
DeFort: Automatic Detection and Analysis of Price Manipulation
A�acks in DeFi Applications

Maoyi Xie
Nanyang Technological University

Singapore, Singapore
maoyi001@e.ntu.edu.sg

Ming Hu∗

Nanyang Technological University
Singapore, Singapore
hu.ming@ntu.edu.sg

Ziqiao Kong
Nanyang Technological University

Singapore, Singapore
ziqiao001@e.ntu.edu.sg

Cen Zhang
Nanyang Technological University

Singapore, Singapore
cen001@e.ntu.edu.sg

Yebo Feng
Nanyang Technological University

Singapore, Singapore
yebo.feng@ntu.edu.sg

Haijun Wang
Xi’an Jiaotong University

Xi’an, China
haijunwang@xjtu.edu.cn

Yue Xue
MetaTrust Labs

Singapore, Singapore
xueyue@metatrust.io

Hao Zhang
MetaTrust Labs

Singapore, Singapore
zhanghao@metatrust.io

Ye Liu
Nanyang Technological University

Singapore, Singapore
ye.liu@ntu.edu.sg

Yang Liu
Nanyang Technological University

Singapore, Singapore
yangliu@ntu.edu.sg

ABSTRACT

AlthoughDecentralized Finance (DeFi) applications facilitate tamper-

proof transactions among multiple anonymous users, since attack-

ers can access the smart contract bytecode directly, vulnerabilities

in the transaction mechanism, contract code, or third-party compo-

nents can be easily exploited to manipulate token prices, leading to

�nancial losses. Since price manipulation often relies on speci�c

states and complex trading sequences, existing detection tools have

limitations in addressing this problem. In addition, to swiftly iden-

tify the root cause of an attack and implement targeted defense and

remediation measures, auditors typically prioritize understanding

the methodology behind the attack, emphasizing ‘how’ it occurred

rather than simply con�rming its existence. To address these prob-

lems, this paper presents a novel automatic price manipulation

detection and analysis framework, named DeFort, which contains

a price manipulation behavior model to guide on-chain detection,

multiple price monitoring strategies to detect pools with abnormal

token prices, and various pro�t calculation mechanisms to con-

�rm attacks. Based on behavioral models, DeFort can automatically

locate transactions and functions that cause abnormal price �uc-

tuations and identify attackers and victims. Experimental results

∗Corresponding author.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3652137

demonstrate that DeFort can outperform state-of-the-art price ma-

nipulation detection methods. Furthermore, after monitoring 441

real-world projects for two months, DeFort successfully detected

�ve price manipulation attacks.

CCS CONCEPTS

• Security and privacy→ Intrusion/anomaly detection and mal-

ware mitigation.

KEYWORDS

blockchain, decentralized �nance (DeFi), price manipulation attack,

smart contract

ACM Reference Format:

Maoyi Xie, Ming Hu, Ziqiao Kong, Cen Zhang, Yebo Feng, HaijunWang, Yue

Xue, Hao Zhang, Ye Liu, and Yang Liu. 2024. DeFort: Automatic Detection

and Analysis of Price Manipulation Attacks in DeFi Applications. In Proceed-

ings of the 33rd ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3652137

1 INTRODUCTION

With the advancement of blockchain and smart contract technolo-

gies, Decentralized Finance (DeFi) applications have found wide-

spread use in web3 ecosystems. Typically, DeFi applications are

implemented by smart contracts and deployed on blockchains. Due

to the support for tamperproof and anonymous transactions, DeFi

applications enable users to participate in multiple �nance activities

(e.g., token deposits, withdrawals, and exchanges) without relying

on untrusted third parties. Recently, DeFi applications managed

a total value of $51 billion in digital assets and facilitated daily

transactions totaling $6 billion in assets [25].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

402

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-4496-5037
https://orcid.org/0000-0002-5058-4660
https://orcid.org/0009-0009-4926-4932
https://orcid.org/0000-0001-5603-1322
https://orcid.org/0000-0002-7235-2377
https://orcid.org/0009-0001-3509-3919
https://orcid.org/0009-0004-2141-2044
https://orcid.org/0009-0001-5443-6542
https://orcid.org/0000-0001-6709-3721
https://orcid.org/0000-0001-7300-9215
https://doi.org/10.1145/3650212.3652137
https://doi.org/10.1145/3650212.3652137
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3652137&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Maoyi Xie, Ming Hu, Ziqiao Kong, Cen Zhang, Yebo Feng, Haijun Wang, Yue Xue, Hao Zhang, Ye Liu, and Yang Liu

However, since the bytecode of smart contracts can be accessed

directly on the blockchain, potential vulnerabilities in DeFi applica-

tions can be easily exploited to manipulate the price of the token,

resulting in �nancial losses for users or fund pools. Typically, price

manipulation attacks are mainly caused by unprotected trading

mechanisms, vulnerable contract implementations, and untrusted

third-party components. Speci�cally, for the trading mechanisms,

due to the lack of protection of corresponding parameters and

behaviors, attackers can take advantage of legitimate operations

present in the mechanism for arbitrage. For example, for sandwich

attacks (a category of manipulation attack), attackers utilize exces-

sive slippage set by users to conduct front-running transactions

and arbitrage. For contract implementations, a lack of expertise

in smart contract development may result in the creation of vul-

nerable contracts. For example, coding errors can lead to incorrect

price-calculation methods. Moreover, in many DeFi applications,

the price of tokens is based on third-party Oracles. Attacking un-

trusted third-party Oracles can manipulate the price of tokens in

related DeFi applications [50]. Things become even worse with the

abuse of lending tools like Flashloans. Attackers can e�ortlessly

borrow a signi�cant quantity of tokens, manipulating token prices

for pro�t.

To detect price manipulation attacks in DeFi applications, exist-

ing methods can be classi�ed into two categories, i.e., code-based

methods [22] and behavior-based methods [78]. Code-based meth-

ods use static analysis or symbolic execution technologies to detect

vulnerabilities in smart contract source code or bytecode rather

than directly detect price manipulation attacks. Typically, the ef-

fectiveness of code-based methods is based on the design of their

detection rules. Due to the lack of knowledge of business logic for

speci�c DeFi applications, most code-based methods have to use

some general detection rules to detect price manipulation caused

by some classic smart contract bugs, such as integer over�ow and

reentrancy. Therefore, existing code-based methods cannot deal

with price manipulation attacks caused by speci�c function bugs.

Moreover, due to the lack of implementation of third-party com-

ponents, code-based methods cannot still address dangerous price

oracles. In addition, due to the lack of dynamic execution of con-

tracts, code-based methods often generate a large number of false

positives. Behavior-based methods analyze transactions rather than

source code to identify attack behaviors. Typically, behavior-based

detection methods trace transactions related to target accounts and

use multiple speci�c patterns or rules to identify dangerous trading

behaviors. However, since patterns or rules in existing behavior-

based methods are simple and limited, they cannot perform well

in complex real-world price manipulation attacks, which usually

involve multiple attack accounts and complex operations.

Although existing detection methods can identify some classic

price manipulation attacks, they still su�er from three challenges.❶

Scalability. Existing methods often rely on speci�c detection rules,

which are di�cult to adapt to the business logic of di�erent DeFi

applications. ❷ On-chain Monitoring. The absence of on-chain

attack detection support in many existing methods prevents the

early detection of price manipulation attacks before their transac-

tions are packaged. Consequently, defenders are unable to employ

blocking techniques to prevent attacks. ❸ Automatic Analysis.

Typically, auditors concentrate not only on whether a price ma-

nipulation attack occurred but also on ‘how’ the attack took place,

which is crucial for implementing preventive measures and mitigat-

ing the spread of attacks. Unfortunately, current detection methods

lack the ability to automatically analyze attack behaviors, making

it challenging for auditors to quickly identify the root cause of

the attack. Therefore, how to e�ectively detect and analyze complex

real-world price manipulation attacks in real-time is an important

challenge in the security of DeFi applications.

To address the above challenges, we can intuitively address them

by abstracting and modeling the behaviors of price manipulation

attacks, thereby obtaining a comprehensive model for price manipu-

lation detection. By incorporating various abnormal price detection

and pro�t detection strategies into the model, the detector can be

easily adapted to di�erent business logic without altering the over-

all detection process. Moreover, based on the model, the detector

can trace the whole attack process and analyze related operations,

transactions, and accounts.

Inspired by the motivation above, we present a novel detection

and analysis framework named DeFort for price manipulation at-

tacks in DeFi applications. DeFort traces on-chain transactions for

target DeFi applications and maintains a general behavior model

to guide price manipulation attacks. Speci�cally, DeFort integrates

multiple price calculation strategies to monitor the price of di�erent

tokens and identify abnormal price �uctuations. Based on abnormal

price detection, DeFort tracks fund �ow among related accounts

and pools to detect pro�ts and con�rm price manipulation attacks.

By analyzing the state transitions in the model and fund �ows

among accounts and pools, DeFort can obtain the whole process of

attacks, locate dangerous transactions and functions, and identify

attackers and victims. There are four main contributions of this

paper as follows:

• We present a novel framework named DeFort for the au-

tomatic on-chain price manipulation attack detection and

analysis of DeFi applications.

• We present a general behavior model for price manipulation

attacks to guide detection and analysis.

• We integrate multiple abnormal price detection and pro�t

detection strategies based on our behaviormodels to enhance

the detection capability of DeFort.

• We evaluated DeFort in an on-chain environment to monitor

441 real-world projects for two months. DeFort successfully

detected �ve price manipulation attacks.

The rest of the paper is organized as follows. After we introduce

relevant background information in Section 2, we describe our

price manipulation modeling and illustrate the detailed design of

DeFort in Section 3. We then evaluate it in Section 4. Following that,

in Section 5, we discuss its applications and limitations. Finally,

we outline related work in Section 6 and conclude the paper in

Section 7.

2 BACKGROUND

In this section, we present necessary background for detecting and

analyzing price manipulation attacks to facilitate a clear compre-

hension of our proposed approach.

403

DeFort: Automatic Detection and Analysis of Price Manipulation A�acks in DeFi Applications ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 1: The process of price manipulation attack.

2.1 Smart Contract and Decentralized Finance
(DeFi)

Smart contract [82] is a self-executing program with the terms

of the agreement between the buyer and the seller being directly

written into lines of code. These contracts run on blockchain [27]

networks and automatically execute, control, or document legally

relevant events and actions according to the coded terms, without

requiring an intermediary or a central authority to enforce them [3].

DeFi is a blockchain-based form of �nance which operates with-

out dependence on central �nancial intermediaries like brokerages,

exchanges, or banks for the provision of �nancial services [76].

Instead, it utilizes smart contracts deployed on blockchain. Trans-

actions in the blockchain represent signed messages during the

execution of contracts [23]. Due to DeFi’s rapid expansion and

provision of services like lending, insurance, and trading, DeFi

has encountered signi�cant challenges, notably in security and

privacy [61], necessitating continual research and innovation.

Some DeFi applications o�er a tool called �ash loan [58], which

transforms the ways of obtaining loans in the blockchain environ-

ment. Unlike traditional loans, �ash loans enable users to borrow

any amount of assets without requiring collateral, on the condition

that the borrowed assets are returned within the same transac-

tion [73]. This distinctive feature allows for a multitude of applica-

tions, such as arbitrage, collateral swapping, and self-liquidation.

However, it also introduces or exacerbates a number of potential

risks and attacks, like the notorious price manipulation attacks

which could result in substantial �nancial losses [75].

2.2 Price Manipulation Attacks

Price manipulation is a well-trodden ruse in conventional �nancial

markets. In the cryptocurrency space, price manipulation attack

means that attackers gain execessive pro�t by using di�erent decep-

tive strategies to arti�cially in�ate or de�ate the price of cryptocur-

rencies [21, 41]. There are many ways to cause price manipulation

attacks such as �ash loan, oracle, pump and dump, front running,

etc. The �ash loan method [58] causes the token price to rise or fall

sharply, and then attackers trade back assets to make a pro�t. This

is due to the use of instantaneous prices, which is a problem with

the contract code. The oracle approach [74] refers to manipulating

oracles, which are third-party components, to feed abnormal prices,

and attackers use the abnormal price to conduct transactions to

make pro�ts. Pump and dump [79] refers to a group of manipula-

tors who buy cryptocurrencies in large quantities to drive up the

currency price in order to scam more investors into following suit

to further increase the price, and then manipulators suddenly sell

the currency for a pro�t, causing the price to fall rapidly. While

front running [65] is when attackers execute the same or related

transactions for pro�t before knowing what others are about to

execute or the price movement. Both of these utilize transaction

mechanisms. As shown in Fig. 1, all the above methods directly

or indirectly change prices and then take advantage of abnormal

prices to make pro�ts.

3 METHODOLOGY

In this section, we �rst present a general behavior model for the

detection of price manipulation. Based on the behavior model, we

propose our detection and analysis framework.

3.1 Modeling for Price Manipulation

Although the root causes of di�erent price manipulation attacks

in DeFi applications vary, all of these attacks have two common

behavioral characteristics. The �rst characteristic is to cause abnor-

mal �uctuations in token prices. For example, although the “pump

and dump” and “�ash loan” attacks utilize di�erent mechanisms

to manipulate the price, both of them lead to large �uctuations in

the price of tokens. The second characteristic is to take advantage

of abnormal prices to make pro�ts. Although the attacker uses

multiple accounts to collaboratively achieve the attack process, a

successful attack must mean that some accounts pro�t after the ab-

normal price �uctuations. Therefore, by detecting abnormal prices

of target tokens and pro�ts of related accounts, the detector can

detect di�erent types of price manipulation attacks without using

speci�c rules to match their unique attack process.

Normal Abnormal

Price Read

Profit

!"#

$!"#

%&#

"'(() %"#

Start

!"# : Price Calculation Mechanism

$"# : Bound Calculation Mechanism

!%# : Profit Detection Mechanism

Figure 2: Behavior Model for Price Manipulation Detection.

To detect various price manipulation attacks, we model the detec-

tion of price manipulation attacks into an automaton based on the

above two characteristics. Figure 2 presents the model for the detec-

tion of price manipulation, which consists of �ve states, i.e., Start,

Normal, Abnormal, Price Read, and Pro�t. The Start state denotes

the start of detection. The Normal state denotes that the prices of all

the tokens associated with target DeFi applications are within the

normal �uctuation range. The Abnormal state denotes that there

exists a token from tokens associated with target DeFi applications

whose price is out of the normal �uctuation range. The Price Read

state denotes that the victim reads the price of abnormal tokens.

Typically, when an attacker makes a pro�t, the DeFi application will

read the price of the abnormal token and transfer the corresponding

token to the attacker’s account. Therefore, when the token price is

in an abnormal range, the transactions that include price reading

404

ISSTA ’24, September 16–20, 2024, Vienna, Austria Maoyi Xie, Ming Hu, Ziqiao Kong, Cen Zhang, Yebo Feng, Haijun Wang, Yue Xue, Hao Zhang, Ye Liu, and Yang Liu

operations often involve pro�t making. The Pro�t state denotes that

at least one account makes a pro�t from DeFi applications. Note

that the scope of detection includes all the addresses of target DeFi

applications and accounts that have interacted with the target DeFi

applications. We de�ne three mechanisms, i.e., price calculation

mechanism (PCM), bound calculation mechanism (BCM), and pro�t

detection mechanism (PDM) to guide the state transitions, where

the price calculation mechanism is used to calculate the price of to-

kens, the bound calculation mechanism is used to calculate whether

the current price of the target token within a normal �uctuation

range, and the pro�t detection mechanism is used to detect whether

an account makes a pro�t.

3.1.1 Modeling for Normal state. Assume that � is the set of target

DeFi applications and - is the set of pools or pairs associated with

the target DeFi applications. -0 ⊆ - represents the set of pools

or pairs whose associated tokens exhibit abnormal prices. -= ⊆ -

represents the set of pools or pairs whose associated tokens exhibit

normal prices.) denotes the set of associated tokens. We use the

function %�" (%,):1,):2, C) to calculate the exchange rate of):1
relative to):2 in time C in the pool or pair % and use the function

��" (%,):1,):2, C ′) to calculate the historical exchange rate of

):1 relative to):2 from the historical time C ′ to the current time

in the pool or pair % . When the model is in the normal state, all the

associated tokens in DeFi applications must have normal prices. We

de�ne the function ��" to determine whether the current token

price is in the normal price range. Speci�cally, ��" is de�ned as

the following formula:

∀G∈- ,
1

�(U,)ℎ, C)
≤ %�" (G,):1,):2, C)

��" (G,):1,):2, C)
≤ �(U,)ℎ, C), (1)

where C denotes the current time, C ′ denotes the historical time,

)ℎ denotes the list of historical price information. The element of

)ℎ is a 2-tuple (?, C), where ? indicates the historical price value

and C denotes the sampling time of historical price ? . �(·) denotes
an abnormal price bound calculation strategy, which calculates

the change between the current price and historical price and is

controlled by a hyperparameter U and historical price information

)ℎ .

3.1.2 Modeling for Abnormal state. In contrast, when the model is

in the abnormal state, existing an associated token in DeFi applica-

tions has a normal price, which can be de�ned as follows:

∃G∈- ,
1

�(U,)ℎ ():1,):2), C)
≥ %�" (G,):1,):2, C)

��" (G,)ℎ ():1,):2), C)
>A

∃G∈- , �(U,)ℎ, C) ≤
%�" (G,):1,):2, C)

��" (G,)ℎ ():1,):2), C)
.

(2)

When an abnormal price is detected, the model transitions to the

Abnormal state. When the price returns to normal and no account

makes a pro�t, the model transitions back to Normal state.

3.1.3 Modeling for Price Read state. Since the price reading opera-

tion will be triggered when the attacker needs to use the abnormal

token price for exchange operations, the detector can monitor price

reading operations to detect potential attackers. Note that Price

Read state is transient. In this state, the model adds the related

address to read the price to the abnormal related address set (0 and

then transitions back to the Abnormal state.

3.1.4 Modeling for Pro�t state. Assume that (0 is the set of ad-

dresses that have had transactions with the target DeFi applica-

tions. The pro�t of an address for a speci�c token is determined by

the di�erence between its deposited and withdrawn tokens from

the target pool or pair. We de�ne the functions �=(G, 033A,):) and
$DC (G, 033A,):) to calculate the total number of tokens): de-

posited and withdrawn by the address 033A into/from the pool or

pair G , respectively. The pro�t of 033A for): form G is de�ned as

follows:

%A> 5 8C (G, 033A,):) = $DC (G, 033A,):) − �=(G, 033A,):). (3)

Since an attacker can control multiple addresses to collabora-

tively perform price manipulation attacks, pro�t detection often

needs to analyze a set of addresses related to the abnormal price

token. Since the attack may be associated with multiple tokens, we

can perform a general equivalent token (e.g., USDT) to standardize

the value of di�erent tokens. By calculating the value of the tokens

that each account ultimately gained or lost, we can con�rmwhether

a price manipulation attack has occurred. We use the function %�"

for pro�t detection, which is de�ned as follows:

∃�⊂(0 ,
∑

0∈�

|) |
∑

8=1

%�" (G,):8 ,):, C) × (%A> 5 8C (G, 0,):8)) > 0. (4)

Note that when the model is inAbnormal state and the %�" returns

true, the model transitions to Pro�t state. When the model reaches

Pro�t state, it means a price manipulation attack has been detected.

3.2 Overview of DeFort

Figure 3 presents the framework of our DeFort approach based

on the prize manipulation detection model. As shown in Figure 3,

DeFort consists of three key components, i.e., on-chain monitor,

model-driven detector, and model-driven analyzer, respectively.

The on-chain monitor acquires real-time transactions and token

information related to target DeFi applications or accounts from

the corresponding blockchains. The model-driven detector utilizes

the obtained transactions and token information with a behav-

ior model to identify price manipulation attacks. Speci�cally, the

detector employs a price calculation mechanism to assess target

tokens and a bound calculation mechanism to determine whether

the current token price falls within a normal range. If a token ex-

hibits an abnormal price, the detector employs a pro�t calculation

mechanism to verify whether existing accounts capitalize on the

abnormal price to generate pro�ts. The detector triggers a price

manipulation attack alert when it detects pro�ts. Note that to adapt

to di�erent DeFi applications, the model-driven detector integrates

multiple price and bound calculation strategies. The model-driven

analyzer analyzes the fund �ow of relevant accounts and pools,

attack and victim accounts, and related function calls based on the

process of behavior model state transitions, related transactions,

and abnormal token price changes.

3.3 On-chain Monitoring

In the scenario of on-chain monitoring, there are two ways to ob-

tain real-time transactions. One is to use RPC provided by a third

party, such as Alchemy [2], Infura [36] and QuickNode [59]; the

second is to build a self-built node. Currently we use the �rst one

405

DeFort: Automatic Detection and Analysis of Price Manipulation A�acks in DeFi Applications ISSTA ’24, September 16–20, 2024, Vienna, Austria

Model-driven Analyzer

DeFortOn-chain Environment

…

DeFi Applications

…

Accounts

Price

Calculation

Profit

Calculation

Bound

Calculation

Model-driven Detector

O
n
-c
h
a
in

M
o
n
ito

r

Behavior Model

Fund Flow

Analysis

Function Call

Analysis

Address

Analysis

…

Transactions

…

Token Info.

Figure 3: Framework of DeFort.

to implement on-chain monitoring scenarios. To avoid excessive

API requests, we set di�erent monitoring frequencies based on the

transaction volumes and activity of di�erent DeFi applications, and

the con�rmation times of blocks on di�erent chains. We manually

collect and store the information corresponding to DeFi applica-

tions, including the tokens held, the creator of the contract, etc.

3.4 Model-based Detection

The key for model-based detection is to calculate the token price,

identify the abnormal price, and detect the pro�t. Since the imple-

mentations of di�erent DeFi applications vary, to achieve detection

for various price manipulation attacks, the model-based detector

integrates multiple price, bound, and pro�t calculation strategies.

3.4.1 Price calculation mechanism. Most DeFi applications are im-

plemented based on speci�c DeFi protocols [26], such as Uniswap

V2 [70], Uniswap V3 [71], and Curve [24], which include token

price calculation methods. We integrate the price calculation meth-

ods in the mainstream DeFi protocols into our price calculation

mechanism. Since di�erent DeFi protocols have their unique func-

tions and variable names, DeFort scans the bytecode of target DeFi

applications and matches the bytecode with protocol templates to

identify the protocol used. In this way, DeFort can automatically

select the speci�c price calculation strategy for DeFi applications.

Typically, price calculation functions in DeFi applications often

contain common words [14], like “getLatestPrice(·)”, “updatePrice(·)”,
and “getUnderlyingPrice(·)”. Based on the above observations, for

DeFi applications that do not use mainstream protocols, we con-

structed a signature library to store the function signatures of pos-

sible price calculation functions and use the library to match the

bytecode. In this way, DeFort can automatically obtain price calcula-

tion functions and get the token price by executing these functions.

Furthermore, DeFort supports the deployment of custom price cal-

culation functions and allows auditors to specify a price calculation

strategy for detection. Note that since auditors can access the byte-

code and even the source code of DeFi applications, they can easily

obtain their token price calculation functions.

3.4.2 Bound calculation mechanism. To determine whether the

current token price is within a normal price range, DeFort utilizes

the historical token price as a metric. Speci�cally, DeFort records

historical token prices in a list)ℎ while tracking transactions and

calculates a normal token price based on historical price information

as follows:

��" (G,)ℎ, C) =

∑

(?,C ′) ∈)ℎ
1√

C−C ′+V
?

∑

(?,C ′) ∈)ℎ
1√

C−C ′+V

, (5)

where V > 0 is a hyperparameter used to control the impact of

time on the weight of historical prices. The higher the value of V ,

the lower the impact of the time factor on the weight. Here, the

more recent the historical price is given a higher weight. Note that

using multiple historical prices, rather than a single price from the

previous time, is done to detect price manipulation by gradually

increasing the price.

Based on the calculated normal price, we calculate the variance

of historical prices and use the variance to calculate the bound of

the normal price �uctuation, which can be de�ned as follows:

�(U,)ℎ, C) = 1 + U

√

∑

?,C ′∈)ℎ
(?−��" ()ℎ,C))2√

C−C ′+V
∑

?,C ′∈)ℎ
1√

C−C ′+V
��" ()ℎ, C)

, (6)

where U is a hyperparameter and a higher U determines a large

�uctuation range. According to the calculated normal price together

with the bound of the normal price �uctuation, DeFort can deter-

mine whether the current price is within a normal price range.

3.4.3 Profit calculation mechanism. For DeFi applications with ab-

normal token prices, by scanning related transactions, we obtain

the addresses that interact with the application. Since the price

manipulation attack may be associated with multiple DeFi appli-

cations, we track the transactions related to obtained addresses

and analyze the fund �ow of these addresses. To unify the prices

of di�erent tokens for pro�t calculation, DeFort calculates token

prices using the generally equivalent token (e.g., USDT). Speci�-

cally, DeFort uses third-party price calculation platforms [18, 19]

to obtain the exchange rate between the detected tokens and USDT.

Since the attacker may use multiple accounts to collaboratively per-

form attacks, DeFort �rst scans transactions that cause abnormal

prices and obtains a set of accounts related to such transactions.

DeFort then calculates the pro�t of the accounts obtained. Since

the accounts used to make pro�ts may be di�erent from the ac-

counts used to perform price manipulation, DeFort also calculates

the pro�t of all the accounts that interact with DeFi applications

after the model transitions to the Abnormal state. By combining

pro�table accounts and accounts involved in price manipulation,

DeFort detects whether there exists a group of accounts that can

ultimately make a pro�t.

406

ISSTA ’24, September 16–20, 2024, Vienna, Austria Maoyi Xie, Ming Hu, Ziqiao Kong, Cen Zhang, Yebo Feng, Haijun Wang, Yue Xue, Hao Zhang, Ye Liu, and Yang Liu

3.5 Model-based Analysis

To assist auditors in quickly �nding the root cause, DeFort sup-

ports automated analysis of price manipulation attacks. Speci�cally,

DeFort analyzes attacks from three perspectives, i.e., fund �ow,

address, and function calls.

3.5.1 Address analysis. To ensure e�ciency, DeFort only obtains

addresses related to the target DeFi application when the model

is in Normal state. When the model transitions to Abormal state,

DeFi obtains all the addresses that interact with the abnormal DeFi

application or its related addresses. Note that DeFort obtains both

account addresses and contract addresses, which may be related

to DeFi applications. By calculating the pro�ts of these addresses,

DeFort identi�es the attackers and victims, where addresses that

are not related to transactions that cause an abnormal token price

and loss funds are identi�ed to victims. On the contrary, addresses

obtained that cause abnormal token prices or make pro�ts are

identi�ed as attackers. Note that victims are typically associated

with DeFi applications, which often are fund pools or pairs. Benign

accounts may be involved in transactions during the attack. To

avoid false positives, DeFort �lters addresses that do not make

pro�ts or cause an abnormal token price. Considering that normal

price �uctuations can result in small pro�ts, DeFort also �lters

addresses with minimal pro�ts.

3.5.2 Fund flow analysis. For each target DeFi application, De-

Fort monitors all the related transactions and extracts all the token

transfer or swap operations. By analyzing the parameters of these

operations, DeFort can obtain the number, source address, and

destination address of the transferred token. Based on the infor-

mation extracted, DeFort can construct a fund �ow among DeFi

applications and its related accounts. In addition, when the model

transitions to Abormal state, DeFort tracks the transactions of re-

lated accounts. For potential attackers, DeFort will analyze their

historical transactions and trace their fund sources. This is because

attackers may use other DeFi applications or �ash loans to per-

form attacks and transfer pro�ts to other accounts. Obtaining more

transactions can better analyze the attack process.

3.5.3 Function call analysis. To analyze the reasons for price ma-

nipulation, DeFort extracted the sequence of function calls in the

transaction. First, DeFort obtains the transactions that caused ab-

normal token prices and then extracts functions that could lead

to price anomalies, such as swap, transfer, and balanceOf. Then,

DeFort extracts all the functions related to token transfers in the

transactions when the model in Abnormal state. In this way, DeFort

can derive two sets of candidate functions: one that may result in

abnormal token prices and the other that may yield pro�ts. Based

on address analysis and fund �ow analysis, DeFort �lters functions

associated with benign accounts. Note that, since there exist nested

calling relationships between functions, DeFort retains the func-

tion call sequence of the candidate function, which aids auditors in

locating the function.

4 EVALUATION

In this section, we comprehensively evaluate DeFort with real-

world DeFi environments and data to answer the following research

questions (RQs):

• RQ1: How accurate is DeFort in detecting price manipula-

tion attacks within DeFi applications?

• RQ2: How e�ective is DeFort in the analysis of price manip-

ulation attacks in DeFi applications?

• RQ3: Is DeFort capable of detecting real-world price manip-

ulation attacks during on-chain deployment?

4.1 Datasets

We conducted our experiments utilizing two datasets gathered

from real-world DeFi environments. These datasets collectively

contain data on 489 DeFi applications across four major Ethereum-

compatible blockchain networks [80]. The �rst dataset, referred

to as D1, consists of 54 DeFi applications that have previously

experienced price manipulation attacks. The second dataset, named

D2, comprises 435 DeFi applications deemed highly unlikely to

possess vulnerabilities.

In constructing D1, we initially incorporated all 23 vulnerable

DeFi applications identi�ed by DeFiTainter [41]. Subsequently, we

collated all attack incidents reported in DeFiHackLabs [67] from

April 1, 2022, to March 1, 2023. DeFiHackLabs, renowned for its

comprehensive coverage of blockchain attack events and boast-

ing 4.3k stars, serves as a well-acknowledged repository in this

�eld. From this source, we identi�ed 128 incidents, each annotated

with descriptive labels. Then, focusing on “price manipulation”, we

extracted 19 incidents speci�cally tagged with this attribute. Recog-

nizing that some price manipulation incidents might be categorized

under alternative labels like “�ashloan”, we performed a manual

analysis of the remaining incidents without the “price manipula-

tion” tag to ensure no relevant cases were overlooked. This process

yielded 35 incidents associated with price manipulation vulnera-

bilities, with 4 already present in D1. After removing duplicates,

these were added to D1, which �nally contained 54 incidents. This

dataset primarily serves to evaluate the true positive detection rate

of DeFort.

The dataset D2 was constructed using high-quality DeFi appli-

cations sourced from De�Llama [25], often likened to the “Google

Play” of the DeFi ecosystem. These applications have undergone

rigorous audits and are deemed free of price manipulation vulner-

abilities. As of early 2023, the total value locked (TVL) in these

applications amounted to approximately 27.4 billion dollars. The ra-

tionale for selecting these applications is based on the premise that

a higher TVL in a DeFi protocol correlates with increased developer

attention and a lower likelihood of su�ering from price manipula-

tion attacks. We tracked the activities of these 435 DeFi applications,

capturing the transaction data from every block over a one-month

period (from October 9, 2023, to November 9, 2023, UTC) through

various block explorers and analytic platforms [13, 29, 30, 57]. This

e�ort resulted in a comprehensive collection of 428,523 transactions.

D2 is mainly employed to assess the false positive rate of DeFort’s

detection capabilities.

4.2 Implementation

We implemented DeFort with approximately 4,500 lines of code

(LOC). DeFort currently supports compatibility with �ve blockchain

chains—Ethereum [28], Binance [10], Fantom[31], Polygon [56],

and Base [4]. For acquiring relevant state information from speci�c

407

DeFort: Automatic Detection and Analysis of Price Manipulation A�acks in DeFi Applications ISSTA ’24, September 16–20, 2024, Vienna, Austria

blocks, we employ blockchain node APIs facilitated by QuickN-

ode [59], an external RPC service provider. All experimental evalua-

tions of DeFort were conducted on a system running Ubuntu 20.04,

powered by an Intel® Xeon® W-2235 CPU (3.80GHz, with 6 cores

and 12 threads) and equipped with 32GB of memory.

4.3 RQ1: E�cacy of Attack Detection

To address RQ1, we conducted an evaluation of DeFort using the

datasets D1 and D2. Table 1 presents the details of D1 alongside

the detection outcomes of DeFort in comparison to other leading

approaches, namely DeFiRanger [78], FlashSyn [16], and DeFiTain-

ter [41]. DeFort attained a recall rate of 96.3%, outperforming all

comparable state-of-the-art approaches. However, it missed detect-

ing two price manipulation attacks related to the “BeltFinance” and

“Discover” DeFi applications. A subsequent in-depth analysis of the

execution processes revealed the reasons for these false negatives.

BeltFinance, a stableswap AMM protocol employing multi-strategy

yield optimization with four assets and six strategies, presented a

challenge. The core issue in the BeltFinance attack was its unique

and intricate mechanism for calculating the MultiStrategyToken

price by aggregating strategies, which DeFort could not accurately

interpret from transaction execution traces. This limitation can po-

tentially be addressed by incorporating domain-speci�c knowledge

manually or enhancing the price identi�cation method, perhaps

through leveraging the semantic comprehension abilities of large

language models. In the case of Discover, the attackers exploited

�ash loans to manipulate prices, a tactic discernible through the

contract function getprice() in ETHpledge. However, the transac-

tion trace lacked detailed function call information, including the

return value of getprice(). Trace-based DeFort, in its current form,

lacks access to such deeper call information and therefore could

not detect the attack. This limitation is not inherent to DeFort’s

methodology and could be resolved by broadening the tool’s reach

to access relevant information.

As detailed in Table 1, we benchmark DeFort against three perti-

nent approaches—DeFiRanger, FlashSyn, and DeFiTainter—using

the D1 dataset. DeFiRanger and FlashSyn, which are not open-

source, detected four and eight price manipulation attacks, respec-

tively, according to their published experimental results. All these

attacks were also identi�ed by DeFort. On the other hand, DeFiTain-

ter, an open-source tool and the current state-of-the-art solution

in this �eld, identi�ed 27 out of 54 attacks. In contrast, DeFort suc-

cessfully detected 52 out of the 54 attacks, thus achieving a 92.6%

higher detection rate than DeFiTainter, as highlighted in Table 1.

To assess the false positive rate, we subjected DeFort to an analy-

sis using the D2 dataset. Given that the DeFi applications in D2 are

generally considered non-vulnerable and, consequently, unlikely

targets for attacks, their transactional activities are presumed to

be normal. In our commitment to a more thorough evaluation, we

corroborated the status of these DeFi applications against security

companies’ databases and attack reports [6, 20, 35, 47], con�rm-

ing their non-involvement in any attacks during the period from

October 9, 2023, to November 9, 2023, UTC. Subsequently, DeFort

was tested on the validated D2 dataset, comprising 428,523 transac-

tions across 435 DeFi applications. The outcomes reveal that DeFort

achieved a zero false positive rate on D2, underscoring its poten-

tial for extensive application in large-scale, on-chain monitoring

scenarios.

Answers to RQ1: DeFort exhibits remarkable e�ectiveness in

identifying price manipulation attacks, achieving a recall rate

of 96.3% and a zero false positive rate, respectively. Notably,

DeFort successfully detects attacks on dataset D1 that remain

undetected by other tools, surpassing the performance of the

current state-of-the-art tool by 92.6%.

4.4 RQ2: E�cacy of Attack Analysis

In RQ2, we evaluate DeFort’s e�cacy in analyzing price manipula-

tion attacks within the incidents identi�ed by DeFort in RQ1.

DeFort’s analysis primarily utilizes transaction execution traces,

focusing on surface-level code aspects such as function calls and

variables. As a result, the functions pinpointed by DeFort often

correlate with the vulnerability’s cause rather than representing its

root cause. Therefore, we term the function identi�ed by DeFort as

the “associated function”. Furthermore, security analysts require

not just the identi�cation of this associated function but also a com-

prehensive description of the overall attack behavior. This holistic

view aids in swiftly understanding the complete attack process. De-

Fort addresses this need by providing a detailed description of the

attack behavior, encompassing the attacker, victim, pro�teer, key

function call sequence, and fund �ow. This upper-level extraction

and summarization of semantic information from attack transac-

tion behaviors enable security researchers to conduct an in-depth

analysis of the vulnerabilities underlying an attack event. Moreover,

such explanatory information is crucial for strategizing defenses

against certain types of price manipulation attacks, as discussed in

Section 5.1.

We employed the associated function and behavior descriptions

as metrics to evaluate DeFort’s analytical capabilities. An analysis

was deemed e�ective if both the associated function and the behav-

ior descriptions were accurate. To validate DeFort’s analysis, we

compared its results with attack event analysis reports from third-

party security �rms [5, 9, 12, 49, 54]. This comparison involved a

manual review to ensure the thoroughness of our assessment. De-

Fort’s analysis was veri�ed as accurate for 50 out of the 52 attacks.

The analyses for the APC and ATK attacks were not con�rmed

due to the unavailability of the relevant vulnerability code as open

source. For instance, the analysis of the ATK application is based

on assumptions derived from available evidence and logical infer-

ences, such as the signi�cant rewards received by the user and the

prior price manipulation, suggesting that the contract likely issues

payouts based on ATK’s current value [11].

We delve deeper into DeFort’s analysis of the BGLD attacks to

further clarify its �ndings. As depicted in Fig. 4, DeFort’s analysis

on these attacks was veri�ed as accurate through manual veri-

�cation. The root cause is that $BGLD charges an extra fee on

transferring [8]. In part 1 , Attacker1 �rst borrowed 125 $WBNB

from DPPAdvanced through �ash loan. Then Attacker1 called func-

tion swap() and exchanged 125 $WBNB to 1,967,931 $BGLD_1 in

0x7526_PancakePair. Next Attacker1 transferred 1,527,058 $BGLD_1

to 0x7526_PancakePair and called 0x7526_PancakePair’s function

408

ISSTA ’24, September 16–20, 2024, Vienna, Austria Maoyi Xie, Ming Hu, Ziqiao Kong, Cen Zhang, Yebo Feng, Haijun Wang, Yue Xue, Hao Zhang, Ye Liu, and Yang Liu

Table 1: Information about price manipulation attacks on vulnerable DeFi applications and the corresponding detection results

of di�erent tools. The time indicates the attack time measured in UTC. The loss amount is in USD. DR refers to DeFiRanger [78],

FS refers to FlashSyn [16], DT refers to DeFiTainter [41], DF refers to DeFort.

App Time Loss Chain DR FS DT DF # App Time Loss Chain DR FS DT DF

1 bZx 2020/02/18 350K ETH ✓ ✓ 28 EGDFinance 2022/08/07 36K BSC ✓ ✓

2 Eminence 2020/09/29 7M ETH ✓ ✓ ✓ 29 ANCH 2022/08/09 107K BSC ✓ ✓

3 Harvest 2020/10/26 21.5M ETH ✓ ✓ ✓ ✓ 30 XSTABLE 2022/08/09 56k ETH ✓

4 CheeseBank 2020/11/06 3.3M ETH ✓ ✓ ✓ ✓ 31 Cupid 2022/08/31 78k BSC ✓ ✓

5 ValueDeFi 2020/11/14 6M ETH ✓ ✓ ✓ 32 Zoompro 2022/09/05 61K BSC ✓

6 WarpFinance 2020/12/17 7.8M ETH ✓ ✓ ✓ ✓ 33 BXH 2022/09/28 40K BSC ✓ ✓

7 PancakeBunny 2021/05/19 45M BSC ✓ ✓ 34 ATK 2022/10/12 61K BSC ✓

8 AutoShark 2021/05/24 750K BSC ✓ ✓ 35 INUKO 2022/10/14 50K BSC ✓

9 BeltFinance 2021/05/29 6.23M BSC ✓ 36 PLTD 2022/10/17 24K BSC ✓

10 ApeRocket 2021/07/14 1.26M BSC ✓ ✓ ✓ 37 BDEX 2022/10/30 3K BSC ✓ ✓

11 PancakeBunny 2021/07/16 2.4M POL ✓ ✓ 38 BBOX 2022/11/16 12K BSC ✓

12 SanshuInu 2021/07/20 111K ETH ✓ ✓ 39 MBC 2022/11/29 5.9K BSC ✓ ✓

13 DotFinance 2021/08/25 430K BSC ✓ ✓ 40 APC 2022/12/01 6K BSC ✓

14 PancakeHunny 2021/10/20 1.93M BSC ✓ 41 AES 2022/12/07 60K BSC ✓

15 CreamFinance 2021/10/27 130M ETH ✓ ✓ 42 BGLD 2022/12/12 18K BSC ✓ ✓

16 OneRing 2022/03/21 1.45M FTM ✓ ✓ 43 Nmbplatform 2022/12/14 76K BSC ✓ ✓

17 GYMNetwork 2022/04/09 312K BSC ✓ 44 DFS 2022/12/30 2K BSC ✓

18 ElephantMoney 2022/04/12 11.2M BSC ✓ 45 GDS 2023/01/03 180K BSC ✓ ✓

19 RikkeiFinance 2022/04/15 1.1M BSC ✓ 46 RoeFinance 2023/01/11 80K ETH ✓

20 WienerDOGE 2022/04/25 30K BSC ✓ ✓ ✓ 47 Upswing 2023/01/17 36K ETH ✓ ✓

21 Fortress 2022/05/08 3M BSC ✓ 48 UPSToken 2023/01/18 45K ETH ✓ ✓

22 Hackerdao 2022/05/24 65K BSC ✓ 49 BonqDAO 2023/02/01 88M POL ✓ ✓

23 NOVO 2022/05/29 65K BSC ✓ 50 FDP 2023/02/06 4K BSC ✓

24 Discover 2022/06/06 11K BSC 51 Sheep 2023/02/10 3K BSC ✓

25 Equalizer 2022/06/07 72K POL ✓ ✓ 52 Starlink 2023/02/16 12K BSC ✓

26 InverseFinance 2022/06/16 1M ETH ✓ 53 SwapX 2023/02/27 1M BSC ✓

27 SpaceGodzilla 2022/07/13 25K BSC ✓ 54 LaunchZone 2023/02/27 320K BSC ✓

skim(), making Attacker1 get back 1,527,058 $BGLD_1. Note that

in the previous operation, 0x7526_PancakePair transferred 30,541

$BGLD_1 to the zero address, which means that 30,541 $BGLD_1

were burned. Then Attacker1 called function sync(). At this time, the

liquidity in pool 0x7526_PancakePair was extremely imbalanced,

causing Attacker1 to swap out 133 $WBNB using only 1 $BGLD_1.

The attacker then repaid the �ash loan to DPPAdvanced and trans-

ferred the pro�t of 8 $WBNB to Attacker2. Immediately afterwards,

in part 2 , Attacker1 called functionmigrate() of ERC1967Proxy and

leveraged the same logic to launch an attack on 0x4293_PancakePair.

The other detailed information of this attack is shown in Fig. 4. Fi-

nally, in part 3 , Attacker1 gained a total of 18,476 $BUSD. In this

case, DeFort identify function skim() in 0x7526_PancakePair as the

associated function. This is reasonable because the attacker called

function skim() that burned some tokens, unbalancing the liquidity,

which in turn the attacker pro�ted from.

Answers to RQ2: DeFort proves to be e�ective in analyzing

price manipulation attacks, with its analysis veri�ed as accurate

for 50 out of the 52 attacks. This level of e�ectiveness signi�cantly

aids security analysts in swiftly unraveling and understanding

the attack process.

4.5 RQ3: E�cacy in Detecting and Analyzing
Real-world Attacks during On-Chain
Deployment

To estimate RQ3, we further deployed DeFort to �ve real chains for

real-time monitoring, targeting 441 high-value DeFi applications

from De�Llama. DeFort successfully identi�ed and analyzed �ve

price manipulation attacks on �ve di�erent DeFi applicaitons and

promptly issued relevant alerts on Twitter (X). The information

about these attacks is shown in Table 2.

For the attack on Carson, hackers utilized �ash loans to con-

tinuously invoke the function swapExactTokensForTokensSupport-

ingFeeOnTransferTokens() in a closed-source contract (0x2bdf...341a).

This process involved swapping from token $BSC-USD to token

$Carson and swapping back repeatedly to burn token $Carson. Fol-

lowing this, hackers consistently in�ated the price of token $Carson

for pro�ts. In terms of the incident related to MagnateFi, project

owners manipulated the price through function setDirectPrice()

and subsequently absconded with funds. This type of fraud is also

known as "rug pull". The other three attacks have similar behaviors.

As for the attack on FFIST, attackers called the function transfer()

and triggered the internal function _airdrop() to set token number

of predictable address to one, which caused a liquidity imbalance in

the pool. Then attackers made a lot of pro�ts by taking advantage

of the price anomaly at this moment. This kind of attack has also

409

DeFort: Automatic Detection and Analysis of Price Manipulation A�acks in DeFi Applications ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 4: Core steps of the attack on BGLD. For operations bounded the box, they are sub-operations under a particular function.

Red lines indicate fund �ows. The process is from top to bottom. The function marked in blue is the associated function.

been used in the AI-Doge, QX and Utopia programs [7]. Regarding

the attack that occurred on Uwerx, the vulnerability primarily orig-

inates from the susceptible function _transfer() and its implications

when interacting with the speci�ed variable uniswapPoolAddress.

Although the tokenomics were initially structured to support the

project by burning tokens and reallocating funds for marketing

purposes, the vulnerability was utilized to cause imbalances and

manipulate market prices [52]. Following this, we take the attack

on LeetSwap as an example to show DeFort’s detection and analysis

of the attack in detail.

DeFort deduced that function sync() as the associated func-

tion and the key function call sequence is swapExactTokensFor-

TokensSupportingFeeOnTransferTokens(), _transferFeesSupporting-

TaxTokens(), sync() and swapExactTokensForTokensSupportingFeeOn-

TransferTokens(). Other behavior descriptions provided by DeFort,

which are correct after manual proofreading, are shown in Fig. 5.

Firstly, attacker1 deposited 0.001 $WETH to attacker2. Then, at-

tacker2 initiated a normal micro-swap operation in a contract called

LeetSwapV2Pair, which is the victim, exchanging token $WETH for

Figure 5: Core steps of the attack on LeetSwap. For operations

bounded the box, they are sub-operations under a particular

function. Red lines indicate fund �ows. The process is from

top to bottom. The function marked in blue is the associated

function.

410

ISSTA ’24, September 16–20, 2024, Vienna, Austria Maoyi Xie, Ming Hu, Ziqiao Kong, Cen Zhang, Yebo Feng, Haijun Wang, Yue Xue, Hao Zhang, Ye Liu, and Yang Liu

token $axlUSDC. This step resulted in a tiny lift of $axlUSDC price.

Subsequently, attacker2 invoked a call to vulnerable function _trans-

ferFeesSupportingTaxTokens shown in Listing 1 to transfer almost

all $axlUSDC tokens from LeetSwapV2Pair to LeetSwapV2Fees,

leading an extremely imbalance in LeetSwapV2Pair. Following that,

attacker2 triggered function sync() to synchronize. At this moment,

the price of token $axlUSDC became very high. Finally, attacker2

executed a reverse swap to acquire a greater amount of $WETH

and transferred money to the pro�teer.

1 function _transferFeesSupportingTaxTokens(address

token, uint256 amount) public returns (uint256) {

2 if (amount == 0) {

3 return 0;

4 }

5 uint256 balanceBefore =

IERC20(token).balanceOf(fees);

6 _safeTransfer(token, fees, amount);

7 uint256 balanceAfter = IERC20(token).balanceOf(fees);

8 return balanceAfter - balanceBefore;

9 }

Listing 1: Vulnerable _transferFeesSupportingTaxTokens() in

LeetSwapV2Pair contract.

After analyzing the source code, we found that the root cause

behind the attack is that the function _transferFeesSupportingTax-

Tokens() was mistakenly assigned a ’public’ visibility speci�er, as

shown in the �rst line of Listing 1. Therefore, anyone could invoke

a call to this function to transfer tokens from LeetSwapV2Pair to

LeetSwapV2Fees. DeFort determined function sync() as the asso-

ciated function, following function _transferFeesSupportingTaxTo-

kens(). Since function sync() exists to set the reserves of the contract

to the current balances [72], we can assume that function sync()

demonstrates the impact of calling function _transferFeesSupport-

ingTaxTokens(), which in turn allows subsequent function swapEx-

actTokensForTokensSupportingFeeOnTransferTokens() to utilize that

impact. Therefore, function sync() is indeed related to the vulnerabil-

ity in this attack and can be regarded as the associated function. In

conclusion, the e�ective information provided by DeFort can help

security researchers to further investigate vulnerabilities behind

attacks.

Answers to RQ3: DeFort demonstrates its capability to detect

real-world price manipulation attacks in an on-chain deployment.

Furthermore, it o�ers crucial insights for attack analysis, thereby

assisting security analysts in rapidly deciphering the underlying

vulnerabilities of such attacks.

5 DISCUSSION

5.1 Application to Attack Blocking

The accurate detection and e�ective analysis provided by DeFort

can help block certain types of price manipulation attacks, such

as those related to Automated Market Maker based Decentralized

Exchanges (AMM-DEXs). AMM-DEXs allow digital assets to be

traded in a permissionless and automated way by using liquid-

ity pools rather than a traditional market of buyers and sellers.

LeetSwapV2Pair on LeetSwap incidents shown in Fig. 5 is AMM-

DEX. DeFort detected an attack on the LeetSwap program and

regarded LeetSwapV2Pair as the victim. With the above informa-

tion, if we have the authority granted by the project, we are able to

withdraw some or all of the tokens from LeetSwapV2Pair in a timely

manner before the transaction is con�rmed, making it impossible

for the attacker to complete the attack. Since most on-chain attack

transactions are con�rmed within tens of seconds to minutes, rapid

and accurate automated detection and analysis are critical for attack

blocking. Excluding APIs request time, DeFort’s running time on

dataset D1 is 0.01-0.2 seconds, which takes up very little time before

attack blocking is implemented.

5.2 Limitation in Design and Implementation

DeFort’s analysis is based on transaction execution, not deep into

the source code level, and the analysis granularity is coarse. In the

future, by accessing the source code analysis technology, we can

further locate the functions and variables that are not re�ected

in the transaction execution path to obtain more detailed analy-

sis information. For speci�c DeFi applications, DeFort relies on

prior knowledge in the database to recognize variables represent-

ing prices. To mitigate this problem, we can access a large language

model to help understand the semantics of recognizing relevant

price variables. In addition, DeFort supports detecting and analyz-

ing transaction behaviors on �ve chains, and we will extend DeFort

to support DeFi applications on other chains in the future.

6 RELATED WORK

6.1 Detection of Price Manipulation Attacks

To ensure the security of funds and privacy in DeFi applications,

various tools have been developed to detect vulnerabilities hid-

den in contract programs. Static analysis tools like Slither [32],

VeriSmart [63], Zeus [39], and Securify [69] analyze programs at

source code and bytecode level. Symbolic execution tools such

as Mythril [22], Oyente [46], Manticore [51], VerX [55] and De-

fectChecker [15] use symbolic values instead of speci�c values

during the execution. Besides, dynamic fuzzing tools [17, 33, 37, 45,

62, 68] automated generate input data and monitor the abnormal

results of target programs at runtime [60]. Recently, GPTScan [66]

combines LLM [40] to detect logic vulnerabilities in contracts.

Di�erent from above work, we concentrate on the detection of

price manipulation attacks in DeFi applications. Existing tools with

the ability to detect attacks or vulnerabilities related to price manip-

ulation include DeFiRanger [78], FlashSyn [16], DeFiTainter [41]

and GPTScan [66]. DeFiRanger constructs cash �ow trees(CFT)

from trasaciton sequences, lifts the semantic of CFT to high-level

DeFi actions and subsequently employs speci�c patterns to identify

price manipulation attacks. However, DeFiRanger is greatly limited

by its templates. FlashSyn applys numerical approximation strate-

gies to synthesize adversarial contracts that potentially exploit DeFi

applications with price manipulation attacks. Nonetheless, there

is a gap between synthesized contracts and the ones that launch

attacks on the real chain. DeFiTainter builds call graph based on

contract state and transactions, then conducts inter-contract taint

analysis to analyze all execution paths and disclose price manipu-

lation attacks. Despite that, DeFiTainter requires manual analysis

and labeling of taint sources and taint sinks, which is not trivial

work. GPTScan utilizes GPT [53] to match candidate vulnerable

411

DeFort: Automatic Detection and Analysis of Price Manipulation A�acks in DeFi Applications ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 2: Price manipulation attacks detected by DeFort. The attack time is in UTC. The loss amount is in USD.

Application Attack Time Loss Chain Block Attack Transaction Hash

1 FFIST 2023/07/20 230K BSC 30113118 0x199c4b88cab6b4b495b9d91af98e746811dd8f82f43117c48205e6332db9f0e0

2 Carson 2023/07/26 143K BSC 30306325 0x37d921a6bb0ecdd8f1ec918d795f9c354727a3�6b0dba98a512fceb9662a3ac

3 LeetSwap 2023/08/01 620K BASE 2031747 0xbb837d417b76dd237b4418e1695a50941a69259a1c4dee561ea57d982b9f10ec

4 Uwerx 2023/08/02 324K ETH 17826203 0x3b19e152943f31fe0830b67315ddc89be9a066dc89174256e17bc8c2d35b5af8

5 MagnateFi 2023/08/25 6.4M BASE 3073444 0x39555e75d76b294248a434fdfe9640e0cfe3f22bd7fceb675fd4ef4b5e02f719

functions and recognize key variables and statements which are

associated with price manipulation vulnerabilities.

6.2 Analysis of Attacks

To the best of our knowledge, DeFort is the �rst tool that can

automatically analyze attacks in DeFi application scenarios. A

similar technique is fault localization, which can be divided into

three categories: program spectrum [1, 38, 77, 81], mutation analy-

sis [34, 44], and learning to rank [42, 43, 48, 64]. Program spectrum

method [1, 38, 77, 81]. Due to the characteristics of blockchain and

smart contracts, the above methods cannot be directly used in DeFi

applications. Joran et al. [34] and Li et al. [44] design speci�c muta-

tion operators based on mutation-based fault localization methods

to extend traditional mutation analysis to DeFi applications fault

localization tasks. However, mutation-based techniques require

hours to locate potential faults in single DeFi application. Besides,

the above methods lack the capacity to provide a comprehensive

analysis of attack happened in DeFi applications.

7 CONCLUSION

In this paper, we proposed DeFort, a novel, automatic price ma-

nipulation attack detection and analysis approach. With a price

manipulation behavior model, Defort can detect price manipulation

attacks on blockchains and conduct a comprehensive analysis, in-

cluding pinpointing the associated function and generating attack

behavior descriptions. Our evaluation using collected datasets and

real-world deployments demonstrates that DeFort achieves high

precision both in detection and analysis, outperforming state-of-

the-art approaches in almost all metrics.

8 DATA AVAILABILITY

DeFort has been integrated as a part of MetaScout1, an industry-

leading, real-time contract security monitoring platform. To facili-

tate future research, we have made the dataset publicly available

on our GitHub website at https://github.com/maoyixie/DeFort.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their constructive feedback.

This research/project is supported by the National Research Founda-

tion, Singapore, and the Cyber Security Agency under its National

Cybersecurity R&D Programme (NCRP25-P04-TAICeN). Any opin-

ions, �ndings and conclusions or recommendations expressed in

this material are those of the author(s) and do not re�ect the views

1https://metatrust.io/#metascout

of National Research Foundation, Singapore and Cyber Security

Agency of Singapore.

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation

of similarity coe�cients for software fault localization. In 2006 12th Paci�c Rim
International Symposium on Dependable Computing (PRDC’06). IEEE, 39–46.

[2] Alchemy. 2023. Alchemy. https://www.alchemy.com/. Accessed on 2023-11-27.
[3] Sanidhay Arora, Yingjiu Li, Yebo Feng, and Jiahua Xu. 2024. SecPLF: Secure

Protocols for Loanable Funds against Oracle Manipulation Attacks. In Proceedings
of the 19th ACM Asia Conference on Computer and Communications Security
(ASIACCS 2024).

[4] base. 2023. base. https://base.org/. Accessed on 2023-11-27.
[5] Beosin. 2023. Beosin. https://beosin.com/?lang=en-US. Accessed on 2023-12-15.
[6] beosin. 2023. Blockchain Security Recap of October: $51.61M Lost in

Attacks. https://medium.com/@Beosin_com/blockchain-security-recap-of-
october-51-61m-lost-in-attacks-19babb116cac. Accessed on 2023-11-09.

[7] BeosinAlert. 2023. FFist attack analysis. https://twitter.com/BeosinAlert/status/
1681848899802214401?s=20. Accessed on 2023-11-10.

[8] blocksec. 2023. bgld analysis. https://twitter.com/BlockSecTeam/status/
1602335214356660225. Accessed on 2023-12-15.

[9] BlockSec. 2023. BlockSec. https://blocksec.com/. Accessed on 2023-12-15.
[10] bnbchain. 2023. bnbchain. https://www.bnbchain.org/en/bnb-smart-chain. Ac-

cessed on 2023-11-27.
[11] certik. 2023. atk analysis. https://www.certik.com/resources/blog/

1YsQo8TnxCvwalqvtkFLtC-journey-of-awakening-incident-analysis. Accessed
on 2023-12-15.

[12] Certik. 2023. Certik. https://www.certik.com/. Accessed on 2023-12-15.
[13] BNB Smart Chain. 2023. BscScan. https://bscscan.com/. Accessed on 2023-11-27.
[14] Chainlink. 2023. How to Fetch the Current Price of Ethereum, Bitcoin, and Other

Cryptocurrencies in Solidity. https://blog.chain.link/fetch-current-crypto-price-
data-solidity/. Accessed on 2023-11-27.

[15] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2021.
Defectchecker: Automated smart contract defect detection by analyzing evm
bytecode. IEEE Transactions on Software Engineering 48, 7 (2021), 2189–2207.

[16] Zhiyang Chen, Sidi Mohamed Beillahi, and Fan Long. 2022. FlashSyn: Flash Loan
Attack Synthesis via Counter Example Driven Approximation. arXiv preprint
arXiv:2206.10708 (2022).

[17] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. Smartian: Enhancing smart contract fuzzing with static and
dynamic data-�ow analyses. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 227–239.

[18] coingecko. 2023. coingecko. https://www.coingecko.com/. Accessed on 2023-12-
15.

[19] coinmarketcap. 2023. coinmarketcap. https://coinmarketcap.com/. Accessed on
2023-12-15.

[20] coinpaper. 2023. October Web3 Exploits Lead to Over $32 Million Losses. https://
coinpaper.com/2531/october-web3-exploits-lead-to-over-32-million-losses. Ac-
cessed on 2023-11-09.

[21] cointelegraph. 2023. market manipulation. https://cointelegraph.com/explained/
what-is-market-manipulation-in-cryptocurrency. Accessed on 2023-12-06.

[22] Consensys. [n. d.]. Mythril. https://github.com/Consensys/mythril. Accessed on
2023-12-05.

[23] Covalent. 2023. Understanding Di�erent Types of Blockchain Transactions with
Covalent. https://www.covalenthq.com/docs/uni�ed-api/guides/understanding-
blockchain-transactions-with-covalent/. Accessed on 2023-12-05.

[24] curve. 2023. Understanding Curve. https://resources.curve.�/base-features/
understanding-curve/. Accessed on 2023-12-15.

[25] De�Llama. 2023. DeFi Dashboard. https://de�llama.com/. Accessed on 2023-06-
20.

[26] de�prime. 2023. Uniswap Alternatives. https://de�prime.com/uniswap-
alternatives. Accessed on 2023-11-27.

412

https://github.com/maoyixie/DeFort
https://metatrust.io/#metascout
https://www.alchemy.com/
https://base.org/
https://beosin.com/?lang=en-US
https://medium.com/@Beosin_com/blockchain-security-recap-of-october-51-61m-lost-in-attacks-19babb116cac
https://medium.com/@Beosin_com/blockchain-security-recap-of-october-51-61m-lost-in-attacks-19babb116cac
https://twitter.com/BeosinAlert/status/1681848899802214401?s=20
https://twitter.com/BeosinAlert/status/1681848899802214401?s=20
https://twitter.com/BlockSecTeam/status/1602335214356660225
https://twitter.com/BlockSecTeam/status/1602335214356660225
https://blocksec.com/
https://www.bnbchain.org/en/bnb-smart-chain
https://www.certik.com/resources/blog/1YsQo8TnxCvwalqvtkFLtC-journey-of-awakening-incident-analysis
https://www.certik.com/resources/blog/1YsQo8TnxCvwalqvtkFLtC-journey-of-awakening-incident-analysis
https://www.certik.com/
https://bscscan.com/
https://blog.chain.link/fetch-current-crypto-price-data-solidity/
https://blog.chain.link/fetch-current-crypto-price-data-solidity/
https://www.coingecko.com/
https://coinmarketcap.com/
https://coinpaper.com/2531/october-web3-exploits-lead-to-over-32-million-losses
https://coinpaper.com/2531/october-web3-exploits-lead-to-over-32-million-losses
https://cointelegraph.com/explained/what-is-market-manipulation-in-cryptocurrency
https://cointelegraph.com/explained/what-is-market-manipulation-in-cryptocurrency
https://github.com/Consensys/mythril
https://www.covalenthq.com/docs/unified-api/guides/understanding-blockchain-transactions-with-covalent/
https://www.covalenthq.com/docs/unified-api/guides/understanding-blockchain-transactions-with-covalent/
https://resources.curve.fi/base-features/understanding-curve/
https://resources.curve.fi/base-features/understanding-curve/
https://defillama.com/
https://defiprime.com/uniswap-alternatives
https://defiprime.com/uniswap-alternatives

ISSTA ’24, September 16–20, 2024, Vienna, Austria Maoyi Xie, Ming Hu, Ziqiao Kong, Cen Zhang, Yebo Feng, Haijun Wang, Yue Xue, Hao Zhang, Ye Liu, and Yang Liu

[27] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and
Ji Wang. 2018. Untangling blockchain: A data processing view of blockchain
systems. IEEE transactions on knowledge and data engineering 30, 7 (2018), 1366–
1385.

[28] ethereum. 2023. ethereum. https://ethereum.org/en/. Accessed on 2023-11-27.
[29] Ethereum. 2023. Etherscan. https://etherscan.io/. Accessed on 2023-11-27.
[30] Fantom. [n. d.]. FTMScan. https://ftmscan.com/. Accessed on 2023-11-27.
[31] fantom. 2023. fantom. https://fantom.foundation/. Accessed on 2023-11-27.
[32] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[33] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. 2019. Learning to fuzz from symbolic execution with application to smart
contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 531–548.

[34] Joran J Honig, Maarten H Everts, and Marieke Huisman. 2019. Practical mutation
testing for smart contracts. In International Workshop on Data Privacy Manage-
ment, International Workshop on Cryptocurrencies and Blockchain Technology.
Springer, 289–303.

[35] immunebytes. 2023. List of Crypto Hacks in the Month of October. https://www.
immunebytes.com/blog/list-of-crypto-hacks-in-october/#Oct_11. Accessed on
2023-11-09.

[36] Infura. 2023. Infura. https://www.infura.io/. Accessed on 2023-11-27.
[37] Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Contractfuzzer: Fuzzing smart

contracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering. 259–269.

[38] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273–282.

[39] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:
analyzing safety of smart contracts.. In Ndss. 1–12.

[40] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[41] Queping Kong, Jiachi Chen, Yanlin Wang, Zigui Jiang, and Zibin Zheng. 2023.
DeFiTainter: Detecting Price Manipulation Vulnerabilities in DeFi Protocols.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. 1144–1156.

[42] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deep�: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT international symposium on software testing and analysis.
169–180.

[43] Yi Li, Shaohua Wang, and Tien Nguyen. 2021. Fault localization with code
coverage representation learning. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 661–673.

[44] Zixin Li, Haoran Wu, Jiehui Xu, Xingya Wang, Lingming Zhang, and Zhenyu
Chen. 2019. Musc: A tool for mutation testing of ethereum smart contract. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1198–1201.

[45] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe.
2018. Reguard: �nding reentrancy bugs in smart contracts. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings.
65–68.

[46] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254–269.

[47] medium. [n. d.]. More Than $22M Stolen from Web3 Platforms in Oc-
tober. https://medium.com/@zokyo.io/more-than-22m-stolen-from-web3-
platforms-in-october-f33271e7fb91. Accessed on 2023-11-09.

[48] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2022.
Improving fault localization and program repair with deep semantic features
and transferred knowledge. In Proceedings of the 44th International Conference on
Software Engineering. 1169–1180.

[49] MetaTrust. 2023. MetaTrust. https://metatrust.io/. Accessed on 2023-12-15.
[50] Yifan Mo, Jiachi Chen, Yanlin Wang, and Zibin Zheng. 2023. Toward Automated

Detecting Unanticipated Price Feed in Smart Contract. In Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis.
1257–1268.

[51] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-
friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1186–1189.

[52] Neptune Mutual. 2023. How Was the Uwerx Network Exploited? https:
//neptunemutual.com/blog/how-was-the-uwerx-network-exploited/. Accessed
on 2023-11-10.

[53] openai. 2023. chatgpt. https://chat.openai.com/. Accessed on 2023-12-06.
[54] PeckShield. 2023. PeckShield. https://peckshield.com/. Accessed on 2023-12-15.

[55] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. Verx: Safety veri�cation of smart contracts. In 2020 IEEE
symposium on security and privacy (SP). IEEE, 1661–1677.

[56] polygon. 2023. polygon. https://polygon.technology/. Accessed on 2023-11-27.
[57] Polygon. 2023. polygonscan. https://polygonscan.com/. Accessed on 2023-11-27.
[58] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking

the de� ecosystem with �ash loans for fun and pro�t. In International conference
on �nancial cryptography and data security. Springer, 3–32.

[59] quicknode. 2023. quicknode. https://www.quicknode.com/. Accessed on 2023-
12-04.

[60] Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang, Chengnian Sun,
Huizhong Li, and Yan Cai. 2021. Empirical evaluation of smart contract testing:
What is the best choice?. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 566–579.

[61] Fabian Schär. 2021. Decentralized �nance: On blockchain-and smart contract-
based �nancial markets. FRB of St. Louis Review (2021).

[62] Chaofan Shou, Shangyin Tan, and Koushik Sen. 2023. Ityfuzz: Snapshot-based
fuzzer for smart contract. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis. 322–333.

[63] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VeriS-
mart: A highly precise safety veri�er for Ethereum smart contracts. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 1678–1694.

[64] Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273–283.

[65] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko
Vukolić. 2021. Adding fairness to order: Preventing front-running attacks in bft
protocols using tees. In 2021 40th International Symposium on Reliable Distributed
Systems (SRDS). IEEE, 34–45.

[66] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei
Xie, and Yang Liu. 2023. When GPT Meets Program Analysis: Towards Intelligent
Detection of Smart Contract Logic Vulnerabilities in GPTScan. arXiv preprint
arXiv:2308.03314 (2023).

[67] SunWeb3Sec. 2023. DeFiHackLabs. https://github.com/SunWeb3Sec/
DeFiHackLabs. Accessed on 2023-11-27.

[68] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2021. Confuzzius: A data dependency-aware hybrid fuzzer for smart contracts. In
2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 103–119.

[69] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security. 67–82.

[70] uniswap. 2023. Uniswap V2. https://docs.uniswap.org/contracts/v2/concepts/
protocol-overview/smart-contracts. Accessed on 2023-12-15.

[71] uniswap. 2023. Uniswap V3. https://docs.uniswap.org/contracts/v3/reference/
overview. Accessed on 2023-12-15.

[72] UniswapV2. 2023. Uniswap v2 Core. https://docs.uniswap.org/whitepaper.pdf.
Accessed on 2023-11-10.

[73] Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu
Wang, and Kui Ren. 2020. Towards understanding �ash loan and its applications
in de� ecosystem. arXiv preprint arXiv:2010.12252 (2020).

[74] Shih-Hung Wang, Chia-Chien Wu, Yu-Chuan Liang, Li-Hsun Hsieh, and Hsu-
Chun Hsiao. 2021. ProMutator: Detecting vulnerable price oracles in DeFi by
mutated transactions. In 2021 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 380–385.

[75] web3sec. 2023. DeFi Hacks Analysis. https://web3sec.notion.site/web3sec/
c582b99cd7a84be48d972ca2126a2a1f?v=4671590619bd4b2ab16a15256e4fbba1.
Accessed on 2023-12-05.

[76] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz,
and William Knottenbelt. 2022. Sok: Decentralized �nance (de�). In Proceedings
of the 4th ACM Conference on Advances in Financial Technologies. 30–46.

[77] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The DStar method
for e�ective software fault localization. IEEE Transactions on Reliability 63, 1
(2013), 290–308.

[78] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang Yuan, Qin-
ming He, and Kui Ren. 2021. De�ranger: Detecting price manipulation attacks
on de� applications. arXiv preprint arXiv:2104.15068 (2021).

[79] Jiahua Xu and Benjamin Livshits. 2019. The anatomy of a cryptocurrency {Pump-
and-Dump} scheme. In 28th USENIX Security Symposium (USENIX Security 19).
1609–1625.

[80] Xiao Yi, Yuzhou Fang, Daoyuan Wu, and Lingxiao Jiang. 2022. BlockScope:
Detecting and Investigating Propagated Vulnerabilities in Forked Blockchain
Projects. arXiv preprint arXiv:2208.00205 (2022).

[81] Mengshi Zhang, Yaoxian Li, Xia Li, Lingchao Chen, Yuqun Zhang, Lingming
Zhang, and Sarfraz Khurshid. 2019. An empirical study of boosting spectrum-
based fault localization via pagerank. IEEE Transactions on Software Engineering
47, 6 (2019), 1089–1113.

413

https://ethereum.org/en/
https://etherscan.io/
https://ftmscan.com/
https://fantom.foundation/
https://www.immunebytes.com/blog/list-of-crypto-hacks-in-october/#Oct_11
https://www.immunebytes.com/blog/list-of-crypto-hacks-in-october/#Oct_11
https://www.infura.io/
https://medium.com/@zokyo.io/more-than-22m-stolen-from-web3-platforms-in-october-f33271e7fb91
https://medium.com/@zokyo.io/more-than-22m-stolen-from-web3-platforms-in-october-f33271e7fb91
https://metatrust.io/
https://neptunemutual.com/blog/how-was-the-uwerx-network-exploited/
https://neptunemutual.com/blog/how-was-the-uwerx-network-exploited/
https://chat.openai.com/
https://peckshield.com/
https://polygon.technology/
https://polygonscan.com/
https://www.quicknode.com/
https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/SunWeb3Sec/DeFiHackLabs
https://docs.uniswap.org/contracts/v2/concepts/protocol-overview/smart-contracts
https://docs.uniswap.org/contracts/v2/concepts/protocol-overview/smart-contracts
https://docs.uniswap.org/contracts/v3/reference/overview
https://docs.uniswap.org/contracts/v3/reference/overview
https://docs.uniswap.org/whitepaper.pdf
https://web3sec.notion.site/web3sec/c582b99cd7a84be48d972ca2126a2a1f?v=4671590619bd4b2ab16a15256e4fbba1
https://web3sec.notion.site/web3sec/c582b99cd7a84be48d972ca2126a2a1f?v=4671590619bd4b2ab16a15256e4fbba1

DeFort: Automatic Detection and Analysis of Price Manipulation A�acks in DeFi Applications ISSTA ’24, September 16–20, 2024, Vienna, Austria

[82] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia,
Yang Feng, Zhenyu Chen, and Baowen Xu. 2019. Smart contract development:
Challenges and opportunities. IEEE Transactions on Software Engineering 47, 10

(2019), 2084–2106.

Received 16-DEC-2023; accepted 2024-03-02

414

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Contract and Decentralized Finance (DeFi)
	2.2 Price Manipulation Attacks

	3 Methodology
	3.1 Modeling for Price Manipulation
	3.2 Overview of DeFort
	3.3 On-chain Monitoring
	3.4 Model-based Detection
	3.5 Model-based Analysis

	4 Evaluation
	4.1 Datasets
	4.2 Implementation
	4.3 RQ1: Efficacy of Attack Detection
	4.4 RQ2: Efficacy of Attack Analysis
	4.5 RQ3: Efficacy in Detecting and Analyzing Real-world Attacks during On-Chain Deployment

	5 Discussion
	5.1 Application to Attack Blocking
	5.2 Limitation in Design and Implementation

	6 Related Work
	6.1 Detection of Price Manipulation Attacks
	6.2 Analysis of Attacks

	7 Conclusion
	8 Data Availability
	Acknowledgments
	References

