum ledger regardless of whether trans-
actions directly involved Uniswap. After initial extraction, we
performed rigorous data cleaning: we removed transactions
containing null fields, special symbols (e.g., @, %, #) in token
names that are often associated with fraudulent characteris-
tics such as “high returns”, or severe data-type mismatches

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

TABLE I
STATISTICS OF THE DATASET

Dataset Split Txs Timeframe  Accounts  Tokens
Training 647,155 (70%) 21.23 days 18,539 682
Validation 138,676 (15%) 5.43 days 7,328 247
Test 138,677 (15%) 4.34 days 6,304 229
Total 924,508 (100%) 1 month 26,549 858

(e.g., non-numeric values in amount fields). We then excluded
all transactions involving scam tokens previously flagged by
platforms such as Etherscan. From the remaining tokens,
we selected those with a monthly transaction count between
300 and 3,000 to balance coverage and noise, resulting in
924,508 valid transactions across 858 tokens. Ground truth
labels were generated using a heuristic-based labeling engine
and validated with manual review by MetaTrust. The resulting
graphs comprise 338,744 nodes and reflect both common and
suspicious trading behaviors within the DeFi ecosystem.

As shown in Table I, the dataset exhibits several key
characteristics: (i) since each transaction involves two par-
ticipating accounts, each account engages in approximately
69.65 (924,508 x 2 + 26,549 ~ 69.65) transactions across all
tokens over the month, averaging two transactions per day; (ii)
accounts interact with an average of 12.76 different tokens,
reflecting a broad range of trading interests; (iii) despite
an average of 5.46 transactions per token per account, our
model is designed to detect anomalous behavior even with this
relatively sparse data. For model training and evaluation, the
dataset is temporally split, with 70% used for training, 15%
for validation, and 15% for testing. This approach ensures the
model is evaluated on future, unseen data, closely aligning
with real-world application scenarios.

2) Metrics: We employ the following metrics to assess
the performance of PUMPWATCHER in detecting DeFi PD
schemes. False positive rate (FPR) measures the proportion of
normal transactions incorrectly classified as PD-related. False
negative rate (FNR) quantifies the proportion of PD-related
transactions that are missed by the detector. F1 score provides
a harmonic mean of precision and recall, reflecting the balance
between detecting true positives and avoiding false positives.
Additionally, we utilize the balanced accuracy (BAC) metric,
which averages the sensitivity and specificity to account for
class imbalance. To visually assess the performance, we also
plot Receiver Operating Characteristic (ROC) curves, which
illustrate the trade-off between the true positive rate and
false positive rate at various threshold settings, providing a
comprehensive view of the classifier’s discriminative ability.

3) Implementation: Our model is trained over 30 epochs
with a batch size of 512, using the Adam optimizer with
a learning rate of 0.0001. We experimented with node
embedding dimensions, memory dimensions, and temporal
dimensions ranging from 16 to 256, and set the edge embed-
ding dimension at 256 with an advanced edge embedding
dimension of 275. We explored GRU and RNN for memory
updating, utilized the latest message in sequence aggregation,
and varied the number of neighbors (5, 10, 15, 20), sample
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TABLE I

FPR, FNR, F1, AND BAC UNDER DIFFERENT
EMBEDDING DIMENSIONS

Dim FPR FNR F1 BAC

16 0.081 0.159 0.712  0.880

32 0.030 0.157 0.828 0.906

64 0.050 0.117 0.801 0916

128 0.077 0.077 0.763 0.923

256 0.009 0324 0.779 0.833
TABLE III

FPR, FNR, F1, AND BAC UNDER DIFFERENT
NUMBERS OF NEIGHBORS

Neighbors FPR  FNR F1 BAC
5 0.028 0.253 0.775 0.859
10 0.077 0.077 0.763  0.923
15 0.017 0.224 0.823 0.879
20 0.019 0.277 0.783  0.852

methods (Top-k, Random), attention heads (4, 6, 8), and
k-hop (1, 2, 3) to optimize temporal graph learning, with a
feature and attention dropout of 0.6. In the Contrastive Learner,
we adjusted the margin parameter, testing values from 0.5
to 100, to enhance the separation of positive and negative
samples. The final classification is performed by a LightGBM-
based Transaction Classifier, where we experimented with the
number of leaves (63, 127, 255), learning rates (0.1, 0.2),
feature fraction (0.9), bagging fraction (0.9), and bagging
frequency (5) to ensure robust and efficient detection of
PD schemes in DeFi markets.

B. Overall Performance

1) Impact Of Different Embedding Dimensions: For the
evaluation of the temporal PD-GNN module, we fixed the
number of nearest neighbors at 10, the number of attention
heads at 4, the number of hops at 2, and used concatenation
for node embedding generation, with top-k sampling for GNN
and GRU for memory updating. We then varied the embedding
dimension between 16, 32, 64, 128, and 256. Table II presents
the results under these configurations. With an embedding
dimension of 16, the model achieved an FPR of 0.081, an
FNR of 0.159, an F1 score of 0.712, and a BAC of 0.880.
Increasing the embedding dimension to 32 resulted in an
FPR of 0.030, an FNR of 0.157, an F1 score of 0.828, and
a BAC of 0.906. With an embedding dimension of 64, the
FPR was 0.050, the FNR was 0.117, the F1 score was 0.801,
and the BAC was 0.916. An embedding dimension of 128
resulted in an FPR of 0.077, an FNR of 0.077, an F1 score
of 0.763, and a BAC of 0.923. Finally, with an embedding
dimension of 256, the FPR decreased to 0.009, but the FNR
increased to 0.324, resulting in an F1 score of 0.779 and a
BAC of 0.833. These results indicate that while increasing
the embedding dimension can enhance performance, exces-
sively large dimensions may lead to overfitting and decreased
generalization.

2) Impact of Different Number of Neighbors: For the evalu-
ation of the temporal PD-GNN module with a fixed embedding
dimension of 128, we varied the number of neighbors between
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TABLE IV

FPR, FNR, F1, AND BAC UNDER DIFFERENT
NUMBERS OF ATTENTION HEADS

Heads FPR  FNR F1 BAC

4 0.077 0.077 0.763  0.923

6 0.128 0.183 0.618 0.844

8 0.125 0.199 0.615 0.838
TABLE V

FPR, FNR, F1, AND BAC UNDER DIFFERENT K-HOP GNNs

K-hop FPR FNR F1 BAC
1 0.140  0.078 0.653  0.891
2 0.077 0.077 0.763  0.923
3 0.073 0.225 0.690 0.851

5, 10, 15, and 20. Table III presents the results under these
configurations. With 5 neighbors, the model achieved an FPR
of 0.028, an FNR of 0.253, an F1 score of 0.775, and a BAC
of 0.859. Increasing to 10 neighbors improved generalization,
reducing both FPR and FNR, and yielded the highest BAC
of 0.923. Although further increasing to 15 and 20 neighbors
reduced training error, we observed that validation loss began
to increase, signaling overfitting to the training set. These
results highlight the importance of balancing neighborhood
size to maximize model expressiveness while preserving gen-
eralization.

3) Impact of Different Number of Attention Heads: For the
evaluation of the temporal PD-GNN module, we fixed the
dimensionality at 128 and the number of neighbors at 10. We
then varied the number of attention heads between 4, 6, and 8.
Table IV presents the results under these configurations. With
4 attention heads, the model achieved an FPR of 0.077, an
FNR of 0.077, an F1 score of 0.763, and a BAC of 0.923.
Increasing the number of heads to 6 resulted in an FPR of
0.128, an FNR of 0.183, an F1 score of 0.618, and a BAC
of 0.844. Using 8 heads, the FPR decreased to 0.125, the
FNR was 0.199, the F1 score was 0.615, and the BAC was
0.838. These results suggest that 4 heads provide a better
performance.

4) Impact of Different Number of GNN Layers: For the
final evaluation of the temporal PD-GNN module, we fixed the
dimensionality at 128, the number of neighbors at 10, and the
number of attention heads at 4. We then varied the number of
hops (k-hop) between 1, 2, and 3. Table V presents the results
under these configurations. Using 1-hop, the model achieved
an FPR of 0.140, an FNR of 0.078, an F1 score of 0.653, and
a BAC of 0.891. Using 2-hop, the FPR was 0.077, the FNR
was 0.077, the F1 score was 0.763, and the BAC was 0.923.
With 3-hop, the FPR decreased to 0.073, the FNR increased to
0.225, the F1 score decreased to 0.690, and the BAC dropped
to 0.851. These results indicate that the 2-hop configuration
achieves the best balance between false positive rate and false
negative rate.

5) Impact of Node Embedding Methods for Edge Con-
struction: For the final evaluation of the temporal PD-GNN
module, we fixed the dimensionality at 128, the number of
neighbors at 10, the number of attention heads at 4, and
the number of hops at 2. We then varied the method of

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 24,2025 at 15:49:08 UTC from IEEE Xplore. Restrictions apply.



9002

TABLE VI

PERFORMANCE UNDER DIFFERENT NODE EMBEDDING
FOR EDGE EMBEDDING

Node Embedding Method FPR FNR F1 BAC
Element-wise Addition 0.085 0.120 0.725 0.897
Concatenation 0.077 0.077 0.763 0.923
Element-wise Multiplication 0.148 0.093 0.634 0.879
Element-wise Absolute Difference  0.143  0.193  0.592  0.832
TABLE VII
PERFORMANCE UNDER DIFFERENT GNN SAMPLING
GNN Sampling FPR FNR F1 BAC
Top-k 0.077 0.077 0.763  0.923
Random Sampling 0.184 0.255 0.508  0.780
TABLE VIII
PERFORMANCE UNDER DIFFERENT MEMORY
UPDATE METHODS
Memory Update Method FPR FNR F1 BAC
GRU 0.077 0.077 0.763  0.923
RNN 0.112  0.076 0.698  0.906

generating node embeddings for edge embedding between
element-wise addition, concatenation, element-wise multipli-
cation, and element-wise absolute difference. Table VI presents
the results under these configurations. Using element-wise
addition, the model achieved an FPR of 0.085, an FNR of
0.120, an FI score of 0.725, and a BAC of 0.897. Using
concatenation, the FPR was 0.077, the FNR was 0.077, the
F1 score was 0.763, and the BAC was 0.923. With element-
wise multiplication, the FPR increased to 0.148, the FNR
rose to 0.093, the F1 score decreased to 0.634, and the
BAC dropped to 0.879. Using element-wise absolute dif-
ference, the FPR was 0.143, the FNR was 0.193, the Fl1
score was 0.592, and the BAC was 0.832. These results
indicate that the concatenation method is the most effective,
achieving the lowest false positive rate and highest balanced
accuracy.

6) Impact of Neighbour Sampling in PD-GNN: For the final
evaluation, we fixed the dimensionality at 128, the number of
neighbors at 10, the number of attention heads at 4, the number
of hops at 2, and the method of generating node embeddings
as concatenation. We then varied the GNN sampling method
between top-k sampling and random sampling. Table VII
presents the results under these configurations. With top-k
sampling, the model achieved an FPR of 0.077, an FNR of
0.077, an F1 score of 0.763, and a BAC of 0.923. When
using random sampling, the FPR increased to 0.184, the FNR
rose to 0.255, the F1 score decreased to 0.508, and the BAC
dropped to 0.780. These results indicate that top-k sampling
is significantly more effective in reducing false positives and
achieving a balanced accuracy, highlighting its superiority in
this context.

7) Impact of Different Memory Updating Methods: For the
final evaluation of the temporal PD-GNN module, we fixed
the dimensionality at 128, the number of neighbors at 10,
the number of attention heads at 4, the number of hops at
2, the method of generating node embeddings as concate-
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TABLE IX
PERFORMANCE UNDER DIFFERENT NUMBER OF LEAVES

Leaves FPR FNR F1 BAC

63 0.076  0.175 0.713  0.874

127 0.077 0.077 0.763  0.923

255 0.069 0.175 0.727 0.878
TABLE X

IMPACT OF DIFFERENT LEARNING RATES IN LIGHTGBM

Learning Rate FPR  FNR F1 BAC
0.1 0.069 0.175 0.727 0.878
0.2 0.066 0203 0.717 0.865

nation, and the GNN sampling method as top-k. We then
varied the memory update method between GRU and RNN.
Table VIII presents the results under these configurations.
Using the GRU method, the model achieved an FPR of 0.077,
an FNR of 0.077, an F1 score of 0.763, and a BAC of
0.923. When using the RNN method, the FPR increased to
0.112, the FNR decreased slightly to 0.076, the F1 dropped
to 0.698, and the BAC decreased to 0.906. These results
indicate that while the RNN method slightly improves the
FNR, the GRU method is more effective overall in main-
taining a lower false positive rate and achieving a balanced
accuracy.

8) Impact of Number of Leaves: For the evaluation of
the PD Detector module, we tuned the LightGBM classi-
fier by varying the number of leaves to 63, 127, and 255,
respectively. Initially, the settings included a learning rate
(Ir) of 0.1 and Synthetic Minority Over-sampling Technique
(SMOTE) sampling. Table IX presents the results under
different numbers of leaves. With 63 leaves, the model
achieved an FPR of 0.076, an FNR of 0.175, an F1 score
of 0.713, and a BAC of 0.874. When increasing the number
of leaves to 127, the FPR rose to 0.077, the FNR decreased
to 0.077, the F1 score improved to 0.763, and the BAC
improved to 0.923. At 255 leaves, the FPR was 0.069, the
FNR increased to 0.175, the F1 score was 0.727, and the
BAC was 0.878. These results indicate that while increasing
the number of leaves can improve balanced accuracy, it
may also lead to higher false positive rates and lower F1
scores, suggesting a trade-off between different performance
metrics.

9) Impact of Learning Rate: For the next evaluation step,
we fixed the number of leaves at 127 and varied the learning
rate (Ir) to 0.1 and 0.2. Table X presents the results under these
configurations. With a learning rate of 0.1, the model achieved
an FPR of 0.069, an FNR of 0.175, an F1 score of 0.727,
and a BAC of 0.878. When the learning rate was increased
to 0.2, the FPR slightly decreased to 0.066, but the FNR
increased to 0.203, the F1 score dropped to 0.717, and the BAC
decreased to 0.865. These results suggest that a lower learning
rate results in a better balance of performance metrics, while a
higher learning rate may increase the risk of misclassifications.
Figure 4 presents the loss under different training epochs with
Ir as 0.1 for training LightGBM and 0.0001 for training PD-
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GNN. It exhibits that it achieves stable performance at the
5., epoch.

10) Impact of Sampling Methods in Training PD Detector:
For the final evaluation of the PD detector module, we fixed
the number of leaves at 127 and the learning rate at 0.1,
and then varied the oversampling method between SMOTE
and random sampling. Table XI presents the results under
these configurations. Using SMOTE sampling, the model
achieved an FPR of 0.069, an FNR of 0.175, an F1 score
of 0.727, and a BAC of 0.878. With random sampling, the
FPR increased to 0.102, the FNR rose to 0.205, the F1
score decreased to 0.648, and the BAC decreased to 0.846.
These results indicate that while random sampling slightly
improves the F1 score, SMOTE sampling is more effective
overall in reducing false positives and achieving a balanced
accuracy.
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TABLE XI
PERFORMANCE UNDER DIFFERENT OVERSAMPLING METHODS

Oversampling Method FPR  FNR F1 BAC
SMOTE 0.069 0.175 0.727 0.878
Random Sampling 0.102  0.205 0.648 0.846
TABLE XII
PERFORMANCE UNDER DIFFERENT METHODS
Model FPR FNR F1 BAC
Linear Regression 0.006 0973 0.050 0.510
LSTM 0.322 0.527 0.267 0.575
GraphSage 0.998  0.005 0.236  0.498
GraphSage+LSTM 0.319 0.128 0444  0.776
Our method 0.077  0.077  0.763  0.923

C. Comparing With State-of-the-Art (SotA) Methods

For the comparative evaluation, we assessed the per-
formance of our proposed method against several existing
methods, including Linear Regression, LSTM, GraphSage,
and GraphSage combined with LSTM. Table XII presents
the results of this comparison. Figure 3 presents detailed
normalized frequency count and probability density function
(PDF) of prediction score under different methods. Linear
Regression achieved an FPR of 0.006, an FNR of 0.973, an
F1 score of 0.050, and a BAC of 0.510, indicating its limited
ability to detect PD events accurately. The LSTM model
showed an FPR of 0.322, an FNR of 0.527, an F1 score of
0.267, and a BAC of 0.575, reflecting moderate performance.
GraphSage alone had an FPR of 0.998, an FNR of 0.005,
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an F1 score of 0.236, and a BAC of 0.498, which indicates
poor overall performance. The combination of GraphSage and
LSTM improved the results, with an FPR of 0.319, an FNR
of 0.128, an F1 score of 0.444, and a BAC of 0.776. Our
method, however, outperformed all these models with an FPR
of 0.077, an FNR of 0.077, an F1 score of 0.763, and a BAC
of 0.923. These results demonstrate the superior effectiveness
and robustness of our method in detecting PD schemes in
DeFi markets. Figures 5 and 6 present ROC curves under
different methods. PUMPWATCHER achieved the highest AUC
of 0.982.

D. Real-World Performance

We also implemented PUMPWATCHER as a prototype, and
deployed it in MetaTrust to detect PD schemes on Ethereum
from August 1 to 20, 2024. During this period, it success-
fully identified 7,562 PD transactions involving 181 ERC-20
tokens. Of these, 2,198 PD schemes were detected proactively
before any external reports, with subsequent confirmations
through transaction analysis and market activity. Addition-
ally, it flagged 9,442 transactions as suspicious, pending
further investigation, with initial validations by blockchain
auditors indicating a high probability of PD activity. Notably,
PUMPWATCHER contributed to the prevention of potential
investor losses estimated at $ 75,200. All detected PD
schemes were responsibly disclosed to Web3 security com-
munities, such as MetaTrust and ChainUp, to enhance market
transparency and protection.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

——Txs

Total value

500

o - - NN
o v o o

Price per transaction
o

Transactions

0.0 d
S 6 0 8 P P S P ® ° K o Y ©
Day Day

Fig. 7. GAMMA token: average price per transaction (a), average number of
transaction and total value per day (b), during the period from November 21
to December 31, 2022.

E. Overhead Estimation

To evaluate deployment feasibility, we analyzed the com-
putational costs of both training and inference phases. During
training, the temporal GNN with contrastive learning required
12,822.61 seconds (3h 33min) and consumed 1,534.05 MB
of GPU memory, while the downstream LightGBM classifier
trained in just 3.19 seconds with 85.90 MB of CPU memory.
In the inference phase, PUMPWATCHER predicted transaction
labels in 55.72 seconds using 11.57 MB of GPU memory, and
classification completed in 0.01 seconds with only 0.20 MB of
CPU memory. These results demonstrate that PUMPWATCHER
is computationally efficient and well-suited for real-world
deployment.

F. Case Study

1) Case 1-GAMMA: In the ERC-20 market, the existence of
tokens with similar symbols, such as GAMMA, GAMMA1, GAMMA2
raises concerns about potential market manipulation, where
GAMMA could be used to disrupt the trading of GAMMA1 and
GAMMA2 or intentionally create confusion. As illustrated in
Figure 7, during the period from November 21 to December
31, 2022, GAMMA exhibited abnormal trading behavior, par-
ticularly on December 13, 2022, when both the number of
transactions and the total trading volume spiked significantly
compared to previous days. On December 14, 2022, the aver-
age transaction value remained unusually high before returning
to normal levels on December 15, 2022. This pattern aligns
with the typical characteristics of a PD scheme, where a token
experiences a short-term surge in trading activity followed
by a rapid return to pre-PD levels. Further analysis of the
transactions on December 13, 2022, revealed an exceptionally
anomalous address ®xb5...72, which is a contract address
that engaged in a large number of transactions exchanging
Wrapped Ether for GAMMA. Out of 1,441 total transactions
for GAMMA that day, 1,194 (82.86%) involved this contract,
suggesting a coordinated effort to convert the pumped GAMMA
into the more stable Wrapped Ether, likely to profit from a PD
event.

2) Case 2-Gifto: In the ERC-20 market, the
token Gifto, shares the same symbol as another
token, Giftol. This similarity may have caused

confusion or disruption in the market. As illustrated in
Figure 8, Gifto exhibited a significant spike in the number
of transactions, total trading volume, and average transaction
value—patterns commonly associated with PD events.
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Fig. 9. Sure token: average price per transaction (a), average number of
transaction and total value per day (b), during the period from November 21
to December 31, 2022.

A closer examination of the transactions on that day revealed
unusual high-frequency trading between specific addresses,
particularly between the contract address ®xa5...c3 and
the account addresses 0xa6..57 and Oxdc..86. Out of
717 transactions, 651 (90.79%) occurred between the first
pair, and 43 (6.56%) between the second. Moreover, these
addresses showed nearly balanced inflow and outflow,
suggesting an orchestrated attempt at manipulating the
market. Given the transaction patterns and the number of
involved addresses, it is plausible that a PD attempt was
made on December 7, 2022, though it may have been
unsuccessful.

3) Case 3-Sure: On December 12, 2022, the ERC-20 token
Sure exhibited a significant deviation from its usual trading
behavior, with a sharp increase in both the number of transac-
tions and the total trading volume. As illustrated in Figure 9,
this spike aligns with typical PD patterns, where tokens expe-
rience a sudden surge in activity, followed by a rapid return to
normal levels. Over the next few days, from December 13 to
15, 2022, the average transaction value remained abnormally
high, before normalizing on December 16, 2022. After that,
only a few transactions occurred for this token. In addition, we
observed a large number of transactions with a value of zero
after between addresses and the token contract December 12,
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2022. This pattern is consistent with known PD events, where
abnormal trading behavior temporarily persists before stabi-
lizing. A detailed analysis of the transactions on December
12 revealed an address, 0x03. . 2e, exhibiting highly irregular
trading activity. Upon investigation via Etherscan, this address
was identified as a contract facilitating exchanges between the
Sure token and Wrapped Ether. Of the 1,587 total transac-
tions associated with this contract, 1,574 occurred between
December 12 and 13, 2022, with only 13 transactions hap-
pening thereafter, strongly indicating involvement in a PD
scheme. This suggests that multiple accounts may have
exploited the contract to convert the inflated Sure tokens
into the more stable Wrapped Ether, profiting from the PD
event.

V. RELATED WORK

PD schemes in cryptocurrency markets have garnered sig-
nificant attention due to their impact on market integrity and
investor trust. Morgia et al. [9] conducted a comprehensive
analysis of PD manipulations, focusing on the identification
and detection of such schemes within cryptocurrency markets.
Their research employs a combination of machine learning
techniques and statistical methods to analyze trading patterns
and social media signals, thereby providing a robust frame-
work for real-time detection of these manipulative activities.
Similarly, Victor et al. [14] explored the quantification and
detection of PD schemes using market and social signals,
emphasizing the importance of integrating various data sources
to improve detection accuracy. Rajaei et al. [32] provided a
comprehensive survey on PD detection using machine learning
techniques, categorizing existing approaches based on the
type of data utilized, such as market data and social media
data, and discussing the strengths and weaknesses of each
method.

Further advancements in PD detection have been made
by researchers utilizing deep learning approaches. Chadala-
paka et al. [16] proposed a novel deep learning-based frame-
work for detecting cryptocurrency PD schemes. Their model
leverages convolutional and recurrent neural networks to cap-
ture intricate patterns in trading data, demonstrating significant
improvements in detection performance over traditional meth-
ods. In another study, Chen et al. [15] introduced an improved
apriori algorithm to detect PD activities, highlighting the effec-
tiveness of association rule mining in uncovering fraudulent
trading behaviors. Xu et al. [11] presented an in-depth analysis
of PD activities organized in Telegram channels, proposing
several machine learning models, including random forest and
generalized linear models, to predict the likelihood of a cryp-
tocurrency to be pumped. Their study emphasized the impor-
tance of feature selection and data balancing to improve model
performance.

Additionally, hybrid detection models have shown promise
in enhancing the robustness and reliability of PD detection
systems. Mansourifar et al. [33] developed a hybrid detection
approach that combines supervised and unsupervised learn-
ing techniques to identify PD schemes. This hybrid model
incorporates both historical trading data and real-time social
media analysis, offering a comprehensive solution to detect
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TABLE XIII

HIGH-LEVEL COMPARISON WITH EXISTING WORKS. TB: TEMPORAL-
BASED. TG: TRANSACTION GRANULAR INDICATES IF IT ONLY
CAN DETECT THE IN. MT: MULTIPLE TOKENS. ED:
EARLY-DETECTING. PDA: PUBLIC DATASET

Method Model TB TG MT ED PDA
Kamps et al. [35] Anomaly detection @] O [ ] O [ ]
Chen et al. [15] Apriori © O O O O
Chadalapaka et al. [16] Anomaly Transformer © ] [ ] O [ ]
Xu et al. [11] RF+GLM © (@] O O [ ]
Bello et al. [34] RF+AdaBoost © @] [ ] O O
Mirtaheri et al. [36] SVM (@] o L] O (]
Morgia et al. [9] RF+LR @] O [ ] O @]
PUMPWATCHER (Ours)  PD-GNN + contrastive learning @ [J [J (] [

and mitigate the impact of PD activities. Bello et al. [34]
proposed a low-latency detection solution that aims to thwart
cryptocurrency PD schemes by employing a real-time mon-
itoring system integrated with machine learning algorithms.
Morgia et al. [9] suggested using rush orders and other market
features for early detection of PD events, employing random
forest and logistic regression models to enhance detection
capabilities. Victor et al. [14] developed an XGBoost model
to detect PD events.

PUMPWATCHER vs. Previous Methods: Table XIII com-
pares PUMPWATCHER with several state-of-the-art PD detec-
tion methods across key factors: temporal-based detection
(TB), transaction granularity (TG), multiple token support
(MT), early detection (ED), and public datasets (PDA). While
previous methods, such as those by Kamps et al. [35] and Chen
et al. [15], focus on post-event analysis and lack transaction-
level granularity, PUMPWATCHER leverages temporal GNNs
to perform early detection and capture fine-grained trans-
actional patterns. Chadalapaka et al. [16] integrate some
temporal dynamics but fail to achieve the same transaction-
level precision, while Xu et al. [11] and Bello et al. [34] focus
on token support without incorporating real-time, granular
detection. Other approaches, like those by Mirtaheri et al.
[36] and Morgia et al. [9], rely on delayed price fluctuations,
which hinder early detection. In contrast, PUMPWATCHER
combines a PD-GNN with contrastive learning to provide
a real-time, robust solution, addressing these challenges
and excelling in both transaction granularity and temporal
analysis.

VI. DISCUSSION

Beyond its application to DeFi, the design of PUMP-
WATCHER is applicable to a range of domains involving
time-sensitive, graph-structured interactions. For example, in
financial fraud detection or anti-money laundering, where
transaction graphs evolve rapidly, the same temporal GNN and
contrastive learning mechanisms can be employed to identify
suspicious transfers. Similarly, in e-commerce platforms or
communication networks, transaction-level embeddings that
capture both structural roles and temporal shifts can be lever-
aged to detect anomalous behaviors. PUMPWATCHER serves
as a generalizable framework for real-time behavioral anomaly
detection, applicable across decentralized or complex digital
ecosystems, providing a meaningful contribution to security in
dynamic, high-stakes environments.
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Despite the utility of existing heuristic-based approaches
for detecting PD schemes in DeFi, these methods typically
rely on predefined thresholds and event-level patterns, such as
sudden volume surges or sharp price changes. While effective
in identifying large-scale, coordinated manipulations, they
often fall short in detecting nuanced, small-scale, or failed
PD attempts, particularly those engineered to bypass common
detection rules. Moreover, heuristic methods generally iden-
tify suspicious events first, then retroactively label associated
transactions, making them less suited for real-time detection.
In contrast, our graph-based method leverages temporal and
structural transaction features at the individual account level,
allowing PUMPWATCHER to detect both prominent and subtle
PD behaviors without requiring an explicit event trigger.
This transaction-level granularity is especially important in
decentralized markets where actors can use multiple pseudo-
anonymous accounts and adapt rapidly to evade rule-based
systems.

Regarding the dataset scope, our one-month collection from
December 2022 was selected to strike a balance between
diversity and manageability. This period includes multiple
confirmed PD events, verified by both Uniswap and Meta-
Trust, and captures a wide range of trading behaviors, from
high-frequency bursts to stealthy, unsuccessful manipulation
attempts. It also reflects realistic market volatility, including
low-liquidity token launches that are particularly vulnerable
to exploitation. While the current timeframe supports rigorous
evaluation and benchmarking, we acknowledge the value of
broader temporal coverage. As part of future work, we plan
to expand our dataset to span several months or quarters to
capture seasonal variations, long-term behavioral shifts, and
more diverse manipulation strategies. This will further validate
the robustness and adaptability of PUMPWATCHER in evolving
DeFi environments.

Beyond detecting transaction volume anomalies, the tempo-
ral PD-GNN is designed to identify structural and behavioral
irregularities that characterize pump-and-dump activities.
These include sudden bursts of connectivity (e.g., a dormant
node initiating multiple high-value transfers within a short
window), emergence of densely connected subgraphs indica-
tive of coordinated behavior, and abrupt shifts in transaction
patterns among tightly coupled wallets. By maintaining tem-
poral memory for each node and encoding event timestamps,
the model captures these transient topological changes over
time. This enables PUMPWATCHER to flag suspicious behavior
based on evolving graph structures, rather than relying solely
on transaction volume spikes or static thresholds.

While contrastive learning enhances the robustness of trans-
action representations, we acknowledge the potential risk of
overfitting to recurring patterns in specific tokens [37]. To
mitigate this, we partition graphs on a per-token basis and use
temporal augmentations to enforce representation invariance
across different market phases. However, we note that the
generalization capability to completely unseen tokens with
unique trading dynamics warrants further evaluation. In future
work, we plan to perform cross-token and cross-platform
testing to quantify how well the learned features transfer to
novel DeFi contexts.
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GNNss enable fine-grained modeling of transactional behav-
ior by encoding each account’s historical activity and its
evolving relationships within the trading network [37]. This
graph-based structure aligns naturally with DeFi ecosys-
tems, where wallets and token transfers correspond to
nodes and edges, allowing the model to capture direct and
indirect interactions. Such representations are particularly
effective in detecting pseudo-cyclic trading patterns, often
used by malicious actors controlling multiple wallets. The
temporal component of GNNs allows the model to reason
over time-sensitive behaviors, supporting real-time detec-
tion without reliance on post-event signals. This results in
more precise, early identification of PD activities, strength-
ening market integrity and user protection. Additionally,
large language models (LLMs) hold promise in enhancing
PD detection by contextualizing unstructured data sources
such as social media and token descriptions [38], [39],
[40], [41], [42]. Combining GNNs for behavioral modeling
with LLMs for intent and sentiment analysis could offer
a powerful multimodal approach to proactive manipulation
detection.

VII. CONCLUSION

This paper presents PUMPWATCHER, a graph-based frame-
work for detecting PD schemes in DeFi by modeling ERC-20
token transactions as temporal graphs. Leveraging temporal
GNNs and contrastive learning, it captures both structural and
temporal dependencies critical for identifying coordinated and
evasive manipulation patterns. Extensive experiments demon-
strate that it significantly outperforms state-of-the-art baselines
in accuracy and robustness. Through adaptive graph construc-
tion, feature-enhanced node and edge encoding, and efficient
downstream classification, it delivers reliable PD detection
across volatile token markets.
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